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Abstract

X-ray single particle imaging (SPI) is a nascent technique that can capture the
dynamics of biomolecules at room temperature. SPI experiments will one day
collect tens of millions of images of the same molecule in order to overcome the
weak scattering of individual proteins. Existing reconstruction algorithms will
be unable to scale to datasets of this size because they perform computationally
expensive search steps to estimate the orientation of the molecule in each image.
In this work, we propose a reconstruction algorithm that amortizes the estimation
of pose via an autoencoder framework. Our approach consists of a convolutional
encoder that maps X-ray images to predicted poses and a physics-based decoder
that implicitly fuses all the 2D scattering images into a volumetric representation of
the molecule. We validate our method on 6 synthetic datasets of 2 distinct proteins,
showing that for the largest datasets containing 5 million images, our technique
can reconstruct the electron density in a single pass.

1 Introduction

Accurately determining the structures of biomolecules helps biologists better understand their function,
which is important for modeling disease and developing new therapies. X-ray crystallography and
cryo-electron microscopy (cryo-EM) are the leading methods routinely used to determine protein
structures at atomic resolution. However, both methods limit the range of possible conformational
states that can be captured – crystallization restricts protein movement by locking molecules in a
lattice, while the process of freezing in cryo-EM prevents proteins from assuming states that lie at
higher energies [1].

X-ray single particle imaging (SPI) is a nascent imaging technique that is being developed to circum-
vent some of the limitations of crystallography and cryo-EM. In X-ray SPI, individual aerosolized
proteins are imaged at room temperature using an X-ray free-electron laser (XFEL). Because of the
limited scattering cross-section of the imaged molecules, each image contains a small amount of
signal, therefore millions of copies of the same protein need to be imaged at different orientations.
The molecules are typically delivered to the imaging laser via aerosol jet, so each protein is captured
at an unknown pose with respect to the detector. Reconstruction algorithms must therefore estimate
the orientation of each image and merge all the images together into a 3D structure.

With free-electron lasers such as EuXFEL and LCLS-II expected to capture up to one million images
per second [2], SPI reconstruction methods must be able to process datasets containing tens of
millions of images. Unfortunately, existing algorithms for X-ray SPI [3, 4] do not scale well to
large datasets, with pose estimation acting as the primary bottleneck. Recent work on reconstruction
methods for cryo-electron microscopy (cryo-EM) has resolved this scaling issue through amortized
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inference [5, 6], a technique that avoids independently estimating the pose of each image. We first
describe related work in the field of X-ray SPI and subsequently explain how recent developments in
cryo-EM analysis inspire our own amortized method.

1.1 Reconstruction in X-Ray SPI

Current state-of-the-art reconstruction methods for X-ray SPI have found success in processing both
real and synthetic datasets and are robust to low photon counts [3, 4, 7]. However, these techniques
scale poorly for one of two reasons: either because (1) they perform a non-amortized pose estimation
step that exhaustively searches the rotation group SO(3) or (2) they compute dense similarity metrics
between all pairs of images in the data.

One method of the former variety is the expand-maximize-compress (EMC) algorithm, which was
initially developed by Loh and Elser [8] and later implemented in Dragonfly [3]. The EMC algorithm
performs pose estimation in a probabilistic manner, iteratively maximizing the likelihood of the
orientation of each image with respect to an estimate of the intensity volume until convergence.
Multi-tiered iterative phasing (M-TIP) [4] is another algorithm that estimates orientations in a similar
manner to EMC while also incorporating phase retrieval to bake real-space constraints into the
optimization. Although EMC and M-TIP only require a constant number of iterations to converge,
each iteration involves computing likelihoods for every possible pose across all the images. As such,
the likelihood maximization step scales linearly in both the number of images as well as the space
of all poses (a sampled subset of SO(3)), which becomes computationally expensive as the dataset
grows in size. Another class of methods is based on the principle of manifold embedding using
diffusion maps (DM). Unlike EMC and M-TIP, DM performs pose estimation by first learning a
low-dimensional manifold from the space of images in the dataset and then mapping this manifold to
the rotation group SO(3) [9, 10]. Unfortunately, the DM algorithm scales poorly with dataset size
because it requires computing distance metrics between all pairs of images in the dataset in order to
construct a k-Nearest Neighbor Graph (k-NNG) [11].

1.2 Optimization-Based Amortized Inference in Cryo-EM

Recent work in reconstruction for cryo-EM has shown that end-to-end optimization with amortized
inference can accelerate pose and conformation estimation. Rather than independently estimating
the orientation of each image as done in EMC and M-TIP, amortized inference learns a function that
maps images to these estimated variables. As a result, pose and conformation estimation scale relative
to the complexity of the function parameterization instead of the size of the dataset. CryoDRGN
[12] was the first technique to use amortized inference to determine the conformational states from
experimental cryo-EM datasets with known poses, employing a neural implicit representation for
structure determination. CryoDRGN2 [13] extended this method to incorporate pose estimation as
well, but it utilizes a non-amortized exhaustive search strategy that slows down reconstruction. CryoAI
[5] was the first method to successfully amortize pose estimation for homogeneous reconstruction on
experimental data.

In this work, we introduce X-RAI, a method that amortizes the estimation of pose in a similar
manner as cryoAI, employing a convolutional encoder and physics-based decoder for single particle
reconstruction. Because our algorithm optimizes the encoder and decoder end-to-end via gradient
descent, we avoid the expensive pose estimation step found in prior work. When the dataset is
sufficiently large, amortization enables reconstruction to operate in an online fashion. Our method
differs from cryoAI because its forward model is based on X-ray diffraction, an imaging technique
that loses phase information and operates under fundamentally different physical principles than
cryo-EM.

2 Methods

2.1 Image Formation Model

In X-ray SPI, each molecule being imaged possesses an electron density field that scatters the incident
photons to form a diffraction image on the detector. The electron density can be formalized as a 3D
function V that maps R3 to R. According to the theory of X-ray diffraction [14], each image recorded
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Figure 1: Visualization of X-RAI’s reconstruction pipeline. The encoder takes in a Fourier amplitude
image and predicts a rotation matrix Ri representing the molecule’s orientation in the image. Ri

rotates the coordinates of the Ewald sphere E, the result of which is used to query a neural implicit
representation of the Fourier amplitude volume. This Ewald slice through the amplitude volume
produces a noise-free estimate of the input amplitude image, which is then compared to the input
image using a symmetric loss. The parameters optimized by the reconstruction procedure are shaded
in blue, and the images are plotted on a log scale.

by the detector corresponds to a slice through the Fourier transform of V , where the coordinates of
the slice lie on the Ewald sphere, a geometric object in Fourier space that is constructed based on the
parameters of the imaging experiment. If we denote E as the coordinates along the Ewald sphere and
V̂ := F3D[V ] as the Fourier transform of V , then the resulting slice S can be formulated as:

S = V̂ (E) (1)

Each detector image Ii captures a single molecule at a random orientation Ri with respect to the
laser. Since rotation in the primal domain is equivalent to rotation in the Fourier domain, the resulting
image can be constructed by simply rotating the coordinates of the Ewald slice as follows:

V̂ (Ri · E) (2)

Experimental detectors only capture the intensity and not the phase of the incident light. As such, the
phase of the complex-valued V̂ is lost, and the captured image corresponds to the squared magnitude
of V̂ :

Ii = |V̂ (Ri · E)|2 = |V̂ |2(Ri · E) + η, (3)

where η corresponds to additive noise (potentially signal dependent). Since the detector records
discrete photon hits, the dominating source of noise in SPI experiments is Poissonian, particularly
when the molecule is a weak-scatterer.

2.2 Overview of the Architecture

X-RAI employs an autoencoder architecture to reconstruct a diffraction volume from a set of X-ray
diffraction images. Here, the diffraction volume refers to the real-valued function |V̂ |2. Our pipeline,
visualized in figure 1, starts by feeding each diffraction image to a convolutional encoder that outputs
an estimate of the molecule’s orientation. The coordinates of the Ewald slice are rotated by this
orientation and are subsequently used to query a neural representation of the diffraction volume to
yield a noise-free estimate of the input image. The input and output images are compared using a
symmetric loss (first introduced in cryoAI [5]) that prevents spurious planar symmetries from arising
during reconstruction, after which gradients are back-propagated to update both the encoder and
decoder. The symmetric loss is reproduced below:

Lsym =
∑
i

min{||Ii − Γ(Ii)||2, ||Rπ(Ii)− Γ(Rπ(Ii))||2}, (4)
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Figure 2: Comparison of the electron densities output by X-RAI and M-TIP against the ground truth
volumes used for simulation. These reconstructions correspond to datasets containing 500K images
with the following PDB codes: (a) 1O9K and (b) 2CEX_A. X-RAI achieves higher resolution than
M-TIP for these datasets, which can be seen visually from the reconstruction quality as well as the
FSC curves.

where Γ represents the operator corresponding to the autoencoder and Rπ denotes a rotation of the
input image by π radians. Here, the use of an L2 loss assumes a Gaussian noise model as opposed
to one that is Poissonian, which suffices for our experiments since the datasets we simulate are
noise-free.

Pose Estimation. The encoder maps images to molecular poses using a convolutional neural
network (CNN). First, we take the square root of each input diffraction image to produce a Fourier
amplitude image that is fed as input to the CNN. In practice, we find that transforming the images
in this way aids reconstruction by boosting the signal at higher frequencies, which naturally drops
off in the Fourier spectra of natural images. The amplitude images are then low-pass filtered into a
Gaussian pyramid before being input to a convolutional neural network inspired by VGG16 [15]. The
output of this CNN is a feature vector that is subsequently fed as input to a fully-connected neural
network that outputs an estimate of the pose, parameterized as a six-dimensional vector in S2 × S2

[16].

Physics-Based Decoder. The decoder maps the pose estimate produced by the encoder to a noise-
free estimate of the Fourier amplitude image. This mapping is performed by querying a neural
implicit representation of the Fourier amplitude volume (the square root of the diffraction volume)
with the Ewald slice coordinates E rotated by the estimated pose. Neural representations such as
NeRF [17] and SIREN [18] have found broad success in signal representation for computer vision,
and cryoDRGN [12] was the first method to employ such a representation for protein reconstruction
in cryo-EM. To represent the Fourier amplitude, we utilize a variant of SIREN called FourierNet
that is tailored to represent Fourier spectra [5]. The amplitude image produced by the decoder is
compared against the input amplitude image using the symmetric loss in equation 4.

3 Results

We use Skopi [19], a software package for simulating X-ray SPI experiments, to generate datasets
for two model proteins (PDB: 1O9K [20] and 2CEX_A [21]) at three different dataset sizes: 50,000,
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Dataset Method Time Resolution (pixels) ↓ Train Error (Med/MSE) ↓ Test Error (Med/MSE) ↓

1O9K (Train: 50K) X-RAI 8:16h 4.73 1.5 / 2.2 1.5 / 2.2

M-TIP 0:35h 7.20 9.2 / 16.4 9.5 / 16.4

1O9K (Train: 500K) X-RAI 8:15h 4.09 1.3 / 1.7 1.3 / 1.7
M-TIP 4:44h 6.90 9.4 / 16.5 10.3 / 17.1

1O9K (Train: 5M) X-RAI 8:13h 4.41 2.0 / 2.7 1.9 / 2.6

M-TIP > 24h —- —- —-

2CEX_A (Train: 50K) X-RAI 8:16h 5.15 2.0 / 3.2 2.1 / 3.3

M-TIP 0:29h 11.52 53.4 / 72.6 53.1 / 74.2

2CEX_A (Train: 500K) X-RAI 8:15h 4.30 1.5 / 1.9 1.4 / 1.8
M-TIP 4:35h 7.32 23.1 / 62.5 23.6 / 62.34

2CEX_A (Train: 5M) X-RAI 8:14h 4.87 1.4 / 1.8 1.4 / 1.8
M-TIP > 24h —- —- —-

Table 1: Comparison of reconstruction accuracy for X-RAI and M-TIP on datasets of various sizes.
Training and test pose error are reported in degrees, and the best resolutions and pose errors for
each of the two proteins are highlighted in bold. X-RAI outperforms M-TIP across all datasets,
maintaining a constant runtime for 50K, 500K, and 5M images. M-TIP converges to a solution faster
for 50K and 500K images but times out after 24 hours for 5M images.

500,000, and 5,000,000 images (hereafter referred to as 50K, 500K, and 5M, respectively). A distinct
autoencoder model is optimized for each dataset via stochastic gradient descent, and we adjust the
number of training epochs based on the dataset size such that each reconstruction performs the same
number of gradient update steps. The model is implemented in PyTorch [22] and trained on a single
Tesla A100 GPU for each experiment. We report the resolution of each reconstruction, as determined
by a Fourier shell correlation with a 0.5 cutoff, as well as the accuracy of the estimated poses in
degrees. Each dataset is also processed using M-TIP [4], which serves as a baseline for comparison.
More details regarding data generation, training, and evaluation can be found in appendix A.1.

The results of these reconstructions are reported in figure 2 and table 1. X-RAI is able to reconstruct
all six datasets to within 6 pixels of resolution, and its accuracy remains relatively equal across all
dataset sizes, which is to be expected in the noise-free setting as even the smallest dataset of 50, 000
images sufficiently covers SO(3). Our method outperforms M-TIP across all datasets, although
M-TIP is able to converge to a solution faster than X-RAI for 50K and 500K images. M-TIP times
out after 24 hours when processing datasets with 5M images, behavior that is explained further in
appendix A.2. Furthermore, it struggles to reconstruct the datasets corresponding to 2CEX_A even
with 500K images, with orientation errors exceeding 20 degrees.

Notably, X-RAI’s reconstruction time remains constant relative to the size of the dataset, demonstrat-
ing the efficacy of the encoder at amortizing pose estimation. Moreover, the pose accuracy on the
test set remains high, showing that the encoder is able to learn and not memorize the statistics of the
input diffraction images. Our method reconstructs both datasets containing 5 million images in an
online fashion, processing the data sequentially in batches of 64.

4 Discussion

Reconstruction algorithms for X-ray SPI experiments will need to scale to datasets containing tens of
millions of images that will be produced by next-generation XFELs. Existing techniques scale poorly
with dataset size because they estimate the orientation of each image independently. In this work, we
propose an amortized approach to pose estimation that uses an autoencoder framework to reconstruct
the electron density. We validate our method on synthetic, noise-free datasets containing up to 5
million images, demonstrating online reconstruction for the largest datasets. The main limitation
of our method is that it has not been validated on datasets containing realistic levels of signal and
noise. In the future, we intend to test our method on synthetic datasets containing noise as well as
experimental datasets captured by real free-electron lasers.
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A Appendix

A.1 Data Generation and Training

The detector used for simulation is a square with a side length of 100 mm and has 128× 128 pixels.
The simulated laser has a beam energy of 4.6 keV and incident fluence of 1012 photons per pulse. We
use a random set of orientations to generate the images, which for the sake of simplicity are simulated
to be noise-free. For each protein, we also generate a test set of 10,000 images in order to evaluate
the accuracy of the encoder after reconstruction.

We optimize a distinct autoencoder model for each dataset via stochastic gradient descent, feeding the
images to the pipeline in batches of 64. Each image is scaled to contain a total intensity summed over
all pixels of at least 20, 000 and is converted to an amplitude image via a square root operation before
being input to the encoder. The number of training epochs is determined such that each reconstruction
pipeline performs the same number of gradient updates. More specifically, the 50K datasets run for
100 epochs, the 500K datasets run for 10 epochs, and the 5M datasets run for 1 epoch. We perform 5
independent reconstructions using X-RAI and 10 reconstructions with M-TIP, reporting the results of
the best reconstruction for each method as determined by the pose accuracy on the training data. The
Fourier amplitude volume output by each reconstruction pipeline is phased using alternating steps of
the error reduction and hybrid input-output algorithms, and we take the inverse Fourier transform of
the resulting volume to retrieve the electron density V .

We rely on two metrics to evaluate reconstruction accuracy – volumetric resolution and pose error.
For the former, we compute the resolution of the output electron density by aligning the estimated
volume with the ground truth molecular volume used for simulation. We report the resolution as
the Fourier shell correlation between the two volumes using a 0.5 cutoff. To compute the accuracy
of the poses estimated by the encoder, we first align the orientation estimates with the ground truth
orientations used during simulation by searching for a rotation matrix that minimizes the average
view-direction error between the true and estimated poses. Because the Ewald geometry used in our
experiments has minimal curvature and the Fourier amplitude is centrosymmetric, all the diffraction
images possess near-in-plane rotational symmetry by π radians. Thus, the ground truth pose and its
in-plane rotation by π radians are both valid orientation estimates for a given image. We design a
pose error metric that accounts for this in-plane ambiguity by projecting the in-plane components
of the aligned orientation estimates to lie in the interval [0, π] and then computing the angle of the
rotation matrix that aligns each projected estimate with the corresponding ground truth pose.

A.2 M-TIP Implementation

We use an unofficial implementation of M-TIP [23] that is not optimized for performance. One
artifact of this implementation is that it attempts to load the entire dataset into memory at once,
causing the reconstruction to time out after 24 hours for datasets containing 5M images.

Running M-TIP for more iterations or increasing the sampling density of its orientation search over
SO(3) could improve the algorithm’s performance at the cost of increased runtime, but we do not
test alternate settings in our evaluation.
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