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Abstract

Cryo-EM is a powerful tool for understanding macromolecular structures, yet cur-
rent methods for structure reconstruction are slow and computationally demanding.
To accelerate research on pose estimation, we present CESPED, a new dataset
specifically designed for Supervised Pose Estimation in Cryo-EM. Alongside CE-
SPED, we provide a PyTorch package to simplify Cryo-EM data handling and
model evaluation. We evaluate the performance of a baseline model, Image2Sphere,
on CESPED, showing promising results but also highlighting the need for further
advancements in this area.

1 Introduction

1.1 Background

Determining the structure of macromolecules is crucial for understanding biological processes and
diseases. Cryogenic Electron Microscopy (Cryo-EM) Single-Particle Analysis (SPA) has become
a pivotal method in this area. In SPA, the 3D structure of a macromolecule is reconstructed from
thousands of noisy 2D image projections, called particles. These particles adopt random orientations
during the imaging process that need to be estimated in order to recover the 3D structure.

Traditional algorithms for pose estimation are based on exhaustive comparison of experimental
images and reference projections [3, 6, 24, 27, 29]. While they tend to be relatively robust and
accurate, they are computationally intensive and slow. In response, deep learning (DL) alternatives
have begun to emerge. Some unsupervised DL methods [7, 15, 14] mirror traditional techniques
by maintaining a 3D volume representation to compute 2D projections. Unlike traditional methods,
which compare each experimental particle against all images in an SO(3) projection gallery with up
to millions of members, these DL methods use an encoder to predict the particle orientation based on
the particle image alone. Then, the projection for the predicted orientation is differentiably rendered
and compared to the experimental particle with a loss function used to simultaneously update the
parameters of the encoder and the representation of the volume. Other Supervised DL methods
[10, 16] offer an even simpler alternative, consisting only of an encoder module that predicts the
particle orientation directly from its image. While these approaches offer remarkable efficiency, they
require labelled data (pre-aligned particles), thus limiting their applicability in de novo situations.
However, since pose estimation is primarily driven by low to mid-resolution frequencies [28], these
models could generalize to new experiments with the same sample in different conditions or even
with similar samples, accelerating image processing for the subsequent experiments. Since ligand
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binding does not generally modify the overall shape of the protein, supervised approaches can be
especially valuable in drug discovery, where pre-aligned data for target proteins is often available.

The performance of DL pose estimation models still lags behind current methods in terms of quality
and reliability. This gap can be partly attributed to the unique characteristics of Cryo-EM data, which
differ from the natural images DL artchitectures were designed for; and, importantly, to the lack of a
standardized benchmark that would allow for a direct comparison of methods in order to stimulate
progress, much as ImageNet [5] did for image classification.

1.2 Main contributions.

In this study, we provide an accessible entry point for a wider scientific audience to engage with the
challenges of SPA in Cryo-EM. Toward this goal:

• We compiled CESPED (Cryo-EM Supervised Pose Estimation Dataset), an easy-to-use
benchmark specifically designed for Supervised Pose Estimation in Cryo-EM.

• We implemented a PyTorch-based [21] package to handle Cryo-EM particle data and to
easily compute Cryo-EM quality metrics.

• We trained and evaluated the Image2Sphere model [13], originally developed for real-world
pose estimation, on our benchmark. This illustrates the utility of our benchmark and sheds
light on the transferability of real-world pose estimation models to the Cryo-EM domain.

1.3 Related work

1.3.1 Traditional Cryo-EM Pose Estimation.

When sample homogeneity can be assumed, the simplest approach to the pose estimation
problem is the projection matching algorithm, which consists of T iterations of two steps.
First, in the alignment phase, the pose (R, t)i of each experimental image xi is set to
be the same as the one of the most similar 2D projection of the reference volume V t,
(R, t)i = argmin(R,t)∈SO(3)×R2

∥∥xi − gi ∗ P(R,t)V
t
∥∥2 where P(R,t) is the projector operator

and gi is the point spread function of the microscope. Then, in the reconstruction phase,
a new volume (in reciprocal space) is computed from the estimated poses as V̂ (t+1) =(∑N

i=0 P
−1
(R,t)i

ĝix̂i

)
/
(∑N

i=0 P
−1
(R,t)i

ĝ2i + C
)

with C being a constant depending on the Signal
to Noise Ratio (SNR) and N the number of particles. This iterative process continues until conver-
gence. More advanced methods build on this approach, for example, Relion [27] employs a Bayesian
probabilistic model with a prior for the map, while cryoSPARC [24] accelerates the Bayesian methods
via branch-and-bound search and gradient descent optimization. See [1] for a review.

1.3.2 Deep learning for pose estimation.

Traditional pose estimation methods were rooted in matching 2D images to 3D objects, often by
finding the correspondence between landmarks. Direct pose estimation was first proposed in PoseNet
[12], in which a Convolutional Neural Network (CNN) directly regresses the absolute pose of an
object represented as quaternions and xyz shifts. Later works improved on PoseNet by refining
architectures [18], losses [11] or via multi-task learning [31].

Handling symmetry and ambiguities, such as those caused by occlusions, presents challenges. This
issue has been tackled by either breaking the symmetry when labelling the data [30] or applying
loss functions that can handle known symmetries [31]. Alternatively, probabilistic models offer
approaches that either classify poses within a discretised space or explicitly learn the parameters of
probability distributions [4, 17, 19, 20, 23].

In the context of Cryo-EM, only two supervised methods have been proposed to perform direct
pose estimation given pre-aligned particles. DeepAlign [10], a set of CNNs that perform binary
classification over a discretisation of S2, and the approach of Lian et al. [16] who implemented a
CNN to perform direct regression of quaternions. However, due to its limitations, especially for
symmetric data, Lian et al. finally adopted a hybrid model with a differentiable projector as in some
Cryo-EM Unsupervised estimations. Neither of the two has been used in practical scenarios.
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2 Methods

2.1 Benchmark Compilation and pre-processing

The EMPIAR database [9] was searched to identify entries containing at least 200K aligned particles
for a given macromolecule. Then, to ensure that all particle poses were estimated consistently, the
data and metadata files were downloaded and re-processed using Relion [27]. Those entries for which
the reconstructed volume showed resolution values close to the reported ones in the literature were
selected for the benchmark. Finally, for consistency, all the images were downsampled to 1.5 Å/pixel,
with different image dimensions in each entry as the macromolecules vary in size (see Appendix A).

We perform on-the-fly per-image normalisation using the standard Cryo-EM noise whitening proce-
dure so that the background has mean 0 and std 1. We also correct the contrast inversion caused by the
defocus via phase flipping [22]. Finally, since the macromolecule typically represents only between
25% to 50% of the whole particle image, the images are cropped so that neighbouring particles are
not included. Data labels are represented as rotation matrices and then converted into grid indices
by finding the closest rotation matrix in the SO(3)grid. For the cases in which the macromolecule
exhibits point symmetry, the labels are expanded as Li = {gjRi|gj ∈ G} where G is the set of
rotation matrices given a point symmetry group (e.g., C1). As a result, the labels consist of a vector
with |G| non-zero values and |SO(3)grid| − |G| zeros.

2.2 Baseline model

We adapted the state-of-the-art Image2Sphere model [13]. Image2Sphere is a hybrid architecture
that uses a ResNet to produce a 2D feature map of the input image, which is then orthographically
projected onto a 3D hemisphere and expanded in spherical harmonics. Then, equivariant group
convolutions are applied, first with global support on the S2 sphere and finally as a refinement step,
on SO(3). The output of the model is a probability distribution over a discretised grid of rotation
matrices. Supervised Cryo-EM methods for pose estimation were not considered for this work due to
the lack of publicly available code [16] or their GUI requirements [10].

2.3 Evaluation metrics

The most employed metric in pose estimation is the mean angular error, MAnE =
∑N

i=0 angErrori

where angErrori = mingj∈G arccos
(
(trace(gj · trueRi · predRT

i )− 1)/2
)

, G is the set of ro-
tation matrices given a point symmetry group, and trueRi and predRi are the ground-truth
and predicted rotation matrices. However, due to the uncertainty in the estimated poses [10],
we propose additional metrics. The first one is the confidence-weighted mean-angular-error,
wMAnE =

(∑N
i=0 confi · angErrori

)
/
(∑N

i=0 confi

)
, which weights the angErrori by confi,

the confidence in the ground-truth pose, measured as Relion’s rlnMaxValueProbDistribution. While
wMAnE is still sensitive to ground-truth and confidence estimation errors, due to its simplicity, we
used it as the criterion for hyperparameter tuning.

We also directly assess the quality of the reconstructed volume given the predicted poses by comparing
it with the ground-truth volume generated from the original poses. We compute the real space
Pearson’s Correlation Coefficient (PCC), and the Fourier Shell Correlation Resolution at threshold
0.5 (FSCR0.5) and 0.143 (FSCR0.143), which corresponds to the highest frequency at which the
two maps agree with a SNR of 1 and 0.5 respectively [25]. Finally, in order to decouple the
different quality levels of the different benchmark entries, we report the differences of the metrics
with respect to the ground-truth levels, ∆PCC = PCC(GT0, GT1)− PCC(GT, V ) and ∆FSC =
FSC(GT0, GT1)− FSC(GT, V ), where GT is the ground-truth map, GTi is the ground-truth map
reconstructed with the i-th half of the data, and V is the predicted 3D volume (see Figure 1).

2.4 Training

Each benchmark entry was trained independently with the same hyperparameters (see Appendix B).
Due to the uncertainty in the estimated orientations, we employed a weighted cross-entropy loss
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using the pose reliability estimate of each particle as the per-image weight

L =
1

N

N∑
i=0

C∑
c=0

−confi · P (Rc,i) log(Q(Rc,i))

where Q(Rc,i) is the predicted probability for the rotation matrix with grid index c and P (Rc,i) is
1/|G| when any of the ground-truth matrices is c and zero otherwise.

2.5 Evaluation protocol

Figure 1: Evaluation protocol based on
the Cryo-EM Gold Standard

Due to the uncertainty in the ground-truth labels and the
fact that what matters to the Cryo-EM practitioners is
the quality of the reconstructed volume, we devised an
evaluation protocol based on the Cryo-EM Gold Standard
[8], which is a per-entry 2-fold cross-validation strategy in
which the poses of each half of the data are independently
estimated and used to reconstruct two volumes (half-maps).
For benchmarking supervised methods, it involves training
an independent model for each dataset half to infer the
poses of the other half of the dataset. After that, the final
3D volume is computed by reconstructing the two half-
maps and averaging them. The final averaged map can
then be compared with the ground-truth map obtained
from the original poses (see Figure 1).

Since Image2Sphere predicts only rotation matrices but
not image shifts, when reconstructing the volumes, we
employed the ground-truth translations. This could result
in an overoptimistic estimation of performance, however,
since the effect of the translations is tightly coupled with the accuracy of the angular estimation, this
overestimation should be small. We leave for future work the full inference of both the rotations and
translations. Finally, to avoid overfitting to the validation set, we performed hyperparameter tuning
only over one half of the data using wMAnE as metric.

3 Results and discussion

3.1 Benchmark, ParticlesDataset class and evaluation tool

Our benchmark consists of a diverse set of 7 macromolecules, with an average number of 300K
particles including soluble and membrane macromolecules, symmetric and asymmetric complexes,
and resolutions ranging from 5Å to 3.2Å (see Appendix A). For each particle in the dataset, we
provide its image and estimated pose together with an estimate of the reliability of the poses. The
benchmark can be automatically downloaded from Zenodo [32] using our cesped Python package.

The package includes a ParticlesDataset class, which implements the PyTorch Dataset API
for seamless integration. It also offers optional yet recommended pre-processing steps commonly
adopted in Cryo-EM and specialized data augmentation techniques, like affine transformations that
adjust both the image and its corresponding pose (see Appendix B). Additionally, the package offers
an automatic evaluation pipeline that only requires as inputs the predicted poses (grey box in Figure
1). For ease of use, a Singularity image definition file is included, eliminating the need for installing
Cryo-EM-specific software like Relion. This design enables those without Cryo-EM experience to
utilize the cesped benchmark and package as effortlessly as they would with standard datasets such
as MNIST. Usage examples can be found in Appendix C.

3.2 Performance of the baseline model on the benchmark

Table 1 summarizes the results of the Image2Sphere [13] model on our benchmark, with per-entry
results in Appendix D. While the wMAnE is ∼ 24°, for the best cases the error is as small as 9°. The
∆PCC for the worse cases is > 0.1, highlighting that, for some entries, the reconstructed volumes are
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Table 1: Image2Sphere results on CESPED. MAnE and wMAnE measure angular errors in predicted
poses. ∆PCC and ∆FSCR measure the reduction in quality of the predicted volumes compared to
the ground-truth. The mean and std of the metrics are computed over the seven benchmark entries.

MAnE (°) wMAnE (°) ∆PCC ∆FSCR0.5 (Å) ∆FSCR0.143 (Å)

mean (std) 29.2 (13.6) 24.2 (14.1) 0.056 (0.035) 3.6 (0.5) 1.5 (0.7)

far from the ground-truth solution. Still, as before, for a few instances, the results are much better,
with ∆PCC < 0.03. In terms of prediction vs ground-truth FSCR0.5, most maps are in the 8-6 Å
range, with ∆FSCR0.5 of 3.6 Å. However, the FSCR0.143 values between 4-5 Å, indicate better
correlation at lower signal levels. This visually translates into a relatively well-resolved central part
of the map that becomes blurrier away from the centre (see Appendix E). For the top-performing
cases, a simple and fast local refinement of the predicted poses is sufficient to obtain high-resolution
reconstructions comparable to ground-truth volumes, at a computational cost threefold less than
global refinement (Appendix F). Since the Image2Sphere model inference takes only minutes, far
less than the hours needed for traditional refinement, further improvements could reduce computing
times by an order of magnitude if local refinement is no longer needed.

Appendix H presents an example where a model initially trained on the CESPED target 10280, is
able to predict the poses of another dataset of the same protein in different conditions. While the
results are of lower quality, they still exhibit a significant level of generalizability, offering promising
potential to speed up image processing in this common scenario.

Given the inherent difficulties of Cryo-EM data, the fact that a generic pose-estimation model can
produce meaningful results in some examples without major modifications suggests that equivariant
architectures can be useful for the Cryo-EM data domain.

3.3 Challenges and future directions

Cryo-EM particle images are fundamentally different from the kinds of images encountered in other
fields. One of the most critical challenges is their poor signal-to-noise ratio, which can be as low as
0.01 [1]. While some methods have tried to mitigate this issue by applying filtering techniques [14]
or using CNNs with larger kernel sizes [2, 10, 26], these solutions are not entirely effective.

Symmetry presents another complex facet of Cryo-EM data. On the one hand, exploiting symmetry
can drastically reduce the computational requirements for pose estimation. On the other, it can prevent
simple models from learning. The unique combination of rotationally equivariant convolutions with
the probabilistic estimation of poses makes the Image2Sphere model an ideal candidate to exploit
this feature. However, the hybrid S2 / SO(3) formalism means that separation of rotational degrees of
freedom from translational in-plane shifts is not easily achieved within this framework. A significant
area for future work lies in leveraging rotational equivariance and translational equivariance for the
joint estimation of the rotational and translational components of the poses (e.g. SE(3) equivariance).

In this work we have considered only the case of homogeneous refinement, which assumes that all
particles are projections from a single macromolecule in a unique conformation. However, this is
not always the case and our benchmark could potentially be extended to deal with such examples.
Models would then need to perform conformation classification alongside pose estimation.

4 Conclusions

Pose estimation is one of the most critical steps of the Cryo-EM processing pipeline, and while
current algorithms are relatively robust and reliable, they are also computationally slow. Deep
learning holds the promise of overcoming these challenges, but achieving this potential hinges on
improvements in accuracy and reliability, for which systematic benchmarking is required. In this
study, we introduce a benchmark specifically designed for Supervised Pose Inference of Cryo-EM
particles, along with a suite of code utilities to assist machine learning practitioners unfamiliar with
Cryo-EM. We also present a real-world image pose prediction model applied to our benchmark,
demonstrating promising preliminary results on a subset of the data. This preliminary success suggests
that addressing Cryo-EM-specific challenges, such as high noise levels and label inaccuracies, could
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lead to even better performance. The improvements in models for this benchmark will not only
pave the way for more effective Supervised Pose Prediction models, but are also likely to give
rise to innovative approaches to closely related challenges like Unsupervised Pose Estimation and
Heterogeneity Analysis. Ultimately, those advancements could serve as a catalyst for even further
developments, leading to a new paradigm in Cryo-EM image processing.

5 Availability

CESPED dataset and code can be found at https://github.com/rsanchezgarc/cesped.
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1 Appendix A. Benchmark composition.

Supplementary Table 1. CESPED benchmark entries.
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10166 Human 26S proteasome bound
to the chemotherapeutic Opro-
zomib

C1 284 5.0 3.9 238631

10786 Substance P-Neurokinin Recep-
tor G protein complexes (SP-
NK1R-miniGs399)

C1 184 3.3 3.0* 288659

10280 Calcium-bound TMEM16F in
nanodisc with supplement of
PIP2

C2 182 3.6 3.0* 459504

11120 M22 bound TSHR Gs 7TM G
protein

C1 232 3.4 3.0* 244973

10647 PKM2 in complex with L-
threonine

D2 222 3.7 3.3 234956

10409 Replicating SARS-CoV-2 poly-
merase (Map 1)

C1 240 3.3 3.0* 406001

10374 Human ABCG2 transporter
with inhibitor MZ29 and 5D3-
Fab

C2 216 3.7 3.0* 323681

• * Nyquist Frequency at 1.5 Å/pixel; Resolution is estimated at the usual threshold 0.143.
• Reported FSCR0.143 values were obtained directly from the relion_refine logs while Masked FSCR0.143

values were collected from the relion_postprocess logs.

2 Appendix B. Image2Sphere and training hyperparameters

Our Image2Sphere model follows the implementation of Klee et al. [3] with the following configura-
tion:

Machine Learning for Structural Biology Workshop, NeurIPS 2023.



• Feature extractor: ResNet152 [2] with default parameters as implemented in torchvision
using imageNet weights. The input images are resized to 256 pixels before being fed, giving
a feature map of shape 2048x8x8. Since the input images only contain one channel, but the
ResNet expects 3 channels, two additional channels were added by applying a Gaussian
filter with sigma 1 and 2 to the input image.

• Image projector to S2: Default orthographic projector with HEALPix [1] grid order 3
(∼ 7.5◦), where only 50% of the grid points are sampled. The feature map is projected from
2048 channels to 512 using a 1x1 Conv2d and then converted to spherical harmonics with
lmax = 8.

• S2 convolution: 512 filters with global support on a HEALPix grid of order 3.
• SO(3) convolution: 16 filters with local support (max_beta= π/8, max_gamma=2π,

n_alpha=8, n_beta=3).
• Probability distribution discretization: HEALPix grid of order 4 (∼ 3.7◦).

Training was conducted using RAdam [4] as optimizer with an initial learning rate of 1e-3. A weight
decay of 1e-5 was employed. The learning rate was halved each time the validation loss stagnated
during 10 epochs. The training was stopped when the number of epochs reached 400 or the validation
loss did not improve for 12 epochs.

Data augmentation was conducted with the following composed transformations:

• Random shift from -5% to 5% with probability 0.5.
• Random rotation from -20° to 20° with probability 0.5.
• Random 90° rotation with probability 1.
• Uniform noise addition with a random scale from 0 to 2 with probability 0.2.
• Gaussian noise addition with a random standard deviation from 0 to 0.5 with probability 0.2.
• Random zoom-in of size 0% to 5% with probability 0.2.
• Random erasing of patches of size 0% to 2% with probability 0.1.

Notice that rotation transformations require adjustments in the ground-truth labels.

3 Appendix C. ParticlesDataset usage example

Dataset instantiation only requires providing the name of the target (a string like "10280") and the
half-set number (0 or 1) (Listing 1). ParticlesDatasets can be directly used as datasets in PyTorch
DataLoader(s).

Listing 1: Example of how to load and use a CESPED benchmark entry in a training loop
import t o r c h
from c e s pe d . p a r t i c l e s D a t a s e t import P a r t i c l e s D a t a s e t

l i s t O f E n t r i e s = P a r t i c l e s D a t a s e t . ge tCESPEDEntr ies ( )
ta rge tName , h a l f s e t = l i s t O f E n t r i e s [ 0 ] #We w i l l work w i t h t h e f i r s t example
d a t a s e t = P a r t i c l e s D a t a s e t ( ta rge tName , h a l f s e t )
d l = DataLoader ( d a t a s e t , b a t c h _ s i z e =32 , num_workers =4)
f o r b a t c h in d l :

i i d , img , ( ro tMat , xySh i f tAngs , c o n f i d e n c e ) , m e t a d a t a = b a t c h

# i i d i s t h e i d o f t h e p a r t i c l e ( a s t r i n g )
# img i s a b a t c h o f Bx1xNxN images
# ro tMat i s a b a t c h o f r o t a t i o n m a t r i c e s Bx3x3
# x y S h i f t A n g s i s a b a t c h o f image s h i f t s i n Angs t roms Bx2
# c o n f i d e n c e i s a b a t c h o f numbers be tween 0 and 1 , Bx1
# m e t a t a i s a d i c t o f names : v a l u e s w i t h p a r t i c l e i n f o r m a t i o n

predRo t = model ( img )
l o s s = l o s s _ f u n c t i o n ( ro tMat , p redRo t )
l o s s . backward ( )
o p t i m i z e r . s t e p ( )

2



o p t i m i z e r . z e r o _ g r a d ( )

ParticlesDataset objects can also be used to update the metadata with newly predicted poses and
to save the results in Relion star format, commonly used in Cryo-EM software (Listing 2).

Listing 2: Example of how to save predictions for usage in Cryo-EM packages and evaluation
f o r i i d , p r e d _ r o t m a t s , maxprob in p r e d i c t i o n s :

# i i d i s t h e l i s t o f i d s o f t h e p a r t i c l e s ( s t r i n g )
# p r e d _ r o t m a t s i s a b a t c h o f p r e d i c t e d r o t a t i o n m a t r i c e s Bx3x3
# maxprob i s a b a t c h o f numbers , be tween 0 and 1 , Bx1
# t h a t i n d i c a t e s t h e c o n f i d e n c e i n t h e p r e d i c t i o n ( e . g . , s o f t m a x v a l u e s )
n _ p r e d s = p r e d _ r o t m a t s . shape [ 0 ]
d a t a s e t . updateMd ( i d s = i i d , a n g l e s = p r e d _ r o t m a t s ,

s h i f t s = t o r c h . z e r o s ( n_preds , 2 ) ,
c o n f i d e n c e =maxprob ,
a n g l e s _ f o r m a t =" r o t m a t " )

d a t a s e t . saveMd ( " p r e d i c t i o n s . s t a r " ) # Save d a t a s e t as an s t a r f i l e

Once the predictions are computed for the two halves of the benchmark entry, evaluation can
be automatically computed by providing the starfiles of both predictions via a command line
tool(Listing 3) or a function. While you can use your local installation of Relion, we also pro-
vide a Singularity definition file so that you do not need to manually install it. See instructions at
https://github.com/rsanchezgarc/cesped,

Listing 3: Evaluation script execution
py thon −m c es p ed . e v a l u a t e E n t r y −− p r e d i c t i o n T y p e SO3 −− ta rge tName 10280
−− ha l f 0P redsFname p a r t i c l e s _ p r e d s _ 0 . s t a r
−− ha l f 1P redsFname p a r t i c l e s _ p r e d s _ 1 . s t a r
−−n_cpus 12 −− o u t d i r e v a l u a t i o n /

Listing 4: Evaluation function example

from c e s pe d . e v a l u a t e E n t r y import e v a l u a t e
e v a l u a t i o n _ m e t r i c s = e v a l u a t e ( t a rge tName =" 10280 " ,

ha l f0P re dsFname =" p a r t i c l e s _ p r e d s _ 0 . s t a r " ,
ha l f1P re dsFname =" p a r t i c l e s _ p r e d s _ 1 . s t a r " ,
p r e d i c t i o n T y p e ="SO3" , # L i t e r a l [ " S2 " , "SO3 " , " SO3xR2 " ] ,
u s e P r e d C o n f i d e n c e =True ,
n_cpus =4 ,
o u t d i r =" o u t p u t / d i r e c t o r y " )
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4 Appendix D. Image2Sphere per-entry results

This section contains per-entry statistics for the Image2Sphere model predictions using the evaluation
protocol proposed in the main text. These metrics compare the ground-truth map (GT) against the
map reconstructed from the predicted poses (V), namely, PCC(GT, V ) and FSCRt(GT, V ), where
t denotes the threshold 0.5 or 0.143 and

PCC(X,Y ) =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2

where n is the number of voxels and X and Y are two volumes, and FSCRt is the first frequency k
such that FSCk(X,Y ) < 0.143 with

FSCk(X,Y ) =

∑
r∈shell(k) X̂(r) · Ŷ ∗(r)√(∑

r∈shell(k) |X̂(r)|2
)
·
(∑

r∈shell(k) |Ŷ (r)|2
)

where X̂(r) and Ŷ (r) represent the Fourier transforms of the two volumes at frequency r, shell(k) is
the shell of frequency k and Ŷ ∗(r) is the complex conjugate of Ŷ (r).

In addition, we also report half-to-half map metrics PCC(GT0, GT1), PCC(V0, V1),
FSCRt(GT0, GT1) and FSCRt(V0, V1), where 0 and 1 denote the dataset half.

Supplementary Table 2. Per-entry CESPED benchmark results using an Image2Sphere model.
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10166 15.7 9.1 0.986 0.974 5.1 6.8 6.2 8.1 4.4 4.8 0.992
10786 32.6 29.5 0.957 0.925 3.8 4.3 3.4 7.6 3.1 3.5 0.974
10280 17.8 14.9 0.954 0.949 4.2 5.0 4.6 7.3 3.6 3.9 0.981
11120 44.7 41.1 0.989 0.863 4.1 4.6 6.0 8.3 3.2 3.7 0.965
10647 13.3 10.6 0.941 0.918 4.0 4.5 4.6 7.3 3.5 3.7 0.977
10409 45.3 39.2 0.960 0.884 3.5 4.0 4.0 8.3 3.0 3.3 0.988
10374 35.0 24.8 0.986 0.968 3.7 4.2 4.3 7.0 3.0 3.6 0.993

• MAnE: Mean Angular Error; wMAnE: weighted Mean Angular Error; PCC(V0,V1): Recon-
structed half to half Pearsons’s Correlation Coefficient; PCC(GT, V ): Reconstructed to ground-
truth Pearson’s Correlation Coefficient; FSCR0.143(V0,V1): Reconstructed half to half FSC
resolution at threshold 0.143, and FSCR0.5(V0,V1) at threshold 0.5; FSCR0.143(GT,V): Re-
constructed to ground-truth resolution at threshold 0.143, and FSCR0.5(GT, V ) at threshold
0.5; FSCR0.143(GT0,GT1): Ground-truth half to half FSC resolution at threshold 0.143, and
FSCR0.5(GT0,GT1) at threshold 0.5. PCC(GT0, GT1): Ground-truth half to half Pearsons’s Cor-
relation Coefficient.

• All reported resolutions were obtained using manually computed masks that are available at
https://zenodo.org/record/8392782.

5 Appendix E. Reconstructed volumes

This appendix shows the volumes reconstructed for the best performing examples of the Image2Sphere
model on our benchmark. As it is shown in all three cases, the quality of the central region of the
protein is quite close to the one of the ground-truth. However, the density for the regions that are
at the edges of the macromolecule are much worse. This is in line to what could be expected if

4



there were some degree of inaccuracy in the angular estimation, as the magnitude of the errors in the
volume is proportional to both the angular error and the radius of the macromolecule.

Supplementary Figure 1. Ground-truth reconstruction for EMPIAR-10280 (grey) and reconstruction
using the angles predicted with the Image2Sphere model (yellow).

Supplementary Figure 2. Ground-truth reconstruction for EMPIAR-10374 (grey) and reconstruction
using the angles predicted with the Image2Sphere model (yellow).
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Supplementary Figure 3. Ground-truth reconstruction for EMPIAR-10786 (grey) and reconstruction
using the angles predicted with the Image2Sphere model (yellow).

6 Appendix F. Locally refined solution

In this section, we illustrate the usefulness of our approach by showing the effect of classical
local refinement on the Image2Sphere results for the benchmark entry 10374. In this case, the
Image2Sphere model predicted poses with a wMAnE of 24.8° that lead to a reconstructed map with
FSCR0.143(V0, V1) of 3.7 Å. When the predicted poses are used as priors for a local refinement in
Relion with –sigma_angle 2, the refined map achieved a PCC(GT, V ) of 0.997 compared to the
original 0.968, showing that the refined map is much more similar to the ground truth map. Indeed,
as it can be appreciated in Supplementary Figure 4, after the local refinement, not only the quality of
the core of the protein is comparable to the quality of the ground truth, but also the quality of the
distant parts of the maps is much better, almost as good as in the ground truth. Equally important,
since we are limiting the angular search to the neighbourhood around the predicted poses (+/- 6°),
the number of image comparisons carried out by Relion is much smaller, resulting in a three-fold
speed-up in computational time, even when including the time required for pose inference using the
Image2Sphere model.
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Supplementary Figure 4. Ground-truth reconstruction for EMPIAR-10374 (grey) and reconstruction
using the angles predicted with the Image2Sphere model and locally refined using Relion with priors
(yellow).

7 Appendix H. Example of generalizability across dataset

In this section, we present results from an Image2Sphere model trained on the EMPIAR-10280
protein (CESPED entry 10280), used to predict poses of the same protein under different conditions
in another dataset (EMPIAR-10278). Supplementary Figure 5 displays the reconstructed volumes for
the EMPIAR-10278 dataset using inferred (yellow) and actual poses (grey), alongside the volume
reconstructed for EMPIAR-10280 using inferred poses (blue). As expected, the EMPIAR-10278
map reconstructed with original poses shows superior quality compared to the others. Similarly, the
EMPIAR-10280 map generated from the model trained on EMPIAR-10280 half-datasets, exhibits
better quality than the EMPIAR-10278 map inferred using the same model, reflecting the differences
between the two datasets despite containing the same protein. Despite these quality differences, the
model’s capacity for generalization across datasets is evident through visual inspection, as the overall
shape of the protein and several key secondary structure elements are clearly recognizable. This
suggests that further improvements in the model could lead to the desired goal of training the model
once and then inferring the poses of similar datasets at much faster speeds.
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Supplementary Figure 5. Ground-truth reconstruction for EMPIAR-10278 (grey) and reconstruction
using the angles predicted with an Image2Sphere model trained on EMPIAR 10280 (yellow), and
reconstruction for the EMPIAR 10280 using the angles predicted with the same Image2Sphere model
trained on EMPIAR 10280 (blue).
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