
Coarse-graining via reparametrization avoids force
matching and back-mapping

Nima Dehmamy
IBM Research

Nima.Dehmamy@ibm.com

Csaba Both
Northeastern University
both.c@northeastern.edu

Subhro Das
IBM Research

subhro.das@ibm.com

Tommi Jaakkola
MIT CSAIL

tommi@csail.mit.edu

Abstract

Energy minimization problems are highly non-convex problems at the heart of
physical sciences. These problems often suffer from slow convergence due to
sharply falling potentials, leading to small gradients. To make them tractable, we
often resort to coarse-graining (CG), a type of lossy compression. We introduce a
new way to perform CG using reparametrization, which does not require the costly
steps of force-matching and back-mapping required in traditional CG. We focus
on improving the slow dynamics by using CG to projecting onto slow modes. We
also propose a way to find robust slow modes for many physical potentials. Our
method also does not require data, which is expensive in molecular systems and a
bottleneck for applying machine learning methods to such systems. We test our
method on molecular dynamics for folding of small proteins. We observe that our
method either reaches deeper (more optimal) energies or runs in shorter time than
the baseline non-CG simulations.

In statistical physics we are interested in knowing in the most likely states the system will be in, given
a set of exogenous factors (e.g. finding protein conformations at different temperatures, pH levels,
etc) [12]. The negative log-likelihood function, or “free energy”, is based on physical laws, with more
likely states having lower free energies. These systems generally have a large number of degrees
of freedom (DOF) with complex interactions, making the free energy landscape high dimensional
and highly non-convex. One way to make these problems tractable is to compress the DOF via
coarse-graining (CG) [21, 18]. CG aims to reduce the degrees of freedom (DOF) in the system and
replace them with clustered or collective modes. CG methods have proven very successful [19]
in many fields such as molecular dynamics (MD) [7]. Yet, they also involve costly steps, such as
back-mapping to fine-grained (FG) modes and force-matching [8].

In this paper we introduce a new approach to CG that allows us to find deeper energy levels more
efficiently. Instead of replacing DOF with CG modes, we reparametrize the FG modes as functions
of the CG modes. This approach allows us to both have access to FG modes at all times (avoiding
back-mapping) and to compute forces without requiring force-matching. We choose our CG modes
to be the “slow modes”, which are collective modes that evolve very slowly. Slow modes are the
main cause of slow convergence of many problems, including MD. Additionally, slow modes may
change during optimization, making it costly to keep track of and remedy them. In this work we
show theoretically that in many physical systems, there exist robust slow modes, which change very
little during optimization. We use these slow modes for our CG reparametrization. This allows us to
first do the hard and slow part of the optimization without interference from fast modes. In the end,
we allow all FG modes to relax, including the fast modes, to further optimize the solution. We show
experimental results for MD simulations, where we find the reparametrized models achieve deeper
energy levels or converge in shorter times, or both. In summary, our contributions are:

1. CG via reparametrization: a new method avoiding force-matching and back-mapping.
2. Robust slow modes: we devise a method for finding these modes in many systems.

Machine Learning for Structural Biology Workshop, NeurIPS 2023.

3. MD simulations: we show the benefits of our method in protein MD simulations.
4. Data-free: our method modifies the optimization process and requires no training data.

1 Background

To find likely states in physical models we can minimize the free energy. Unlike optimization problems
encountered in deep neural networks, these physics-based models are “shallow” by construction and
usually do not have any input output data. The trainable “weights” are the physical DOF that need to
be optimized, and the loss function is the free energy, which encodes all the nonlinear interactions of
the weights. Usually, the interactions have multiple scales of strength. For instance, in MD covalent
bonds are very strong, modeled as quadratic potentials ∥r−r0∥2, while van der Waals forces between
neutral atoms are extremely weak, falling sharply and modeled as Lennard-Jones (LJ) potentials
c(r−12 − r−6).

The hierarchy of forces makes the energy minimization quite challenging, including slow convergence
of gradient-based methods. It leads to the system having fast and slow modes, with extremely large and
small forces, respectively. The fast modes force us to choose small time steps for numerical stability,
resulting in slow modes converging extremely slowly. To accelerate such free energy minimization
problems we need to address the slow convergence of these slow modes. Two commonly taken
approaches to address this issue are: 1) preconditioning (e.g. adaptive gradient or quasi-Newton
method); 2) Coarse-graining (truncating the DOF to remove some fast modes). We focus on the
second option here. Refer to sec. B for discussion on why adaptive gradient methods do not fully
resolve the slow modes issue in physics problems.

1.1 Coarse-graining

CG involves a lossy compression which replaces the original DOF with new collective modes. We
will be mostly considering what is called “bottom-up” CG (see [8] for a review). In MD, specifically,
CG generally involves the following steps:

1. Defining CG modes: usually, a local clustering of multiple atoms into larger “beads”
2. Force-matching: finding the effective forces between CG modes resulting from FG forces.
3. CG dynamics: running MD for the CG modes with matched forces.
4. Back-mapping: from CG to the FG modes. Involves sampling, satisfying physical con-

straints, and minimizing the FG potentials.

CG generally removes the microscopic DOF responsible for the fast modes. CG can reduce
simulation cost by both reducing the number of degrees of freedom, as well as by effectively
removing some of the fast modes. However, the sampling and optimization in the back-mapping
step can be quite expensive. As we show, our approach avoids the sampling and simplifies the
fine-graining step.

Choice of CG modes. There exist various methods for choosing CG modes, depending on what
information we wish to preserve. For example, in protein-folding, discretizing the conformation space
into states and the transition probabilities between them yields a Markov model [6]. The spectrum of
the Markov transition matrix captures the dynamics of the system. The eigenvalues correspond to the
time scale (the rates of transitions between states), while the eigenvectors guide a clustering of states
based on kinetic similarity [9, 22]. Other choices for CG modes include local clustering of atoms
into beads, and using PCA on a matrix of multiple configurations to find co-moving parts [25]. In
this work, we use the spectrum of a canonical Hessian to define the CG modes.

Force-matching. Force-matching requires us to find an effective potential such that forces between
CG modes approximate the overall forces between their constituent FG modes. For a review of
various classic force-matching algortithms, refer to [8]. Recently, machine learning methods have
also been used to learn the force-matching potential [17, 11].

Back-mapping. The step to revert from CG modes to atomistic FG modes. Current methods build
on geometric reconstruction [14] and refinement with MD [1, 20] or data-driven approaches [24, 23].
The main limitation of MD is speed, while the data-driven models are hard to generalize for complex
large structures and require a large amount of data.

2

Need for non-data-driven approaches. Many ML approaches are data-driven and rely on
availability of large amounts of high quality data. However, in problems such as material and
molecular design data can be scarce or expensive to simulate. Importantly, the space of possible
structures is so large that building datasets with good coverage is not feasible in many cases. Even
for proteins, which are heavily researched, conformation data is scarce and protein-folding remained
a difficult problem until recently. Our goal is to devise a methodology for improving energy
minimization problems without the need for any training data.

2 Coarse-graining by reparametrization

Let X ∈ X ≃ Rn×d be a set of DOF, e.g. particle positions, bond angles, etc. Let L : X → R be a
loss function, which we will call the energy or potential. Our goal is either to simulate the dynamics
of the system based on L , or to find high likelihood configurations X∗, which are deep local minima
of L . Usually n is large and L is a very steep non-convex function, making computations slow.
Traditional CG involves mapping to a reduced space of CG variables, Z ∼ Rk×d with k ≪ n.
But to run the dynamics using CG modes we need to figure out forces between CG modes, or
“force-matching”, and how to go back to X , or “back-mapping”.

Force-matching. The microscopic energy function is L : X → R. However, as CG replaces the
DOF, we need to find an approximate potential LCG : Z → R such that for X ∈ X we have

CG: ϕ :X → Z, LCG(ϕ(X)) ≈ L (X). (1)

The process of finding LCG is called force-matching. Traditional force-matching methods involve
analytically solving and approximating LCG [8]. Recently, machine learning (ML) has been used to
do force-matching for MD with good results [15, 11]. Next, the dynamics is run using LCG instead
of L .

Back-mapping. After the dynamics is run, we need to map back from Z to X . However, the map
ρ : Z → X is not unique, as generally many different X can be compressed to a given CG mode
Z. Also, when going from Z to a possible X , some X may not be allowed (e.g. have overlapping
atoms) or have large energies. Therefore, back-mapping usually involves sampling or optimization to
find the allowed X . This can be challenging when there are many X mapping to the same Z. For
instance, in protein dynamics most CG methods replace all atoms in each side chains with a single
bead at their center of mass.

2.1 CG using reparametrization

Our idea to overcome the challenges of CG is to change the DOF X to a function of the CG modes,
meaning we reparametrize X as

Reparametrization: X = ρ(Z), ρ : Z → X (2)

which is the reverse of what traditional CG does. The advantages of this approach are:

1. No back-mapping: we have direct access to the fine-grained modes as X = ρ(Z).

2. No force-matching: The energy for CG modes is LCG(Z) = L (X) = L (ρ(Z)).

One disadvantage of this approach is that we still use X to compute LCG(Z). Nevertheless, if the
CG leads to fewer optimization steps overall, or allows us to find deeper minima more efficiently, the
benefits can outweigh the costs. Additionally, this cost could be reduced if LCG(Z) could be learned
from L (X). We will not do so in this work, but discuss this as a future direction. Next we discuss
the reparametrization function ρ.

Choice of reparametrization. ρ can be either an explicit and fixed function, or it can be a trainable
neural network. The choice of ρ can depends on what quality or what property of X we want the
CG modes to have. In our case, we are interested in energy minimization problems. So we want the
choice of ρ to facilitate finding deeper energies or simplify the optimization problem. As mentioned
above and elaborated in sec. B, a major bottleneck is energy minimization are the “slow modes”. As
mentioned earlier, fast modes force us to choose smaller time steps. If we ignore fast modes in early
stages of the optimization, we could traverse much larger time intervals. Therefore, we choose our

3

reparametrization ρ to be simply a linear projection onto slow modes

Slow mode projection: X = ρ(Z) = ZTΨSlow ≡
∑

i∈Slow

ZTi ψi (3)

where Ψ = (ψi)i∈Slow form a basis for Slow, the subspace spanned by slow modes, discussed next.

2.2 The Hessian backbone and robust slow modes

Before discussing the theoretical underpinning of our choice of slow modes, we will state how we find
them in practice. As we show in sec. C, the slow modes are Hessian eigenvectors with eigenvalues
close to zero. But since the Hessian H(X) = ∇∇L (X) depends on X , the slow modes can change
during the dynamics. Nevertheless, we show that many physical energies, including in MD, have
a special structure which allows us to find a set of robust slow modes. These slow modes should
remain reliable for a long interval during optimization.

Aggregating sampled Hessians. To find a set of robust, approximate slow modes, we first compute
the Hessian for a few perturbed configurations Samples(X) = {X ′ = X + δX}, where X is the
current state and δXµ

i ∼ N (0, σ) is sampled from Gaussian (i is the particle index and µ the spatial
dimension). We want to extract a set of slow modes from the sampled Hessians H(X ′). We then
compute a backbone from these Hessians of the form

Backbone: Hij =
∑

X′∈Sample(X)

∥Hij(X
′)∥2 (4)

Here i, j ∈ Zn are the particle indices and the Frobenius norm ∥Hij∥2 =
∑
µ,ν(H

µν
ij)2 sums over

the feature indices (note that Xµ
i has a particle index i and a feature index µ ∈ {1, . . . d}). Then, we

extract the slow modes of the backbone, by doing a spectral expansion H =
∑
i λiψiψ

T
i and picking

ψi with |λi| < ε2 maxj [λj], for some small ε < 1.

The intuition behind equation 4 is to identify the components in the sampled Hessians which have
consistently high magnitudes. If we had taken a simple mean we could get very small values, because
the components can fluctuate randomly. Also, if we had taken the variance instead of the norm, we
would get zero for quadratic L , where H is constant and has no variance. However, these intuitions
do not show that there would be any connection between the modes of the backbone H and the actual
Hessians H(X ′). Importantly, entries in H(X ′) have signs, which affects the spectrum, whereas
all entries in H are positive. So why should the spectra of H and H be related? This is where the
structure of L comes into play. Indeed, we show in appendix C, for many physical L , the slow
modes of the backbone H approximate the slow modes of sampled H(X ′) up to O(ε2) errors (see
appendix C.1 for proof).

3 Experiments

We apply our method to protein folding using classical MD forces.
Settings: We use gradient descent to minimize L (X). All experiments (both CG and baseline) use
the Adam optimizer with a learning rate 10−2 and early stopping with |δL | = 10−6 tolerance and 5
steps patience. We run each experiment four times.
Baseline: we use direct GD on the MD energy as baseline.
CG model: We use four different choices for the fraction of the eigenvectors to use in CG equation 3:
3 × (#AminoAcids), 30%, 50%, and 70%. We use a two stage process. First, we use CG as in
equation 3 X = ρ(Z) = ZTΨSlow and minimize LCG(Z) = L (ρ(Z)) over Z. After this stage
converges to X0 = ρ(Z0), we add δX to X0 and optimize the fine-grained δX , starting with δX = 0.
In this FG step the loss reduces by a small, but noticeable, amount. For the CG step we choose a
more relaxed stopping criteria |δLCG| = 10−5, but use the same learning rate.

Protein folding with classical MD In protein folding our energy function consists of five potential
energies for: bond length Ebond, bond angles Eangle, Van der Waals EvdW , hydrophobic Ehp
and hydrogen bonding EH [2]. Note that we are ignoring the solvent (e.g. water) and writing
using potentials, or force fields. To calculate the force field, we use distance, r, and angle-based,
Θ, potentials. For each amino acid, we use the rdkit [13] package to acquire bond length, r0,
and bond angle, θ0 (every triplet of atoms defining the bond), information that we use to define

4

a b c

d

D
at

a
Ba

se
lin

e
C

G

Figure 1: (a) time vs. energy of CG runs relative to the baseline. The symbol sizes encode different
numbers of eigenvectors in CG. The different colors and symbols correspond to different proteins:
5AWL, 1PLW, 2JOF, and 2MGO. (b) The angle and (d) bond length distribution of 1PLW protein
acquired from the data and calculated by using the baseline and CG (70%) methods. (c) The native
structure (data) of the 2JOF protein, and the layouts obtained from the baseline and CG method.

quadratic energies Ebond and Eangle. We use Lennard-Jones (LJ) potentials, Vp,q(r) = r−p − r−q,
to approximate EvdW between all pairs of atoms, EH between atoms prone to form a hydrogen bond
(certain H and O, in our case), Ehp between atoms in hydrophobic residues, yielding

L (X) =Ebond + Eangle + EvdW + EH + Ehp

=kbond(r − r0)
2 + kangle(θ − θ0)

2

+ ϵvdWV12,6

(
r

σvdW

)
+ ϵHV6,4

(
r

σH

)
+ ϵhpV6,4

(
r

σhp

)
(5)

Here the coupling matrix [σvdW]ij = ai + aj where ai is the vdW radius of atom i. For atoms
which form H-bonds, [σH]ij = (bi · bj)1.5Å (hydrogen bonding radius) with bi = 1 if i forms an
H-bond, and bi = 0 otherwise. [σhp]ij = ci+ cj where ci = 2Å if atom i is in a hydrophobic residue
and ci = 0 otherwise. Figure 2 shows an example of these coupling matrices for the Enkephalin
(1PLW) protein. We implemented a framework to build peptide chains using the 20 universal amino
acids where we connect them by peptide bonds. To evaluate the effect of our CG model, we run
experiments on four small proteins: Chignolin (5AWL), Trp-Cage (2JOF), Cyclotide (2MGO) and
Enkephalin (1PLW).

Results. We run each experiment four times. Denoting the final energy and run time of the
CG model by ECG and tCG, ad baseline by E0 and t0, we compute the normalized differences
δÊ = (ECG − E0)/E0 and δt̂ = (tCG − t0)/t0. The normalization allows us to plot results from
different proteins together. Figure 1a shows the mean of δÊ vs δt̂ over the 4 runs for each CG setting.
The cross shows the spread (1 STD) over the four runs for energy and time. Overall we find that
all CG models outperform the baseline either in terms of run time or energy, or both. We note that
our choices for ϵH , ϵvdW , ϵhp and kbond, kangle, can be a source of error. Additionally, we “softened”
the LJ potential to Vp,q = 1/(rp + ζ)− 1/(rq + ζ) with ζ = 0.65, which is large and significantly
reduces the penalty for overlapping atoms and may reduce accuracy.

4 Discussion

We Showed preliminary evidence that CG through reparametrization can yield some improvements
over non-CG baseline in protein folding, both in terms of run time as well as energy. This method has
the advantage that it does not require force-matching or back-mapping. However, more experiments
are needed to compare it against traditional CG methods. In fact, using ML to learn force-matching
might provide further advantage by removing the need to evaluate LCG(Z) = L (X) via the fine-
grained modes X . Also, while our canonical slow modes are derived for physical Hessians, the
reparametrization approach to CG is general and could be applied to other ML problems.

5

References
[1] Aleksandra E Badaczewska-Dawid, Andrzej Kolinski, and Sebastian Kmiecik. Computational

reconstruction of atomistic protein structures from coarse-grained models. Computational and
structural biotechnology journal, 18:162–176, 2020.

[2] G Ceci, A Mucherino, M D’Apuzzo, Daniela Di Serafino, S Costantini, A Facchiano, and
G Colonna. Computational methods for protein fold prediction: an ab-initio topological
approach. Data Mining in Biomedicine, pp. 391–429, 2007.

[3] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[4] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[5] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor
optimization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

[6] Nina Singhal Hinrichs and Vijay S Pande. Calculation of the distribution of eigenvalues and
eigenvectors in markovian state models for molecular dynamics. The Journal of chemical
physics, 126(24):244101, 2007.

[7] Scott A Hollingsworth and Ron O Dror. Molecular dynamics simulation for all. Neuron, 99(6):
1129–1143, 2018.

[8] Jaehyeok Jin, Alexander J Pak, Aleksander EP Durumeric, Timothy D Loose, and Gregory A
Voth. Bottom-up coarse-graining: Principles and perspectives. Journal of Chemical Theory and
Computation, 18(10):5759–5791, 2022.

[9] Mary E Karpen, Douglas J Tobias, and Charles L Brooks III. Statistical clustering techniques
for the analysis of long molecular dynamics trajectories: analysis of 2.2-ns trajectories of ypgdv.
Biochemistry, 32(2):412–420, 1993.

[10] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[11] Andreas Krämer, Aleksander P Durumeric, Nicholas E Charron, Yaoyi Chen, Cecilia Clementi,
and Frank Noé. Statistically optimal force aggregation for coarse-graining molecular dynamics.
arXiv preprint arXiv:2302.07071, 2023.

[12] Lev Davidovich Landau and Evgenii Mikhailovich Lifshitz. Statistical Physics: Volume 5,
volume 5. Pergamon, 1980.

[13] Greg Landrum, Paolo Tosco, Brian Kelley, sriniker, gedeck, NadineSchneider, Riccardo
Vianello, Ric, Andrew Dalke, Brian Cole, AlexanderSavelyev, Matt Swain, Samo Turk, Dan
N, Alain Vaucher, Eisuke Kawashima, Maciej Wójcikowski, Daniel Probst, guillaume godin,
David Cosgrove, Axel Pahl, JP, Francois Berenger, strets123, JLVarjo, Noel O’Boyle, Patrick
Fuller, Jan Holst Jensen, Gianluca Sforna, and DoliathGavid. rdkit/rdkit: 2020_03_1 (q1 2020)
release, March 2020. URL https://doi.org/10.5281/zenodo.3732262.

[14] Leandro E Lombardi, Marcelo A Martí, and Luciana Capece. Cg2aa: backmapping protein
coarse-grained structures. Bioinformatics, 32(8):1235–1237, 2016.

[15] Maciej Majewski, Adrià Pérez, Philipp Thölke, Stefan Doerr, Nicholas E Charron, Toni Giorgino,
Brooke E Husic, Cecilia Clementi, Frank Noé, and Gianni De Fabritiis. Machine learning
coarse-grained potentials of protein thermodynamics. Nature Communications, 14(1):5739,
2023.

[16] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored ap-
proximate curvature. In International conference on machine learning, pp. 2408–2417. PMLR,
2015.

[17] Julien Maupetit, P Tuffery, and Philippe Derreumaux. A coarse-grained protein force field
for folding and structure prediction. Proteins: Structure, Function, and Bioinformatics, 69(2):
394–408, 2007.

6

https://doi.org/10.5281/zenodo.3732262

[18] William George Noid. Perspective: Coarse-grained models for biomolecular systems. The
Journal of chemical physics, 139(9), 2013.

[19] Alexander J Pak and Gregory A Voth. Advances in coarse-grained modeling of macromolecular
complexes. Current opinion in structural biology, 52:119–126, 2018.

[20] Jorge Roel-Touris and Alexandre MJJ Bonvin. Coarse-grained (hybrid) integrative modeling of
biomolecular interactions. Computational and structural biotechnology journal, 18:1182–1190,
2020.

[21] Marissa G Saunders and Gregory A Voth. Coarse-graining methods for computational biology.
Annual review of biophysics, 42:73–93, 2013.

[22] William C Swope, Jed W Pitera, and Frank Suits. Describing protein folding kinetics by
molecular dynamics simulations. 1. theory. The Journal of Physical Chemistry B, 108(21):
6571–6581, 2004.

[23] Wujie Wang, Minkai Xu, Chen Cai, Benjamin Kurt Miller, Tess Smidt, Yusu Wang, Jian Tang,
and Rafael Gómez-Bombarelli. Generative coarse-graining of molecular conformations. arXiv
preprint arXiv:2201.12176, 2022.

[24] Soojung Yang and Rafael Gómez-Bombarelli. Chemically transferable generative backmapping
of coarse-grained proteins. arXiv preprint arXiv:2303.01569, 2023.

[25] Zhiyong Zhang, Lanyuan Lu, Will G Noid, Vinod Krishna, Jim Pfaendtner, and Gregory A Voth.
A systematic methodology for defining coarse-grained sites in large biomolecules. Biophysical
journal, 95(11):5073–5083, 2008.

7

A Additional Figures
a b

Figure 2: Enkephalin (1PLW). a) The peptide chain is built by stacking amino acids on each other
using the peptide bond length from the literature, 1.32. b) Van der Waals, hydrogen bond, and
hydrophobic interaction matrix, that we use in the energy optimization.

300 350 400 450 500 550 600
time (s)

0.0275

0.0250

0.0225

0.0200

0.0175

0.0150

0.0125

0.0100

E

2JOF
MD 2JOF
CG 2JOF

340 360 380 400 420 440 460 480
time (s)

0.040

0.038

0.036

0.034

0.032

0.030

0.028

0.026

E

2MGO
MD 2MGO
CG 2MGO

300 325 350 375 400 425 450 475 500
time (s)

0.030

0.025

0.020

0.015

E

1PLW
MD 1PLW
CG 1PLW

350 400 450 500
time (s)

0.050

0.045

0.040

0.035

0.030

0.025

0.020

E

5AWL
MD 5AWL
CG 5AWL

Figure 3: Comparison of performance of CG Hessian versus baseline MD. Point sizes correspond to
the number of CG modes used.

B Energy minimization

Let X ∈ X ≃ Rn×d be a set of degrees of freedom (e.g. particle positions, bond angles, etc.) and let
L : X → R be the energy (loss) function. We are interested in finding configurations X∗ which are
local minima of L . We can find such X∗ using a gradient descent (GD), or its continuous variant,
gradient flow (GF)

dX

dt
= −ε∇L (X) (6)

where ε is the matrix of learning rates (LR). In simple GD where ε = cI is a single constant times
identity, GD evolves at different rates in different directions, with some being much slower than
others. At a given X , these “slow modes” are the eigenvectors of the Hessian H(X) = ∇∇L (X)
with eigenvalues closest to zero, as we review below. We will first define fast and slow modes in the
simple quadratic case and then generalize them to non-convex cases in the next section.

8

Figure 4: The folded structures of the 2JOF protein by using the CG and baseline method. The
numbers in front of the rows are the numbers of eigenvectors used in the CG reparametrization.
Dashed frames show the minimum energy embedding in each case, while the thick line frame
highlights the absolute minimum layout.

Fast and slow modes for quadratic Loss. Consider the case where L (X) = 1
2Tr

[
XTHX

]
. Here

H is a Hermitian matrix and the Hessian of L , with a spectral expansion given by H =
∑
i λiψiψ

T
i ,

λi ∈ R and ψi ∈ Rn. In this basis we have X(t) =
∑
i ci(t)ψi with ci : R → Rd. Projecting

equation 6 onto one of the eigenmodes we get

dci
dt

= ψT
dX

dt
= −ελiψTX = −ελici (7)

where we assumed dψi/dt = 0. From equation 7 we see that the decay/growth rate along mode
ψi is |ελi|. Hence, modes with λi close to zero are the “slow modes”, evolving very slowly, and
large |λi| defines the “fast modes”. Since ci(t) = ci(0) exp[−t/τi] with time scale τi = 1/(ελi), the
fast modes evolve exponentially faster than slow modes. This disparity in the rates results in slow
convergence, because the fast modes force us to choose smaller ε to avoid numerical instabilities. Two
potential ways to fix the issue with disparity in time scales are: 1) make rates isotropic (second-order
methods and adaptive gradients); 2) mode truncation or compression (CG). We will briefly review the
former here.

Adaptive gradient and second-order methods. Newton’s method uses ε = ηH(X)−1 which
makes GD isotropic along all modes, but it is expensive (O((3n)3) in our case). Quasi-Newton meth-
ods, e.g. BFGS [4], approximate H−1 iteratively, but are generally also slow. Another, more efficient
approach is adaptive gradient methods, such as AdaGrad [3] and Adam [10] which approximate H
by

√
gtgTt + η where gt =

∑k
i=1 γ

i∇L (X(t− i)) is some discounted average over past gradients
and η a small constant. For efficiency, in practice we only use the diagonal part of this matrix to
approximate H−1. As we will see in experiments, this approximation, while being far superior to
GD with constant LR, is still very slow for MD tasks.

Most second-order methods are designed to work for generic problem and don’t make strong
assumptions about the spectrum of the Hessian. Recent second-order methods such as K-FAC [16]
and Shampoo [5] work with block diagonal approximations of the Hessian (or the Fisher information
matrix), which usually emerges in deep learning models due to model architecture. Instead, we will
exploit the spectral properties of the Hessian in physics problems. Fast and slow modes generally

9

arise in physics due to vastly different strengths in forces (e.g. weak van der Waals vs strong chemical
bonds).

B.1 Generalized fast and slow modes

The notion of fast and slow modes is helpful for the analysis of any time slice of the dynamics during
which the Hessian is not changing dramatically. Consider a configuration X(t) and let δt be a small
time interval. We are looking for modes which are almost stationary over δt. To identify these modes,
we can for instance find perturbations δX which would have almost zero dynamics. concretely we
find the dynamics of X + δX as

d

dt
(X + δX) = −ε∇L (X + δX) ≈ −ε∇L (X)− εHδX +O(δX)2 (8)

meaning, a small δX adds εHδX to the dynamics. Thus if δX is a zero mode of the Hessian,
HδX = 0, it won’t change the dynamics of X . To define slow modes, we can slightly relax this
and look for normalized modes ψ = δX/∥δX∥ whose associated time scale is much longer than a
desired time scale δt

τ = |εψTHψ| = |ελ| ≫ δt (9)

which just means that we need to find the approximate zero modes of the Hessian H(X).

CG by projecting to the slow manifold. Because the dynamics of the modes above is very slow
over δt, we can safely increase the time scale and run their dynamics over much longer periods
∆t ≫ δt. The essence of our algorithm is to ignore fast modes and project and evolve the system
on the “slow manifold” spanned by the slow modes of the Hessian. However, the main challenge is
how to deal with the fact that the Hessian is not constant and depends on the configuration X . We
address this point next. We show that for a large class of physical potentials one can find a reliable
set of approximate slow modes.

C Properties of Physical Hessians

Invariant potentials. In systems of interacting particles in physics, most of the leading interactions
are pairwise and involve relative features, rij ≡ Xi − Xj (distance vector, relative angle, etc).
Moreover, they are often invariant under certain global symmetries, such as Euclidean symmetries
(translation and rotation) or Lorentz symmetry (relativistic particles). These symmetries keep
some 2-norm of vectors, v2 = ∥v∥η ≡ vT ηv invariant. Here η may be the Euclidean metric
η = diag(1, 1, 1) or the Minkowski metric η = diag(−1, 1, 1, 1) for relativistic problems, etc. For
example, the Euclidean norm vTv in d dimensions is invariant under rotations v → gv, where
g ∈ SO(d), and the Minkowski norm is invariant under the Lorentz group SO(1, d− 1).

Let r denote the matrix of distances with rij = ∥rij∥η. Any function of rij is invariant under
symmetries that keep ∥ · ∥η invariant. A general invariant energy function can combine rij for
different i, j in arbitrary ways. Usually in physical systems each pair contributes an additive term in
to the total energy. Assuming additivity, the energy has a form

L (X) =
∑
ij

fij(rij) (10)

where fij(z) = fji(z) (symmetric under i ↔ j). For example, when particle i has electric charge
qi, the Coulomb potential between i, j can be written as in equation 10 using fij(z) = kqiqj/z.
Similarly, weak van der Waals (vdW) forces in molecular systems, which are modeled as Lennard-
Jones potential, are also of the form in equation 10 with

van der Waals: fij(rij) = Vp,q

(
rij
σij

)
, Vp,q(r) =

1

rp
− 1

rq
. (11)

Here σij = ai + aj , where ai is the vdW radius of particle i, and vdW uses p = 12, q = 6. Next, we
show that the Hessian of equation 10 has an important property which aids in finding its slow modes.

10

C.0.1 Hessian of invariant potentials

The Hessian of potentials of the form equation 10 has the special property that it is the graph Laplacian
of a weighted graph which depends on X , as we show now (see appendix D for details). This will
play a crucial role in our argument about canonical slow modes.

Hessian as a graph Laplacian. Let ∂i ≡ ∂/∂Xi and let r̂ = ηr/r be the dual unit vector of r.
First, observe that ∂irjk = r̂jk(δij − δik) where r̂jk is the unit vector of rjk and δij is the Kronecker
delta (1 if i = j, 0 otherwise). Let Hes[g] denote the Hessian of a function g. We find that (app. D)

Hes[L](X)ij = ∂i∂jL (X) =
∑
k

(δij − δjk)Hik(X) (12)

where Hik(X) = Hes[fik](rik) and given by

Hik(X) =

[(
f ′′ik(v)−

f ′ik(v)

v

)
v̂ ⊗ v̂ +

f ′ik(v)

v
η

]
v=rik

(13)

Note that H has four indices, with components Hµν
ij , having two particle indices i, j and two spatial

indices µ, ν. Recall the Laplacian of an undirected graph with adjacency matrix A is defined as
L = Lap(A) = D − A, where D is the degree matrix with elements Dij = δij

∑
k Aik. The

components of Laplacian can also be written as Lij =
∑
k Aik(δij − δjk). Thus, we see that the

Hessian of L is indeed the Laplacian of H

Hes[L](X)ij =
∑
k

(δij − δjk)Hik = Lap(H)ij (14)

where for every pair of spatial indices the Hessian is a Laplacian over particle indices. The Hessian
being Laplacian has an important effect on its null eigenvectors. To show this we make use of the
incidence matrix.

C.1 Canonical backbone for the Hessian

As the Hessian depends on X , it is not clear whether slow modes found at a given X would be
applicable to other X . We need some guarantee that a set of modes exist which are approximately
slow modes for the Hessian at a range of different X . We could use multiple perturbed configurations
X + δX with random δX ∼ N (0, T) to get an ensemble of Hessians H = {H(X + δX)} and find
the overlap of the slow modes of the Hessians in H. However, this is expensive, roughly O(mkn2)
for m = |H| and k slow modes. We cannot recompute the Hessian slow modes often. We also want a
method which is more efficient than quasi-Newton methods such as BFGS. Our solution is to find a
backbone for the sampled Hessians whose slow modes are guaranteed to be approximate slow modes
of the actual Hessians. The key observation is that the Hessian in equation 14 is a Laplacian of a
weighted graph. We show that the slow modes of weighted Laplacians overlap significantly with their
unweighted counterparts.

Definition C.1 (weighted graph). Let Ĝ = (V, E) be a graph with vertices V = Zn, edges E ⊆ V×V .
Let Â ∈ Rn×n denote the adjacency matrix Âij = 1 if (i, j) ∈ E and 0 otherwise. We denote a
weighted graph as G = (V, E ,W) where W : E → R are the weights of the edges. Let A denote the
adjacency matrix of G, where Aij = W(i, j) or zero if (i, j) ̸∈ E . The Laplacian L = Lap(A) of an
undirected weighted graph is defined analogous to the unweighted graph as L = D −A with degree
matrix elements Dij = δik

∑
k Aik.

Definition C.2 (Slow manifold). Let L be a graph Laplacian (undirected, weighted or unweighted),
with spectral expansion L =

∑n
i=1 λiψiψ

T
i . Let ε ≪ 1 and λmax = max{λi} be the largest

eigenvalue of L. We define the slow manifold as

Slowε[L] = Span
{
ψi
∣∣|λi| < ε2λmax

}
(15)

Theorem C.1 (Slow modes of weighted Laplacians). Let A be the adjacency matrix of a weighted
graph and Â be its unweighted counterpart. Let L = Lap(A) and L̂ = Lap(Â). Then Slowε[L]

overlaps with Slowε[L̂] up to O(ε2) corrections from the rest of the modes.

To prove this we will make use of the incidence matrix representation of the Laplacian.

11

Definition C.3 (Incidence matrix). Given a weighted graph G = (V, E ,W), define its incidence
matrix as C : V × E → {±1}, where for any edge e = (i→ j) ∈ E , Ci,e = −1 and Cj,e = 1, and
zero for other components.
Lemma C.2 (Laplacian in terms of the incidence matrix). Let w = vec(W(E)) be the vector of all
weights indexed in the same order as the columns of C, with we = Aij , for e = (i, j) and let W
be a diagonal matrix with w on its diagonal. Then, the Laplacian L = Lap(A) can be written as
L = 1

2CWCT (proof in app. D.1).

Because G and Ĝ share the same vertices and edges, their incidence matrix C is the same. From
Lemma C.2, L = 1

2CWCT and L̂ = 1
2CC

T as Ĝ is unweighted. Using SVD, C = USV T and
defining R = US/

√
2 and Q = V TWV , we have

L̂ = RRT L = RQRT . (16)

Note that for a random configuration X the edge weights W will be random, as they arising from
derivatives of fij(rij) in equation 13 (unless fij is quadratic which makes W constant). Therefore,
we will assume Q has a uniform Gaussian distribution. Assuming W is also Gaussian, the spectrum
of such a Q = V TWV is somewhere between the distribution of W (for sparse graphs with
|E| ∼ O(|V|)) and a Wigner Semi-circle (for dense graphs with |E| ∼ O(|V|2)). See appendix D.2
for more discussion. We also assume Q has no particular block structure and that the spectrum of
any diagonal block of Q should also follows a distribution similar to all of Q.

Slow subspace. We now sketch the proof for Theorem C.1. For details, refer to appendix D.4.
From the SVD, C = USV T , the slow subspace is

Slowε[L̂] =
{
i
∣∣Sii < εmax[S]

}
(17)

Normalize Ŝ = S/max[S] and make them all positive (e.g. absorb their sign into U). For some
ε < 1 sort the SV such that Ŝ = diag(Sε, S1) where the diagonal matrices Sε < ε and S1 ≥ ε.
Now, the problem of finding Slowε[L] becomes finding eigenvectors of the matrix M̂ = ŜQŜT with
eigenvalues O(ε2). Using Sε ∼ O(ε) and S1 ∼ O(1), we can pull factors of ε out from M̂ and write
it as

M̂ =M0 + ε̂δM, M0 =

(
ε̂2Â 0
0 C

)
, δM =

(
0 B̂

B̂T 0

)
. (18)

where ε̂2 ≡ ε2
√
nA/nC is rescaled so that the random matrices Â ∈ RnA×nA and C ∈ RnC×nC

have a similar range of eigenvalues. Next, using a perturbative ansatz for eigenvectors ψ′ = ψ + ε̂δψ

and eigenvalues λ′ = λ+ ε̂δλ, we solve M̂ψ′ = λ′ψ′ up to O(ε̂2) corrections.

To find slow modes for L we start from ψ ∈ Slowε[L̂]. Specifically, we start with an eigenvector ψA
of Â and concatenate it with zeros to get ψ = (ψA, 0). We have M0ψ = λψ with λ = ε̂2λA. Using
first-order perturbation theory, we find the corrections δλ to the eigenvalues and eigenvectors to be

δλ = ψT δMψ = 0, δψ = −(M0 − λ)−1δMψ =

(
0

(C − λ)−1B̂TψA

)
. (19)

Putting all together we find the slow eigenvector ψ′ = ψ + ε̂δψ up to order O(ε2) to be

Slowε[L] ∋ ψ′ =

(
ψA

ε̂(C − ε̂2λA)
−1B̂TψA

)
, M̂ψ′ = ε̂2λψ′ +O(ε̂2) = O(ε̂2) (20)

meaning to first order in ε̂ the corrections to eigenvalues of slow modes vanishes. This is desired
because the slow mode eigenvalues are O(ε̂2). We also observe that slow modes of L are mostly
confined to Slowε[L̂] and only get O(ε) contributions from the fast subspace of L̂.

As a side, it follows that all weighted graphs share the null space of the unweighted Laplacian.
Proposition C.3 (Shared null space). Let Null[M] = Span{v|v ∈ Rn,Mv = 0} denote the null
space of a matrix M ∈ Rn×n. The null space of the Laplacian L̂ (unweighted) is contained in the
null space of Laplacian L (weighted), meaning Null[L̂] ⊆ Null[L].

12

Lemma C.4. Null[L̂] = Null[RT]

Proof. ∀v ∈ Null[L̂], 0 = vT L̂v = ∥RT v∥2 and ∀v ∈ Null[RT], L̂v = RRT v = 0.

Proof of proposition C.3. ∀v ∈ Null[L̂], Lv = RQRT v = 0 hence, Null[L̂] ⊆ Null[L].

Note that Null[L̂] and ⊆ Null[L] are not necessarily the same because weights can be zero, which
could make the null space of the weighted graph larger than the unweighted one. Next, we present
our method for coarse-graining using a set of canonical slow modes.

D Invariant additive dyadic potentials

We want to Compute the Hessian of equation 10, L (X) =
∑
ij(rij). Let r̂ = ηr/r be the dual unit

vector of r. First, note that

∂irjk ≡ ∂rjk
∂Xi

= ∂i

√
∥Xj −Xk∥η

= η
rjk
rjk

(δij − δik) = r̂jk(δij − δik) (21)

Then the gradient becomes

∂iL (X) =
∑
j,k

f ′jk(rjk)
∂rjk
∂xi

=
∑
j,k

f ′jk(rjk)ηr̂jk(δij − δik)

= 2
∑
j

f ′ij(rij)ηr̂ij . (22)

where we used r̂jk = −r̂kj to show both terms in (δij − δik) yield the same output. Finally, the
Hessian becomes

[H(X)]ij =∂i∂jL (X) = 2∂j
∑
k

f ′ik(rik)r̂ik

=2
∑
k

[f ′′ik(rik)∂jrik ⊗ r̂ik + f ′ik(rik)∂j r̂ik]

=2
∑
k

[
(δji − δjk)f

′′
ik(rik)r̂ik ⊗ r̂ik

+ f ′ik(rik)

(
η
δji − δjk
rik

− r̂ik
r2ik

∂jrik

)]
=2

∑
k

(δji − δjk)

[
f ′′ik(rik)r̂ik ⊗ r̂ik + f ′ik(rik)

(
η

rik
− r̂ik
r2ik

⊗ r̂ik

)]
=2

∑
k

[
f ′′ik(v)v̂ ⊗ v̂ +

f ′ik(v)

v
(η − v̂ ⊗ v̂)

]
v=rik

(δij − δjk)

=2
∑
k

[(
f ′′ik(v)−

f ′ik(v)

v

)
v̂ ⊗ v̂ +

f ′ik(v)

v
η

]
v=rik

(δij − δjk)

=
∑
k

Hik(x) (δij − δjk) = Lap(H)ij (23)

This is because the components of Laplacian can be be written

Lij = Lap(A)ij = (D −A)ij

= δij
∑
k

Aik −Aij =
∑
k

Aik(δij − δjk) (24)

13

D.1 Incidence matrix

The Laplacian L = D−A of an undirected graph with adjacencyA can be written as L = CWCT /2
using the incidence matrix C and the edge weights W . This can be shown as follows

[CWCT]ij =
∑
e

CeiWeeC
e
j

=
∑
k,l

C
(k→l)
i AklC

(k→l)
j

=
∑
k,l

(δil − δik)Akl(δjl − δjk)

=
∑
k,l

(δilδjl − δikδjl − δilδjk + δikδjk)Akl

= 2
∑
k,l

(δilδjl − δikδjl)Akl

= 2
∑
k

δijAkj − 2Aij = 2(D −A)ij = 2Lij (25)

where we assumed Akl = Alk (undirected graph).

So the same derivation of the backbone also holds for this case. The idea is that using the incidence
matrix C and edge weights W (as a diagonal matrix), any Laplacian L can be decomposed as
L = CWCT . Then, doing SVD C = USV T we have

L = USV TWV STUT = UMUT (26)

Where the matrix M = SV TWV ST has an interesting property, namely that its null space includes
the null space of the unweighted Laplacian L0 = CCT . To see this note that L0 = USSTST , which
means columns Ui are the eigenvectors of L0 with eigenvalues S2

i . The null eigenspace of L0 are the
Ui for which Si = 0. This subspace will also be a null subspace for L, because that block is also zero
in M , because Mij =

∑
c SiVikWkkVjkSj . So, whenever Si = 0 or Sj = 0, Mij = 0, meaning

that whole block in M is zero and MUi = 0 (write it better).

Example: power law. Let f(r) = rp. We have f ′ = prp−1 and f ′′ = p(p− 1)rp−2, yielding the
Hessian

H = ∇∇f(r) = rp−2
[(
p2 − 2p

)
r̂ ⊗ r̂ + pη

]
(27)

Bik = Aikr
p−2
ik

[(
p2 − 2p

)
r̂ik ⊗ r̂ik + pη

]
(28)

Example: Lennard-Jones. This potential has the form

f(r) = 4ε
[(σ
r

)p
−
(σ
r

)q]
(29)

where for classic van-der Waals potential p = 2q = 12. The Hessian for this potential is given by

H(r) = ∇∇f(r) = ε

[(σ
r

)p+2 [(
p2 + 2p

)
r̂ ⊗ r̂ − pη

]
−
(σ
r

)q+2 [(
q2 + 2q

)
r̂ ⊗ r̂ − qη

]]
(30)

and Bik = AikH(rik)

D.2 Structure and spectrum of of Q = V TWV

To consider only the relevant subspace of SVD, we have U, S ∈ Rn×n, and V ∈ Rm×n, with n = |V|
and m = |E|. For a connected undirected graph m ≥ 2(n − 1) and V is full rank (V TV = In).
Note the edge weights W come from the forces fij(rij) in equation 13, which for an arbitrary X
will be random. Assuming a Gaussian distribution Wee ∼ N (0, σ) for all edges e, the matrix Q

14

will also have random Gaussian entries. When m = n, V defines the eigenbasis of Q and Wee

are the eigenvalues of Q. Similarly, in sparse graphs, where m ∼ O(n), V is approximately the
eigenbasis and the spectrum of Q should have a distribution similar to Wee. For dense graphs, where
m ∼ O(n2), every entry of Q will involve a weighted sum over multiple Wee. Then, from central
limit theorem, entries of Q will asymptotically have a Gaussian distribution. From random matrix
theory, we know that such Q will have a spectrum which follows the Wigner-semi-circle law. In both
cases (sparse and dense graphs) the spectrum of Q has a finite variance and sits somewhere between
a Gaussian and a semi-circle.

D.3 Generalization to nonzero but small SV

We want to know how much the slow modes of weighted and unweighted graphs to overlaps. With
the spectral expansion L̂ =

∑
i λiψiψ

T
i Define the slow subspace as in equation 15

Slowε[L̂] = Span
{
ψi
∣∣|λi| < ε2λmax(L̂)

}
(31)

where λmax(L̂) = max{λi} = maxψ[ψ
TLψ/∥ψ∥2] is the largest eigenvalue of L and ε ≪ 1. In

terms of the singular values (SV) of the incidence matrix C = USV T , the slow subspace becomes

Slowε[L̂] =
{
i
∣∣Sii < εmax[S]

}
(32)

We will show that the slow modes in weighted L = CWCT are perturbations to the slow modes of
L̂. Define

M = SV TWV ST = SQST (33)

Normalize Ŝ = S/max[S]. Break the space down to the slow and fast subspaces, based on whether
Ŝii < ε or not. First, since L is positive semi-definite, we can make all Sii ≥ 0. Let Ŝ = S/maxS.
We sort the dimensions in Ŝ to have the small SVs appear first. Denote the block in Ŝ where Sii < ε
by Sε. We have

Ŝ2 =

(
S2
ε 0
0 S2

1

)
<

(
ε2 0
0 1

)
(34)

We know the null space of L̂, where Sii = 0, is shared with L. First, we remove the null space from
L and L̂, calling the remainder L0 and L̂0 and the remaining SVs Ŝ. Then in this remainder subspace
we need to find parts which are O(ε). We sort the dimensions in Ŝ to have the small SVs appear first.
We denote the block in Ŝ where S2

ii < εmax[S2] by Sε. We have

M = max[S]2ŜQŜT =

(
SεQεεSε SεQε1S1

S1Q
T
ε1Sε S1Q11S1

)
=

(
Mεε Mε1

MT
ε1 M11

)
(35)

Because Sε is O(ε) and S1 is O(1), we will factor out the factors of ε from blocks in M and write

M = max[S]2
(
ε2A εB
εBT C

)
(36)

Here A and C are random matrices built from their corresponding blocks in Q and sandwiched
between Sε/ε (for A), and S1 (for C), which have O(1) values. The spectrum of Q has a distribution
between a Gaussian with mean zero and a Wigner semi-circle, also centered around zero. We expect
spectra of A and C to be similar to Q. Denote the spectral expansion of Q as

Q = ΨΛΨT , Λ = diag(λi)
n
i=1, Ψ = [ψi]

n
i=1. (37)

This is because when Qij ∼ N (0, σ) we have (ignoring Bessel’s correction for k ≫ 1).

σ2 = Var(Qij) ≈
1

n
∥Q∥2 =

1

n

∑
i

λ2i = Var(Λ) (38)

where we assumed Tr [Q] /n ≈ mean(Q) = 0. Since a block Qk of size k is k2 entries sampled
from the same distribution as Q, we expect

∥Qk∥2

k2
≈ ∥Ql∥2

l2
⇒ 1

k
Var(Qk) ≈

1

l
Var(Ql) (39)

Thus, rescaling A ∈ RnA×nA and C ∈ RnC×nC we get

Â =
A

√
nA

, Ĉ =
C

√
nC

, Var(Â) ≈ Var(Ĉ) (40)

15

D.4 Approximate slow modes of L

If M did not have the off-diagonal blocks B, then Slowε[L] and Slowε[L̂] would coincide, as the
Sε block and the S1 block would not mix when B = 0. Define M0 as the block matrix of M with
B = 0.

M0 ≡
(
ε2A 0
0 C

)
(41)

Using spectral expansions

A = ΨAΛAΨ
T
A, C = ΨCΛCΨ

T
C (42)

the eigenvectors of M0 consist of

M0

(
ψAi
0

)
= ε2λAi

(
ψAi
0

)
, M0

(
0
ψCi

)
= λCi

(
0
ψCi

)
. (43)

Since we are looking for slow modes, we must also consider the magnitudes of λAi and λCi. Since
A and C entries are random samples from Q, we expect them to have a semi-circle or Gaussian
distribution similar to Q. Thus, we can use the variances of eigenvalues of A and C as a proxy for
the how the magnitudes of λAi and λCi compare. From equation 40 we have

1

nA
E[Λ2

A] ≈
1

nA
Var(A) ≈ 1

nC
E[Λ2

C] (44)

Based on this we define a rescaled ε̂ such that ε2λAi still has a smaller magnitude than λCi on
average, meaning we want

ε4E[Λ2
A] < E[Λ2

C] ⇒ ε4nA < nC ⇒ ε̂2 ≡ ε2
√
nA
nC

< 1 (45)

We choose ε such that the condition in equation 45 is satisfied. We can express M in terms of ε̂ by
rescaling A and B to ε̂2Â = ε2A and ε̂B̂ = εB. Now eigenvalues of Â have the same variance as
eigenvalues of C. For brevity, denote M̂ = max[S]2M . We have

M̂ =

(
ε̂2Â ε̂B̂

ε̂B̂T C

)
. (46)

To find how slow modes of M̂ = SQST /max[S]2 differ from slow modes of SST , we break M̂
into a block diagonal part and an O(ε̂) off-diagonal perturbation

M̂ =M0 + ε̂δM, M0 =

(
ε̂2Â 0
0 C

)
δM =

(
0 B̂

B̂T 0

)
. (47)

As in equation 43, eigenvectors of A =
√
nC/nAÂ and C are eigenvectors of M0. Now we want to

find eigenvectors of M̂ with small O(ε2) eigenvalues up to order ε̂ corrections by treating δM as a
perturbation.

(M0 + ε̂δM)(ψ + ε̂δψ) = (λ+ ε̂δλ)(ψ + ε̂δψ)

M0ψ + ε̂(δMψ +M0δψ) +O(ε̂2) = λψ + ε̂(δλψ + λδψ) +O(ε̂2)

⇒ δMψ +M0δψ = δλψ + λδψ (48)

We only need the components of δψ orthogonal to ψ, so we can assume δψTψ = 0. From this we
have

δλ = ψT δMψ + ψTM0δψ = ψT δMψ, (49)

where we used ψTM0δψ = λψT δψ = 0. Plugging equation 49 into equation 48 we can solve for
δψ by inverting the matrices

(M0 − λ)δψ = (δλ− δM)ψ

⇒ δψ = (M0 − λ+ iη)−1(δλ− δM)ψ (50)

16

where we added a small η to make the matrix M0 − λ invertible, as λ is one of its eigenvalues.

To find slow modes, we start from slow modes of M0 which are in the A subspace. Let ψA be an
eigenvector of A with ÂψA = λAψA. Concatenating ψA with zeros in the C subspace we have

ψ =

(
ψA
0

)
, M0ψ = ε̂2λAψ. (51)

Using this ψ to compute δλ in equation 49 we have

δλ = ψT δMψ =
(
ψTA 0

)(0

B̂TψA

)
= 0 (52)

meaning to first order in ε̂ the corrections to eigenvalues of slow modes vanishes. This is desired
because the slow mode eigenvalues are O(ε̂2) and we find that with this ψ ansatz the corrections it
will get are also at least O(ε̂2). Next, we compute the corrections δψ to the eigenvectors. Plugging ψ
into equation 50 with λ = ε̂2λA and δλ = 0 we have

(M0 − λ+ iη)−1 =

(
(ε̂2Â− λ+ iη)−1 0

0 (C − λ)−1

)
δψ = −(M0 − λ+ iη)−1δMψ

=

(
0

(C − λ)−1B̂TψA

)
(53)

where we dropped iη in the lower block because ε̂2λA is unlikely to be also an eigenvalue of C, as A
and C are random matrices.

Using the relation ε̂B̂ = εB with the original ε and putting all together we find the eigenvector
ψ′ = ψ + ε̂δψ up to order O(ε2) to be

ψ′ =

(
ψA

ε̂(C − ε̂2λA)
−1B̂T

)
(54)

M̂ψ′ = ε̂2λψ′ +O(ε̂2) = O(ε̂2) (55)

17

	Background
	Coarse-graining

	Coarse-graining by reparametrization
	CG using reparametrization
	The Hessian backbone and robust slow modes

	Experiments
	Discussion
	Additional Figures
	Energy minimization
	Generalized fast and slow modes

	Properties of Physical Hessians
	Hessian of invariant potentials
	Canonical backbone for the Hessian

	Invariant additive dyadic potentials
	Incidence matrix
	Structure and spectrum of of Q=VTWV
	Generalization to nonzero but small SV
	Approximate slow modes of L

