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Abstract

Deep generative models of protein sequence and inverse folding models have shown
great promise as protein design methods. While sequence-based models have
shown strong zero-shot mutation effect prediction performance, inverse folding
models have not been extensively characterized in this way. As these models use
information from protein structures, it is likely that inverse folding models possess
inductive biases that make them better predictors of certain function types. Using
the collection of model scores contained in the newly updated ProteinGym, we
systematically explore the differential zero-shot predictive power of sequence and
inverse folding models. We find that inverse folding models consistently outperform
the best-in-class sequence models on assays of protein thermostability, but have
lower performance on other properties. Motivated by these findings, we develop
StructSeq, an ensemble model combining information from sequence, multiple
sequence alignments (MSAs), and structure. StructSeq achieves state-of-the-art
Spearman correlation on ProteinGym and is robust to different functional assay
types.

1 Introduction

Generative modeling has emerged as a leading approach for mutation effect prediction and protein
design. In evolution, protein selection fitness is driven by multiple features including the expressibility
and stability of the protein, and the efficacy of its function (e.g. enzymatic activity and binding
affinity). Generative sequence models are trained on protein sequences across evolution and capture a
rich understanding of protein fitness. Likelihoods from these models have been found to correlate
highly with many different aspects of fitness [Sella and Hirsh, 2005, Hopf et al., 2017, Riesselman
et al., 2018]. For design, these methods have been used to generate novel sequences and optimize
proteins for various functions [Russ et al., 2005, Tian et al., 2018, Shin et al., 2021, Schubert et al.,
2018, Blazejewski et al., 2019, Norn et al., 2021, Hie et al., 2023]. While mutation effect prediction
and design have often been treated as separate goals, the distribution learned by these generative
sequence models draws a link between these tasks. If the probabilities from a model correlate well
with a protein property, designs from that model will be enhanced for that property [Tian et al., 2018,
Johnson et al., 2023].

While the sequence contains all the information required to fold most proteins [Anfinsen and Scheraga,
1975], and an ideal model could thus derive its predictions from sequence alone, real-world sequence
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models under-perform due to limited evolutionary data, ill-suited inductive biases, and the inherent
performance trade-off between density estimation and fitness estimation [Weinstein et al., 2022].
Therefore, models imbued with task-specific inductive biases may be better suited to predicting
specific functions. Furthermore, if protein engineers know which inductive biases correlate with
each protein property, they can adapt their design models to promote the properties they are most
interested in.

In this work, we delineate the advantages that different generative models have on different functions.
We find that, while sequence models outperform inverse folding models on zero-shot prediction
of organismal fitness, inverse folding models have superior predictive power on thermostability.
Motivated by this, we develop StructSeq, a hybrid model that builds on the concepts developed
in TranceptEVE [Notin et al., 2022b]. We combine global protein sequence information from
Tranception [Notin et al., 2022a], family-specific sequence information from EVE [Frazer et al.,
2021], and structural information from ESM-IF1 [Hsu et al., 2022]. StructSeq has state-of-the-art
performance on the ProteinGym DMS substitutions summary benchmark, with top performance for
4/5 of the individual assay function types.

2 Related work

Sequence models Generative sequence models are trained on evolutionary datasets of protein
sequences. Large protein-language models are trained on repertoires of millions of sequences and aim
to learn a general distribution across all proteins [Nijkamp et al., 2022, Alley et al., 2019, Notin et al.,
2022a, Marquet et al., 2022, Rives et al., 2021]. Alignment-based models learn a distribution centered
around a particular protein family by training on multiple-sequence alignments (MSAs) [Hopf et al.,
2017, Frazer et al., 2021, Laine et al., 2019]. These models benefit from the inductive biases afforded
by alignments, such as the importance of conserved residues in columns [Weinstein et al., 2022].
Hybrid sequence models combine general protein information with local family information from
alignments [Rao et al., 2021, Notin et al., 2022b]. This combination makes the log-likelihoods more
robust, giving these models top performance on mutation effect prediction [Notin et al., 2022b].

Inverse folding models condition their sequence likelihoods on a known structure, allowing them to
efficiently model interactions that are local in three-dimensional space but distant in two-dimensional
residue space [Ingraham et al., 2019, Hsu et al., 2022, Dauparas et al., 2022, Gao et al., 2022,
Yi et al., 2023]. These models take in a protein structure as a graph and leverage graph neural
network (GNN) architectures to aggregate information from contacting residues. Some methods
construct an input graph using invariant mappings of the residue coordinates [Ingraham et al., 2019,
Dauparas et al., 2022], while others leverage SE(3) equivariant GNNs to operate directly on the
coordinates themselves [Hsu et al., 2022, Jing et al., 2020]. These models learn a structurally informed
representation of the residues, which is autoregressively decoded into a sequence. While they are
used increasingly for design tasks [Bennett et al., 2023, Johnson et al., 2023], inverse folding models
have not been extensively characterized for predicting protein fitness, and it is not known which
aspects of protein fitness are best matched by their inductive biases.

3 Inverse folding models consistently outperform sequence models on stability
assays

Inverse folding models have been found to have lower performance than sequence models on an
extension to the ProteinGym substitutions dataset [Notin et al., 2023, in submission]. Because inverse
folding models have access to structural information, we hypothesized that there might be certain
function prediction tasks for which they have an advantage over sequence models.

To investigate this, we looked at the difference in Spearman rank correlation (Spearman Gain) between
two inverse folding models (ESM-IF1 [Hsu et al., 2022] and ProteinMPNN [Dauparas et al., 2022])
and the top two models of each sequence model type in the ProteinGym substitutions dataset (Fig 1A).
These were GEMME [Laine et al., 2019] and EVE (ens.) [Frazer et al., 2021] (alignment-based);
VESPA [Marquet et al., 2022] and ProGen2 (ens.) [Nijkamp et al., 2022] (protein language); and
Tranception L [Notin et al., 2022a] and TranceptEVE [Notin et al., 2022b] (hybrid sequence models).
For details on the DMSes used and on how the models were run, see the appendix. We find that
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Figure 1: Spearman differences between Inverse Folding models and top sequence models (A)
The gain in Spearman between ESM-IF1 and the top two sequence models of each sequence model
type, calculated for each DMS. We plot the DMSes in order of the median Spearman Gain. The
point color corresponds to the type of function assayed in the DMS. (B) Top panel: a barplot of the
mean Spearman of each model grouped by function type. Bottom panel: The difference between the
Spearman for that function type and the Spearman across all the datasets (∆). Error bars are SEM for
both panels. Models are colored with the primary color corresponding to the model type.

ESM-IF1 and ProteinMPNN consistently outperform the best sequence models on 83/197 and 42/197
of the DMS substitution datasets respectively (Table A2).

We categorized each DMS into 5 function types, corresponding to the kind of function assayed in
the DMS [Keeling et al., 2019]. DMSes that could not be clearly put into a category were left out
of this analysis (leaving 184 out of 197 assays). Looking at the models’ mean Spearman grouped
by function type, we find that the sequence models have similar performance across most of the
different functions in ProteinGym, while the inverse folding models have much higher Spearman on
the protein thermostability assays, and relatively lower performance on other assay types (Fig. 1B).
ESM-IF1 outperforms the best sequence models on 55/68 of the stability DMSes in ProteinGym
(ProteinMPNN outperforms on 32/68) (Table A2). This suggests that inverse folding models have an
advantage over sequence models for predicting mutation effects on stability.

Sequence models can learn information about contacting residues that contribute to the overall protein
fold from the evolutionary conservation of residue pairs. This makes evolutionary sequence models
useful for predicting structure and also identifying mutations that would disrupt protein folds [Lin
et al., 2023, Marks et al., 2011]. However, inverse folding models condition directly on the structure.
Thus, it stands to reason that they would have an advantage in predicting the effect of structure-
disrupting mutations. In contrast, the selective constraints that direct organismal fitness are probably
better represented in evolutionary sequence datasets. Thus, sequence models like TranceptEVE would
outperform an inverse folding model on these function types.

We find that ProteinMPNN and ESM-IF1 have similar performance on the stability DMS assays,
but ESM-IF1 is superior on the non-stability assays (Fig. A1). ProteinMPNN was trained on
only structures in the PDB while ESM-IF1 was also trained using predicted structures from Al-
phaFold2 [Dauparas et al., 2022, Hsu et al., 2022, Jumper et al., 2021]. This suggests that, by being
exposed to a broader distribution of sequences across evolution during training, the conditional
sequence distribution learned by ESM-IF1 is more predictive of a wider array of protein functions.

4 Combining sequence, alignments, and structure gives state-of-the-art
performance

Motivated by this finding, we sought to build a model that would have robust predictive power across
a wide array of function types.

We develop StructSeq, a sequence-structure hybrid model that combines best-in-class sequence-based
and structure-based models. Consider a protein sequence (X), composed of residues (x1, x2, · · · , xL).
We learn a conditional sequence distribution, conditioned on the protein’s structure (Y ) and an
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Function type

Expression Binding Activity Stability Organismal
fitness

#Assays 6 10 31 68 69

Model name Spearman Mean
EVE (ens.) 0.460 0.322 0.453 0.418 0.470 0.425
GEMME 0.382 0.361 0.490 0.518 0.469 0.444

ProGen2 (ens.) 0.459 0.298 0.417 0.422 0.446 0.408
VESPA 0.483 0.378 0.472 0.501 0.468 0.460

ProteinMPNN 0.162 0.148 0.213 0.555 0.177 0.251
ESM-IF1 0.401 0.375 0.387 0.630 0.368 0.432

Tranception L 0.441 0.329 0.462 0.473 0.459 0.433
TranceptEVE 0.481 0.341 0.482 0.502 0.478 0.457

StructSeq 0.549 0.399 0.498 0.633 0.468 0.509

Table 1: Spearman performance by function type Mean Spearman for each model across the DMS
assays grouped under each function type. The number of assays in each group is shown at the top.
The top two models of each model type are shown in the order of: Alignment-based models, Protein
language models, Inverse folding models, and Sequence hybrid models. The last row contains the
performance for our sequence, MSA, and structure ensemble model, StructSeq. We also report the
mean of the Spearmans across function types.

MSA containing the protein and homologous sequences (M ). Based on Notin et al. [2022b] we
linearly combine sequence information from Tranception with retrieval (logPTR(xi|x<i)), with
MSA information from EVE (logPE(xi|M) as in Notin et al. [2022b]) and structural information
from ESM-IF1 (logPI(xi|Y )):

logP (xi|x<i, Y,M) = αx logPTR(xi|x<i) + αm logPE(xi|M) + αy logPI(xi|Y, x<i)

For our experiments, we set αx = 1
2 (1−αP ) and αm = 1

2αP , where αP is a constant between 0 and
1, that depends on the MSA depth (as described in Notin et al. [2022b]). We set αy = 1

2 , so that there
is an equal contribution of sequence and structure information to the log-likelihood. Alternatively, to
maximize predictive power for a particular property, property-dependent weight sets can be used to
upweight the sequence or structure contribution accordingly.

We find that StructSeq has SOTA performance on the DMS assays of each function type in ProteinGym
substitutions, except for the organismal fitness assays, for which it has close to top Spearman.
Aggregating the mean Spearman for the different selection categories, we find that StructSeq is the
best-performing model. Thus, ensembling sequence and structure information produces a model that
is robust across multiple protein function types.

5 Conclusion and future directions

In this work, we show that inverse folding models are superior zero-shot predictors of protein stability
over sequence models. We leverage these findings and present an ensemble method combining
sequence, MSAs, and structure which has SOTA summary performance on ProteinGym substitutions
and on individual subtypes of DMSes.

As our ensemble approach combines information sources linearly, it is straightforward to up-weight
the contribution of the inverse folding model in the fitness predictions and in the designs. This setting
would be useful for engineering work in which one is designing de novo stable proteins or optimizing
the stability of a protein. As an alternative to ensembling model contributions through their log-
likelihoods, it could be of interest to explore learning a joint representation with information flowing

4



from the learned representations of each model sub-unit [Zheng et al., 2023]. These representations
could have utility for downstream design and prediction tasks.

We found that all models have low performance on assays of binding relative to other DMS types
(Fig 1, Table 1). Predicting binding affinity is of great interest for developing therapeutic antibodies
and exploring protein-protein interactions. Future work will develop novel methods with higher gains
in predicting binding mutation effects.
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6 Appendix

6.1 Summary of data and models evaluated in ProteinGym v1.0

Here we briefly describe the data and model scores used from ProteinGym v1.0. ProteinGym v1.0 is an
extensive dataset for benchmarking mutation effect prediction models. It comprises over 250 standardized Deep
Mutational Scanning (DMS) assays which include over 3.5 million measurements of mutant sequences. While
ProteinGym contains benchmark datasets for Clinical Variants and Insertion-Deletion mutants, we focus on the
197 substitution DMS assays included. These datasets comprise measurements of various functions of mutant
sequences. All mutation effects are calculated with respect to a single wild-type sequence, specific for that
dataset.

Function type annotation We grouped the substitution DMSes into one of five function types. While each
assay may have been run differently, these annotations serve as a coarse-grained grouping to understand what
sort of protein feature is captured by a model’s learned distribution. A description of the rationale behind each
annotation is described in Table A1. Any assay that could not satisfactorily be categorized was discarded from
this analysis, leaving 184 out of 197 assays.

Implementation details for Zero-shot models All models used in this analysis were run using their default
settings according to their publicly available implementations. For our evaluation of alignment-based methods,
all alignments were retrieved by querying the target protein sequence from each DMS assay using the Jackhmmer
protocol as implemented in the EVcouplings pipeline [Hopf et al., 2019]. For the inverse folding models, input
structures were obtained with AlphaFold2 (with templates and amber relaxation) [Jumper et al., 2021]. The
target wild-type sequence associated with each DMS was folded and the top predicted fold by AF2 plddt was
used as the input to the inverse folding models.

Function type # Assays Description

Activity 31 Assays that directly or indirectly measure a protein’s catalytic
(or otherwise biochemical) activity

Binding 10 Assays that measure the affinity or the degree to which a
protein binds its target

Expression 6 Assays that measure how much the protein is expressed in a
cell

Organismal fitness 69 Assays that measure how much changes in the protein affect
an organisms growth rate

Stability 68 Assays that measure how thermostable a protein is

Table A1: DMS assay function types The number of assays in each of the 5 function type categories
and a general description used to categorize the assays.

Function type ESM-IF1 ProteinMPNN
Activity 9 5
Binding 2 0
Expression 4 2
Organismal fitness 12 2
Stability 55 32
Unannotated 1 1

Total 83 42

Table A2: Top inverse folding model statistic The number of assays for which each inverse folding
model had higher Spearman than all 6 best-in-class sequence models analyzed here, grouped by
function type. The performances of ESM-IF1 and ProteinMPNN were not compared to each other
here.

9



Model name Activity Binding Expression OrganismalFitness Stability
EVE (ens.) 2 1 0 1 0
GEMME 4 1 1 7 3
ProGen2 (ens.) 3 0 0 9 0
VESPA 5 4 1 18 1
ProteinMPNN 0 0 0 0 2
ESM-IF1 9 2 4 12 53
Tranception L 3 1 0 7 4
TranceptEVE 5 1 0 15 5

Table A3: Top model statistics Each row shows the number of assays for which that model was
the top performer by Spearman, grouped by assay function type. Here all 8 models were compared
against each other.

A B

Figure A1: Spearman comparisons for ProteinMPNN (A) The gain in Spearman between Protein-
MPNN and the top two sequence models of each sequence model type, calculated for each DMS. We
plot the DMSes in order of the median Spearman Gain. (A) The ProteinMPNN Spearman compared
to the ESM-IF1 Spearman on the DMS assays. The dotted line corresponds to the identity line. The
point color for both panels corresponds to the type of function assayed in the DMS.
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