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Abstract

Deep learning based protein structure prediction has facilitated major breakthroughs
in biological sciences. However, current methods struggle with alternative con-
formation prediction and offer limited integration of expert knowledge on protein
dynamics. We introduce AFEXplorer, a generic approach that tailors AlphaFold
predictions to user-defined constraints in coarse coordinate spaces by optimizing
embedding features. Its effectiveness in generating functional protein confor-
mations in accordance with predefined conditions were demonstrated through
comprehensive examples. AFEXplorer serves as a versatile platform for condi-
tioned protein structure prediction, bridging the gap between automated models
and domain-specific insights.

1 Introduction

Contemporary structural biology examines not only the architecture of biomacromolecules but also
discerns their functional implications, which are of great scientific and therapeutic importance.
In recent years, the field has witnessed transformative advancements in computational structural
biology empowered by deep learning (DL) approaches such as AlphaFold2 (AF) and comparable
methods [1, 2, 3, 4, 5, 6, 7]. These tools have leveraged protein structures determined by laborious
experiments such as X-ray crystallography, NMR spectroscopy, or cryogenic electron microscopy,
facilitating the widely accepted interim breakthroughs in the highly accurate prediction of static
protein structures [8]. However, physiologically relevant protein motions, especially in functional
response to external perturbations or interactions, are highly dynamic.

Despite successful attempts have been made to capture the ensemble and dynamic nature of protein
conformations, effective applications of AF on modern protein science research have yet to be
fully realized due to the lack of interoperability between these data-driven models and human
intelligence [9]. Current DL models could not generate protein structures with specific local or
global structural features, as the domain knowledge from human experts on specific conformational
descriptors that distinguish different protein functional states is not embedded [10]. For example, AF
lacks the capability to specifically generate the conformational structure of a membrane transporter in
its outward-facing state. Such discrepancy impedes the robust and productive applications of AF and
related methods in crucial research practices such as the developments of novel therapeutic agents or
biosynthetic pathways.

Here, we present AFEXplorer (AFEX), a versatile approach that offers highly accessible user-
conditioned protein structure prediction with AF. In brief, AFEX serves as a surrogate protein structure
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synthesizer that learns the optimal feature representation for AF to generate protein conformations
subjected to spatial constraints in a coarse coordinate space.

2 Related Works

2.1 Physics-based modeling

The conformational change of proteins associated with the transition between functional states is often
a rare event in protein dynamics. Theoretical understanding of rare event sampling predominantly
comes from physics-based modeling. Among various rare event enhanced sampling methods, Targeted
Molecular Dynamics (TMD) [11] is especially useful for directing the time evolution of protein
conformations towards specific configurations. Basically, TMD introduces to the N -body subsystem
an extra penalty potential, Ubias, on the instantaneous coordinates x(t):

Ubias(x(t), x̂, t) =
k

N
‖x(t)−Rx̂−T‖22 +Us(x(t), x̂, t) (1)

, where k is the force constant, x̂ represents the target subsystem configuration, Us is a time-scheduled
smoothing potential, and the alignment operators (R,T) = argmin(R,T) ‖x(t) −Rx̂ −T‖2. As
long as the Boltzmann statistics apply, time evolution of the system would approach the targeted
configuration under this bias potential. A closely related method for studying protein unfolding
dynamics is Steered Molecular Dynamics (SMD), which exerts a pulling force of fictitious origin on
the terminal region to distort the folded structure [12]. In this approach, equilibrium thermodynamic
observables can be retrieved via the Jarzynski equation in the case of irreversible pulling [13].

2.2 Generating alternative structures with AF

Interest in exploring the conformational ensemble learned by AF has catalyzed an evolving area of
research [14, 15]. Indeed, AF or equivalent models can be viewed as a black-box function that maps
the multiple sequence alignment (MSA) featurization of amino acid sequences to the corresponding
protein spatial coordinates. One could thus characterize multiple protein conformations by feeding
AF with randomly perturbed or specifically curated feature representations. For example, Heo and
Feig proposed to substitute the default template database with a curated set of GPCR homologues in
the active state, aiming to mitigate AF’s bias toward predicting inactive GPCR conformations [16].
Similarly, a strategy that combines MSA subsampling [17] and template manipulation has been
exploited to model the functional conformations of kinases and GPCRs [18].

Different ways to subsample the raw MSA inputs have been proposed [17, 19, 20]. Del Alamo et al.
adopted stochastic sampling to reduce the depths of MSAs, aiming to drive AF to produce alternative
structures with some likelihood of differing from the default AF predictions [17]. Wayment-Steele
et al. developed the AF-Cluster method, which clusters MSAs to maximize the coevolutionary
decoupling between distinct folds and use these fold-aware MSA clusters to generate alternative
structures via AF [19]. A recent benchmark on 16 membrane proteins indicates limited success of
these two methods in alternative conformation predictions [21]. Zhang et al. developed an MSA
generative model that, by feeding random noises, can generate various MSA sets with the potential to
drive AF to produce alternative conformations [22]. Moreover, the AFsample approach proposed by
Wallner uniquely sets the dropout layers in AF-Multimer to training mode during inference; models
stochasticity induced by random dropouts in the internal AF latent representation naturally lead
to diverse protein complex conformation predictions [23]. Recently, Bryant and Noe introduced
AFProfile, which uses AF-Multimer confidence scores as the objective to learn an offset bias that
denoises the input MSA for improving AF-Multimer predictions [24].

3 Method

We redefine the conditioned structure prediction as an optimization problem, where the objective is to
identify the optimal MSA feature that forces AF to generate the structures that align with our apriori
knowledge on specific states (Figure 1).
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Figure 1: The AFEX protocol is designed to identify MSA features tailored to specific conformational
states. It leverages domain knowledge, encoded as a loss function, to optimize features that guide
AF in generating the targeted state. The AdK protein serves as an example to demonstrate AFEX’s
capability in generating both its open and closed states.

3.1 Algorithm

We begin with the AF inference function, FAF, whose input could be generally categorized into
features of the predicting target (xtarg), the MSA profiles (xMSA), and the template profiles (xtemp):

FAF :
(
xtarg,xMSA,xtemp

)
7→ (ycoord,ypLDDT) (2)

, where ycoord and ypLDDT denotes the predicted Cartesian coordinates and the per-residue confi-
dence of the prediction. Let us introduce the a prior knowledge from human experts that a reduced
representation ξ : ycoord 7→ zcolvar could reasonably capture the functional evolution of the target
protein conformations and we are interested in a specific state, ycoord

z , characterized by the Dirac’s δ
function ycoord

z = ycoordδ(ξ(ycoord) − z). To find ycoord
z through FAF, we look for xMSA

z as we
keep the target features xtarg fixed and drop the template inputs to FAF:

xMSA
z = argmin

xMSA

(
‖ξ(ycoord)− z‖+ Lregulr

)
(3)

, where ‖ · ‖ denotes a generic distance measure that defines the collective variable (CV) loss Lcolvar,
and Lregulr represents the regularization loss. We find that xMSA

z can be parametrized via a generator,
GAFEX:

GAFEX : x 7→ xMSA
z (4)

, where x denotes some latent prior. This concludes the AFEX framework with Eqs. (2), (3), and
(4). While extensions for learning optimal feature representations other than MSAs (e.g., templates)
are feasible, we note that many previous methods for diversifying AF predictions based on feature
perturbations can be viewed as special cases of AFEX with specific implementations of GAFEX.
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Although more complex differentiable architectures can be parametrized as the latent feature generator,
in the present work, we simply implement GAFEX as linear activation applied selectively to the
cluster_profiles of the MSA features:

GAFEX(xMSA;w,b) = wxMSA + b (5)

Based on such a linear mapping, the inference graph

FAF :
(
GAFEX(xMSA;w,b)

)
7→ (ycoord,ypLDDT) (6)

naturally casts to the optimization problem:

w,b = argmin
w,b

(
‖ξ(ycoord)− z‖+ Lregulr

)
(7)

with the regularization loss defined using pLDDT: Lregulr = 1−FAF(GAFEX(xMSA;w,b))pLDDT.

3.2 Implementation details

The implementation of AFEX requires no modifications to the AF source codes (as per Eq. (6)). The
AF runtime is kept in inference mode, with a single MSA feature ensemble. The CV losses used
for each tested system are detailed in their respective Results sections. We parametrized each linear
AFEX learner with the Adam optimizer [25]. The implementation leverages the Optax library within
the JAX ecosystem [26]. AFEX is publicly available at: https://github.com/JingHuangLab/
AFEXplorer.

4 Results

4.1 AFEX generates AdK open and closed states

Adenylate kinase (AdK) is a classic system for studying large-scale conformational changes [27]. We
define the CV as the distance (D) between the Cα atoms of A37 in the AMP lid and R124 in the ATP
lid (E. coli AdK sequence). The corresponding loss function is defined using the sigmoid function
σ(x) = 1/(1 + exp(−x)) as Lcolvar

open = − log[σ(D − z)] and Lcolvar
closed = − log[σ(z −D)]. z is set

to 25 Å and Lregulr is added to Lcolvar
open or Lcolvar

closed to formulate the final loss function of AFEX. A
500-step optimization of w and b drives the AF prediction towards the open conformation (D = 33.7
Å) and the closed conformation (D = 15.5 Å), compared to the initial D value of 18.6 Å (Figure 1).
The overlap with experimental AdK structures 4AKE (D = 33.6 Å) and 1AKE (D = 16.1 Å)
confirms that highly accurate structure predictions for these two functional states were obtained. The
Cα RMSDs are 1.60 Å for the open and 1.83 Å for the closed conformation, respectively.

4.2 AFEX generates DFG-in/out conformations for all human kinases

Kinases are important drug targets due to their central role in regulating cellular signaling pathways.
They are highly dynamic, capable of adopting various conformations such as the DFG-in and DFG-
out states [28]. The DFG-out conformation is important because it creates a binding pocket that
facilitates the design of type-II inhibitors, with imatinib (Gleevec) serving as a prominent example.
Capturing the DFG-out conformation for a kinase remains a challenge even with the advent of AF,
as AF exhibits a strong bias towards the DFG-in state [29, 30]. Modi and Dunbrack identified two
CVs, D1 and D2, for distinguishing DFG-in and DFG-out states. D1 is the distance between the
Cζ atom of the Phe residue in the DFG motif and the Cα atom of the fourth residue following the
conserved Glu in the C-helix, while D2 is the distance between the Phe Cζ atom and the Cα atom of
the conserved Lys in the β3 strand [28]. DFG-in is indicated by D1 ≤ 11 Å and D2 ≥ 11 Å, while
D1 > 11 Å and D2 ≤ 14 correspond to DFG-out.

Accordingly, we perform AFEX calculations using the CV loss defined as Lcolvar
DFG−in = − log[σ(z1 −

D1)] − log[σ(D2 − z2)] for DFG-in and Lcolvar
DFG−out = − log[σ(D1 − z3)] − log[σ(z4 − D2)] for

DFG-out, with z1 = z2 = z3 = 11 Å and z4 = 14 Å. Combined with Lregulr, we generated
specific DFG-in and DFG-out conformations for 453 human kinases. As shown in Fig. 2, 99.3% of
DFG-in and 99.1% of DFG-out conditioned predictions were successful. In contrast, AF generates
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predominantly DFG-in states with very narrow distributions (Fig. 2d). For a specific kinase, the
two conformations were generally similar, differing mainly in the local structural arrangement we
conditioned on. Associated variations in adjacent structural elements, such as the activation loop,
were also observed (Fig. 2e). While AFEX expands the accessible conformational space of human
kinases, the distributions of D1 and D2 differ from those in the PDB as plotted in Fig. 2c using 7,978
experimental kinase structures. Further refinement may be achievable through more sophisticated
definition of CV loss.
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Figure 2: AFEX successfully generated alternative states (DFG-in and DFG-out) for human kinases.
The Fyn kinase is shown as an example.

4.3 AFEX generates inward-facing (IF) and outward-facing (OF) states of transporters

Obtaining alternative conformations for membrane transporters is notiously difficult for both exper-
imental and computational techniques. This is easily achievable with AFEX, as demonstrated
using four transporters from the IOMemP dataset [21]. Similarly, we define the CV loss as
Lcolvar
IF = − log[σ(z − D)] and Lcolvar

OF = − log[σ(D − z)], in which D is the Cα distance be-
tween a pair of extracellular gating residues and z = 10 Å. With 500-step AFEX optimizations,
conformational changes were induced towards either the IF or the OF states for all four proteins
(Fig. 3). Take mdfA as an example: its initial structure with AF (grey) is in the IF state, and thus
shows minimal change under AFEX conditioned on IF. However, when conditioned on OF, AFEX
guides the protein into a OF conformational state. For PF0807, the initial AF structure corresponds
to the OF state, and its IF state was successfully deduced by AFEX. Such a straightforward way to
generate alternative states for membrane proteins will facilitate mechanistic studies of their functions.

5 Conclusion

In this study, we introduce AFEX as a versatile method that optimizes MSA embedding features
under predefined conditions, guiding AF to explore conformational spaces for structures that meet
these conditions. Using kinases and transporters as examples, we demonstrated that AFEX provides a
controllable way for both the exploration and exploitation of conformational diversity. The condition,
defined using CV loss, incorporates domain-specific insights. While simple, nearly binary variables
were employed in this study, AFEX can condition on any local or global structure features that can
be described by atomic coordinates. Adding scoring functions to the CV loss could further extend
AFEX into tools for fully flexible protein-protein, peptide-protein, or ligand-protein docking.
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Figure 3: IF (orange) and OF (cyan) states generated by AFEX optimization, each aligned with the
initial structure predicted by AF (grey). Protein names and selected gating residues are labeled.
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