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Abstract

Protein language models (PLMs), such ESM2, learn a rich semantic grammar of
the protein sequence space. When coupled to protein folding neural networks
(e.g., ESMFold), they can facilitate the prediction of tertiary and quaternary protein
structures at high accuracy. However, they are limited to modeling protein structures
in single states. This manuscript demonstrates that ESMFold can predict alternate
conformations of some proteins, including de novo designed proteins. Randomly
masking the sequence prior to PLM input returned alternate embeddings that
ESMFold sometimes mapped to distinct physiologically relevant conformations.
From there, inversion of the ESMFold trunk facilitated the generation of high-
confidence interconversion paths between the two states. These paths provide a
deeper glimpse of how language-based protein folding neural networks derive
structural information from high-dimensional sequence representations, while
exposing limitations in their general understanding of protein structure and folding.

1 Introduction

Dynamics allow proteins to carry out complex biological functions [1, 2, 3, 4], but cannot be reliably
predicted from sequence alone [5]. Tuning the inputs of the alignment-based protein folding neural
network AlphaFold2 [6] can sometimes accurately model proteins in multiple states [7, 8, 9, 10, 11].
However, these approaches require significant manual intervention and scale poorly to the proteome-
level [12, 13, 14], precluding large-scale analyses of protein dynamics akin to those recently carried
out on millions of static models [15, 16, 17]. Recently, protein folding neural networks coupled to
large PLMs have achieved nearly state-of-the-art performance on structure prediction, particularly
on orphan proteins and de novo designed proteins, at far faster compute speeds [18, 19, 20, 21].
Yet despite the widespread attention given to emergent qualities of their PLMs [22, 23, 24], their
suitability in modeling conformational dynamics remains, to our knowledge, unexplored.

Here we show that the language-based protein folding neural network ESMFold can sample confor-
mational landscapes of some de novo designed proteins and natural proteins, pointing to a deeper
understanding of protein folding and thermodynamics than previously assumed. Randomly masking
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amino acids prior to PLM input allows ESM2 to generate alternate residue representations, which
ESMFold converted to distinct conformational states. Inversion of the folding trunk allowed interpo-
lation of these representations along high-pLDDT transition paths, thereby generating hypotheses
of conformational interconversion (Figure 1). Sequence representations that mapped to distinct
conformations of natural proteins, but not de novo designed proteins, were highly segregated, with
abrupt transitions manifested in high-RMSD structural changes that sometimes skip over high-energy
transition states. These results suggest that language-based protein folding neural networks are
equipped to rapidly generate hypotheses about protein dynamics. At the same time, they expose
discontinuities in how ESMFold maps sequences to representations to structures.

Figure 1: Overview of the conformational sampling and interpolation pipeline. Residue-level
representations, shown as heat maps, for initial start and end states are generated using either an
unmasked query sequence (left) or a partially masked sequence (right), thereby generating multiple
states. Element-wise interpolation of these representations is combined with backpropagation through
the ESMFold folding neural network to generate high-confidence transition paths.

2 Results and Discussion

2.1 De novo designed proteins can be modeled in apo and holo conformations

Self-supervised training of large language models, including PLMs like ESM2, relies on randomized
masking of tokens in a sequence, with the objective of recovering the unmasked query sequence
[25, 26, 27]. Recently, Hermosilla et al demonstrated that ESMFold can correctly fold de novo
designed proteins when large fractions (80-90%) of the query sequence are masked [28]. We reasoned
that this approach may be able to sample both states of a recent set of six proteins that were de novo
designed to interconvert between apo and holo conformations [29].

Both conformations were predicted at high accuracy for two of the six proteins, with the remaining
four sampling conformations with features from both states (i.e., putatively intermediate; Figures 2
and S1). For the successful cases, conformational sampling occurred even when only 10% of the
sequence was masked. The ESM2 representations of the masked sequences were largely identical to
those of the unmasked sequence, with high cosine similarities and low Euclidean distances (Figure
S2). Dimensionality reduction of these representations using t-SNE [30] further showed how distinct
conformational states were not derived from distinct representations. These results suggested that
ESMFold may have learned to extrapolate conformational dynamics in some proteins absent from the
training set.

2.2 Distinct conformations of natural proteins are segregated in the embedding space

Expecting these results to be recapitulated in natural monomeric proteins with well-defined dynamics,
we assembled a panel of 11 fold-switching proteins, 6 transporters, and 90 ligand-binding proteins
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Figure 2: ESMFold predicts alternative conformations of de novo designed and some natural
proteins. For de novo designed proteins (top two rows), no correlation between sequence masking
and conformational sampling is observed. In contrast, natural proteins (bottom two rows) only
sample alternative states when most of the sequence is masked. Dashed lines indicate TM-scores
between reference structures. Cartoon diagrams depict the preferred (left) and alternative (right)
states, with reference structures shown in gray. Computational models of the protein cs074 were used
as references due to lack of experimental structures.

from a variety of previous benchmarks [7, 31, 32] (Table S1). Although this approach successfully
sampled multiple conformations of some proteins (examples shown in Figure 2), in most cases it
failed to do so. Such proteins were predicted either exclusively in one state or, more frequently, in a
putatively intermediate state that blended structural features from both states (Figures S3, S4, S5, S6,
S7, S8, and S9).

How ESMFold mapped the sequence representations of natural proteins to structure diverged from its
treatment of de novo designed proteins in several key respects. First, conformational sampling of
natural proteins steadily increased with masking rate until a critical threshold appeared to be reached,
at which point fewer native-like structures were being generated at all. Second, the ESM2 embeddings
for the two states segregated into distinct clusters, with folding failures dispersed elsewhere. Finally,
major changes in the per-residue representations were observed in embeddings that yielded the
alternative state relative to the unmasked query sequence (Figure S2). The magnitude of these
residue-level changes did not appear to correlate with either LDDT [33] (Figure S10) and only weakly
correlated with residues’ movement in Cartesian space (Figure S11), consistent with encoding of
structural changes at the whole-sequence rather than residue level.

2.3 Tracking the determinants of conformational sampling in ESMFold

Why did sequence masking induce conformational transitions in some proteins, but not others?
Structural models matching the alternate conformation could be found in the ESMFold Metagenomic
Atlas [18] using Foldseek [34] for almost all proteins discussed here, indicating that this effect does
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not arise from the alternate state being unreachable by the folding trunk (Figure S12). It also failed to
correlate with the number of hits to the query sequence fetched from the UniRef50 and UniRef90
databases using Jackhmmer [35, 36] (Figure S13). Moreover, conformational sampling failed to
correlate with the query sequence’s pseudo-perplexity, a metric capturing how well it is understood
by the PLM [18] (Figure S14). These negative results, combined with those observed in four out of
six de novo designed proteins, suggest that variations in conformational sampling may arise from the
cumulative effects of idiosyncrasies and imbalances in the training set, rather than specific properties
of the individual proteins being predicted.

2.4 Sampling conformational transition paths by interpolating between representations for
different states

Because the representations for both end states are identical in shape, we reasoned that transition paths
between these states could be generated by iteratively interpolating between their representations
and passing the resulting outputs through the ESMFold folding trunk as shown in Figure 1. The full
algorithm is detailed in Section 4; briefly, it proceeded recursively, with initial guesses generated by
averaging the representations of high-RMSD pairs of consecutive structural models in the transition
path and refining by backpropagation through an inverted ESMFold network, an approach inspired by
similar methods for protein design [37, 38, 39, 40, 41]. Loss functions included pLDDT as well as
Euclidean distance restraints ensuring that the ESM2 representations for new models in the transition
path were equidistant from those of the two flanking models used to generate them.

Nine such trajectories were generated in the fold-switching protein KaiB and the calcium-binding
protein Troponin C (Figure 3A). All eighteen trajectories limited conformational interconversion to a
very minor fraction of the overall Euclidean space separating the two sequence representations, and
no correlation was observed between Euclidean distance traversed in the embedding space and RMSD
changes in resulting structures (Figure 3B). Most trajectories were found to skip over high-energy
conformational transitions entirely in both proteins, even though the traversed distance in Euclidean
terms was extremely small (Figure 3C).

Residues 62-68 of KaiB provide an illustrative example, as they undergo a sheet-to-helix transition
that must, in principle, sample an intermediate loop conformation. Only one trajectory, shown in
Figure 3D successfully sampled such a state. The remaining eight skipped over the state entirely,
suggesting that high-energy states occupy an extremely limited fraction of the total embedding space
separating the two conformations, and that the boundaries between the representations of the two
states do not uniformly reflect biophysically relevant conformational transitions.

3 Conclusion

This manuscript demonstrates that language-based protein folding neural networks are primed to
explore protein conformational landscapes at scale. Of particular interest was the observation that
ESMFold interpreted nearly-identical language model representations of de novo designed proteins
as distinct conformations, which may point to an emergent understanding of structural dynamics as a
fundamental property of some amino acid sequences. However, although we observed success with
de novo designed proteins that is unachievable with AlphaFold without pipeline modifications [29],
the relatively low success rate in our benchmark set proves that reliable conformational sampling is
not currently achievable by ESMFold, and may require alternate training schemes to fully unlock [42].
Moreover, our proof-of-concept involving the simulation of transition paths in KaiB and Troponin
C demonstrated that the language model’s embedding space does not neatly map to conformational
space, as indicated by unphysical transition paths between discrete conformations. Nevertheless, it
provides one example of the broader range of hypotheses that could be generated by a more robust
language-based protein folding neural network. Finally, while these results are limited to ESM2 and
ESMFold, its two-stage training procedure closely aligns with that of other language-based protein
folding models such as OmegaFold and RGN2 [20, 43], and similar results would be expected in
those models as well.
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Figure 3: Conformational interpolation between the ESM2 representations of start and end
states of KaiB and Troponin C using ESMFold. (A) Conformational transitions occur during very
short intervals during the transition from one state to another. Start and end points were chosen
based on structural similarity to either the preferred state or alternate state and are shown in either
teal or yellow. (B) Changes in protein representations are not correlated with changes in RMSD in
either KaiB (orange) or Troponin C (teal). (C) Example trajectories show how different sampling
granularities are achieved, with some trajectories skipping over conformational transitions. (D)
Example sheet-to-helix transition in KaiB residues 62-68, with residues colored by pLDDT. Crystal
structures are shown in white on the leftmost and rightmost panels.

4 Methods

4.1 Sequence masking and conformational sampling

Conformational sampling was achieved by modifying a recently described sequence masking ap-
proach described in [28]. The identities of a fraction of residues 0.1, 0.2, . . .0.9 are randomly masked
prior to processing into embeddings by the ESM2 language model; our modification is limited to
returning the full (Nlayer, Nres, Ndim) embeddings for each sequence, rather than the embeddings
for the last layer. We applied this to the benchmark set of protein structure pairs in Table S1, which
was derived from three benchmarks for conformational change modeling using AlphaFold2 and
includes recent de novo designed proteins that adopt multiple conformations. Recycles were set to
zero.

4.2 Interpolation between models in embedding space

Transition paths were generated using a recursive algorithm that interpolates between two sets
of language model embeddings x1, x2, each of which has the shape (Nlayer, Nres, Ndim) and
maps to structurally distinct conformers. For the ESM2 model, these representations are of shape
37 ∗ Nres ∗ 2560, or approximately 79, 000 dimensions per amino acid. At each iteration i, we
seek to introduce a new representative model xi that interpolates between the highest-RMSD pair of
adjacent structures. After calculating pairwise RMSD values for all such pairs along the trajectory, a
new representative model is generated by taking the midpoint between the representations for the
highest-RMSD pair of consecutive structural models. The resulting calculated representations are
passed through the folding trunk of ESMFold to generate a structural model, which is then optimized
using two losses: a pLDDT loss equal to negative pLDDT, and a geometric loss Ldist that ensures
the new representations are equidistant from the two seed representations:

Ldist =

(
|xi,n − xi−1| − |xi,n − xi+1|

|xi,0 − xi−1|

)2

(1)

Here, xi−1 and xi+1 are the flanking representations used for interpolation, and xi,0 and xi,n are
the initial and refined embeddings for the model whose position is being interpolated. The Adam
optimizer with beta1 = 0.9, beta2 = 0.999 was used with gradient clipping set to 1, and the learning
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rate was initially set to 1e-3 but was scaled with the distance between the two seed embeddings,
xi−1 and xi+1 [44]. Each iteration proceeded until convergence. The algorithm terminated when
repeated interpolation failed to decrease the distance between the highest-RMSD pairs of structures.
All computations were carried out on an A6000 GPU.

4.3 Miscellaneous

Searches using Foldseek (v. 2-8bd520) [34] and Jackhmmer (v3.2.1) [35] were carried out using
default settings. t-SNE was used as implemented in python using SciKit-Learn [45]. TM-scores and
structural alignments were calculated using TM-align [46].
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5 Supplementary Tables

Table S1: List of PDB pairs used in this study. One of the reference structures for transporter LmrP
was derived from CASP14 (T1024TS4271A).

2qkeA 5jytA 2hdmA 2n54B 2hdmA 2n54B 1uxmK 2namA

1x0gA 1x0gD 1xjtA 1xjuB 2frhA 1fzpD 2k0qA 2lelA

2nxqB 1jfkA 2ougC 6c6sD 3hdeA 3hdfA 3qy2A 1qb3A

3zwgN 4tsyD 4gqcC 4gqcB 4qhfA 4qhhA 4zrbC 4zrbH

5fluE 2uy7D 6z4uA 7kdtB 1aelA 1ureA 1rzlA 1uvbA

1c54A 1rghB 1ealA 1eioA 1f3yA 1jknA 1fmfA 1id8A

1gh1A 1cz2A 1gqnA 1qfeB 1gqzA 2gkeA 1hsiB 1hshD

1i56A 1el1A 1igpA 2au6A 1jfjA 1jfkA 1k2hA 1zfsB

1lipA 1jtbA 1mutA 1punA 1mx7A 1mx8A 1ntrA 1krxA

1o1uA 1o1vA 1pdbA 1yhoA 1tfuA 3uc5A 1tjdA 1eejB

1xsaA 1xscA 1z15A 1z17A 2cjoA 1roeA 2d9eA 2rs9B

2f63A 1eqmA 2fhmA 2hltA 2in2A 2b0fA 2ju3A 2ju8A

2jwwA 1rtp1 2k43A 2k8rA 2l50A 2l51B 2l68A 2lkkA

2laoA 1lahE 2lhsA 2bemA 2nlnA 1rroA 2p3mA 2vbtA

2uz5A 2vcdA 4akeB 2eckB 1ijaA 2kidA 1jm4B 1wumA

1mo7A 1mo8A 1sktA 1tnqA 1symB 1xydB 1w4uA 1ur6A

2kxlA 2k0gA 2lkcA 2lkdA 1lmzA 1p7mA 2cg7A 2rkzC

1urpD 2driA 1ormA 1qj8A 1pflA 1filA 1fsfA 1fqoB

1akzA 1sspE 2ai6A 2ozwA 1vr6A 1rzmA 1y3qA 1y3nA

1gudA 1rpjA 1ex6B 1ex7A 1wd7B 1wcwA 1w0jE 1e1rF

1rf5A 1rf4A 1s2oA 1tj5A 1k5hA 1q0qA 1zolA 1o03A

1viyC 1vhlA 1za1A 1q95A 1jejA 1jg6A 1hooB 1cg0A

1e5lA 1e5qA 1hw1B 1h9gA 1l0wB 1g51A 1otjD 1gy9A

1evkA 1evlA 1g6wD 1k0bC 1njgB 1njfA 1rkaA 1gqtA

1k6wA 1k70A 1yl5B 1yl7A 6oy9B 1a0rB 1a6dA 1a6eA

2rcsH 1aj7H 1aw2A 1aw1B 1rkmA 1b6hA 7azpA 4pj1A

4lp5A 4p2yA 1cfcA 5dowA 2kq2A 2kw4A 1dmoA 3clnA

6t1zA
T1024TS4271A

6irsB 7dsqB 6rvxA 7bcqA 6xpfA 6xpdA
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6 Supplementary Figures

Figure S1: ESMFold predicts intermediate states of some de novo designed proteins. Computa-
tional models were used for all proteins.
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Figure S2: Distinctions in residue-level language model embeddings of designed and natural
proteins. The plots show the difference between the unmasked query sequence and those mapping to
either the preferred or alternate states of de novo designed proteins cs074 (top left) and cs207 (bottom
left), and natural proteins KaiB (top right) and Troponin C (bottom right). The representations for
alternate conformations of natural proteins on the right show greater dissimilarity from those of the
unmasked query sequence than the de novo designed proteins.
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Figure S3: Conformational sampling in benchmark proteins. Preferred and alternate conforma-
tions shown on the X- and Y-axes, respectively. Dashed lines indicate TM-scores between reference
structures, with a TM-score of 1 indicating that the structures are identical. Colors correspond to the
fraction of the amino acid sequence that was masked.
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Figure S4: Conformational sampling in benchmark proteins. Preferred and alternate conforma-
tions shown on the X- and Y-axes, respectively. Dashed lines indicate TM-scores between reference
structures, with a TM-score of 1 indicating that the structures are identical. Colors correspond to the
fraction of the amino acid sequence that was masked.
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Figure S5: Conformational sampling in benchmark proteins. Preferred and alternate conforma-
tions shown on the X- and Y-axes, respectively. Dashed lines indicate TM-scores between reference
structures, with a TM-score of 1 indicating that the structures are identical. Colors correspond to the
fraction of the amino acid sequence that was masked.
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Figure S6: Conformational sampling in benchmark proteins. Preferred and alternate conforma-
tions shown on the X- and Y-axes, respectively. Dashed lines indicate TM-scores between reference
structures, with a TM-score of 1 indicating that the structures are identical. Colors correspond to the
fraction of the amino acid sequence that was masked.
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Figure S7: Conformational sampling in benchmark proteins. Preferred and alternate conforma-
tions shown on the X- and Y-axes, respectively. Dashed lines indicate TM-scores between reference
structures, with a TM-score of 1 indicating that the structures are identical. Colors correspond to the
fraction of the amino acid sequence that was masked.
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Figure S8: Conformational sampling in benchmark proteins. Preferred and alternate conforma-
tions shown on the X- and Y-axes, respectively. Dashed lines indicate TM-scores between reference
structures, with a TM-score of 1 indicating that the structures are identical. Colors correspond to the
fraction of the amino acid sequence that was masked.
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Figure S9: Conformational sampling in benchmark proteins. Preferred and alternate conforma-
tions shown on the X- and Y-axes, respectively. Dashed lines indicate TM-scores between reference
structures, with a TM-score of 1 indicating that the structures are identical. Colors correspond to the
fraction of the amino acid sequence that was masked.

Figure S10: Residue-level structural changes (here, local distance difference test, or LDDT)
do not correlate with residue-level differences in the ESM2 representations encoding those
conformations.
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Figure S11: Residue-level structural changes (here, root mean squared deviation, or RMSD)
weakly correlate with residue-level differences in the ESM2 representations encoding those
conformations in KaiB and not in Troponin C.

Figure S12: No correlation was observed between conformational sampling success in natural
proteins and the presence or absence of similar protein structural models in the ESM Metage-
nomic Atlas.

20



Figure S13: No correlation was observed between conformational sampling using language
model masking and the number of hits in either the UniRef50 or UniRef90 sequence databases.

Figure S14: No correlation was observed between conformational sampling using language
model masking and the pseudo-perplexity of the query sequences.
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