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Abstract

Understanding protein function is vital for drug discovery, disease diagnosis, and
protein engineering. While Protein Language Models (PLMs) pre-trained on vast
protein sequence datasets have achieved remarkable success, equivalent Protein
Structure Models (PSMs) remain underrepresented. We attribute this to the relative
lack of high-confidence structural data and suitable pre-training objectives. In this
context, we introduce BioCLIP, a contrastive learning framework that pre-trains
PSMs by leveraging PLMs, generating meaningful per-residue and per-chain struc-
tural representations. When evaluated on tasks such as protein-protein interaction,
Gene Ontology annotation, and Enzyme Commission number prediction, BioCLIP-
trained PSMs consistently outperform models trained from scratch and further
enhance performance when merged with sequence embeddings. Notably, BioCLIP
approaches, or exceeds, specialized methods across all benchmarks using its sin-
gular pre-trained design. Our work addresses the challenges of obtaining quality
structural data and designing self-supervised objectives, setting the stage for more
comprehensive models of protein function. Source code is publicly availableﬂ

1 Introduction

The study of proteins, central to cellular function, impacts fields such as medicine, biotechnology, and
computational biology. While the amino acid sequence of a protein carries vital information, its 3D
structure often holds the key to understanding its function and putative interactions. Machine learning,
especially Protein Language Models (PLMs), has recently revolutionized protein modelling. PLMs
pre-trained on extensive sequence data have demonstrated the ability to capture intrinsic relationships
in amino acid sequences [1]] in rich representations that can be leveraged for various downstream
applications [2] - mirroring the trends observed in other domains such as natural language processing
[3L14] and computer vision [S]]. However, despite the success of machine learning in protein structure
prediction, epitomized by AlphaFold [6]], general pre-trained protein structure models (PSMs) have
not yet found the same ubiquitous application as their sequence-based counterparts. We attribute this
to two main challenges; (i) data scarcity and (ii) objective complexity.

High-quality protein structure data is hard to come by and often expensive. Methods such as X-ray
crystallography and cryo-electron microscopy, though very insightful, are not without limitations
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Figure 1: Pre-training, fine-tuning and downstream task illustrations. The modules in light blue are
tuned, the modules in green are fixed.

[7]. Whilst recent tools such as AlphaFold and ESMFold have enabled the generation of massive
protein structure datasets, they only predict the 3D coordinates, and can still be imperfect especially
for multi-state proteins or proteins with shallow MSAs [, |9]. However, objective formulation
remains a significant hurdle. While masked sequence prediction has proven highly effective for
pre-training PLMs, defining self-supervised objectives for structure data is far more challenging due
to the continuous and multi-dimensional nature of protein structures.

Motivated by this, we introduce BioCLIP, a self-supervised contrastive learning framework for build-
ing latent representations of protein structures and sequences. The core intuition behind BioCLIP
is to leverage the quality of pre-trained PLM embeddings trained on abundant sequence data to
facilitate the training of a PSM. The model employs a loss function inspired by Contrastive Lan-
guage—Image Pretraining (CLIP) [[10], incorporating both per-residue and per-chain embeddings to
create a comprehensive representation of protein structures.

We validate BioCLIP’s efficacy through tests on protein-protein interaction prediction, GO-term
annotation, and Enzyme Commission number prediction. Our findings underscore three points: (1)
BioCLIP’s pre-trained Graph Neural Network (GNN) surpasses conventional training methods, (2)
structural embeddings enhance sequence embeddings and usually boost performance when combined,
and (3) BioCLIP approaches or outperforms specialized methods.

2 BioCLIP

BioCLIP is visualised in Figure[I] The core idea is to pass as input both a sequence and a structure
representation of a given protein through a PLM and a PSM, respectively, to obtain per-residue and
per-protein level embeddings. For a given sequence embedding S, and structure embedding G, the
scaled cosine distance metric can be used to measure the similarity of the embeddings,
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For a batch of sequence embeddings S = {S; ... Sn} and structure embeddings G = {G...Gn}
where S; corresponds to G;, a CLIP-style loss can be employed,
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such that by minimising the contrastive loss term for a given batch of proteins, the model is trained
to produce aligned embeddings for paired sequence-structure inputs, which are far away from all
other embeddings produced by the model. An equivalent method is used at the level of per-residue
embeddings across all proteins in the batch. These learned embeddings can then be used for a variety
of down-stream tasks; for example, for a given protein with sequence and structure representation,
the outputs of the PSM and the PLM can be concatenated and passed through an MLP to predict
whether that protein has a given Enzyme Commission number.

In principle, while a separate BioCLIP model can be trained end-to-end at the level of both proteins
and their component amino acids, these tasks are inherently related. Each structure or sequence
is by definition a composition of its component residue nodes and amino acid types, respectively.
There is a vast literature demonstrating that training a single backbone model for multiple, related,
tasks typically yields better generalisation performance [[L1]. It is therefore beneficial to treat both
sequence and amino-acid representations as heads of the same underlying sequence encoder, and
similarly treat structure and residue representations as heads of the same underlying structure encoder.
Then by minimising the sum of contrastive losses, we simultaneously minimise both the protein-level
loss and the residue-level loss and benefit from the commonalities in the two problems.

We leverage the available massive pre-trained PLMs which already provide robust representations
of the protein sequences, e.g. [12} 13} 14,115, 116]]. By appropriately choosing a pre-trained PLM,
we are able to fix the sequence and amino-acid representations and then derive robust structural
representations from limited sequence-structure pairs, reflecting the availability of substantially larger
datasets of protein sequences. In our experiments, we use an instance of ESM [17]] which is a state-of-
the-art BERT-style PLM. The PSM used is a type of SE(3)-invariant graph neural network based on
prior work [18]. By design, all node and edge features passed to the network are SE(3)-invariant, and
any message passing applied on top of them inherently maintains this. Within the message passing
mechanism, we use a type of graph attention network [19] with multi-head dot-product attention [20].

BioCLIP is pre-trained on a dataset of approximately 500,000 sequence-structure pairs obtained from
the RCSB PDB databank [21]. Once the model has been pre-trained it can then be used for a variety
of downstream tasks, such as those described in Section[3] Full details of the implementation used
here are given in Appendix [B]

3 Experiments

3.1 Tasks

To investigate whether BioCLIP is capable of learning meaningful structural representations that offer
novel benefits on top of those already available from the underlying PLM, we empirically evaluate
their performance when used as a basis for three downstream tasks. These tasks are visualised in
Figure|l} Full details of the downstream tasks and their configurations are provided in Appendix

¢ Function Prediction: A binary protein classification task, based on datasets used in [22],
where the goal is to predict enzyme-commission numbers and three gene ontology (GO) tasks:
biological-process (BP), molecular-function (MF) and cellular component (CC).

* Protein-Protein Interaction: A binary classification task where, given two proteins, the objec-
tive is to predict whether or not they interact. We study the Human and S.cerevisiae tasks that
are introduced in [23]].

* Per-Residue Protein-Protein Interaction: A binary classification task where, given two biolog-
ical sub-units within two distinct biological molecules, the objective is to predict whether or not
they interact. This task is taken from [24]].

3.2 Models

Across all tasks we utilise the same BioCLIP pre-trained GNN. During fine-tuning we take the struc-
ture representations obtained from the GNN before the application of a final MLP, such that initially,
the structure representation differs from the sequence representation by a non-linear transformation.
These structure embeddings are then concatenated with sequence embeddings from ESM and passed
into an (initially untrained) predictor MLP model. The parameters of the GNN the final three layers
of the ESM model and the final MLP are all fine-tuned for each specific task.



Ablations To ablate BioCLIP’s component parts and identify their contributions, we consider four
variants of the method in fine-tuning:

* GNN (random): The same GNN architecture as used in our BioCLIP pre-trained, but initialised
with random weights. This variant is used as a control to measure the effectiveness of pre-training
of the GNN. All parameters in the GNN and the final MLP are fine-tuned.

* GNN (pretrained): The GNN architecture, pre-trained to align to the ESM model. This variant
is used to measure the effectiveness of pre-training the structure model in isolation. Again, all
parameters in the GNN and final MLP are fine-tuned.

e ESM: The PLM model used in pre-training, with its final three layers fine-tuned. This variant
is used as a control to measure the effectiveness of introducing the BioCLIP-aligned GNN for
downstream tasks. All parameters in the last three layers of the ESM model and the final MLP
are fine-tuned. Note that we did experiment with different methods of fine-tuning but found that
it made little difference to the final performance.

Task-specific Baselines For each of the downstream tasks, we further identify a recent method that
represents the state-of-the-art, or close, for that task:

* DeepFRI [22] (GO-term tasks): This model represents the protein structure as contact maps,
and employs a frozen protein language model to provide input node features for a three-layer
graph convolutional network [25]], which is pre-trained on 10 million Pfam protein sequences and
uses an LSTM architecture with 512 hidden units. A sum operation is used to pool the per-residue
representations into a single protein representation, which is finally passed through an MLP. The
authors expand the training dataset by using homology models from SWISS-MODEL which
they show boosts performance significantly, the dataset uses 30k non-redundant experimental
PDB structures and 220k non-redundant homology models from SWISS-MODEL.

e Jha et. al. [23]] (protein-protein tasks): The authors use a GCN and a GAT to predict
interactions between proteins. They use two pre-trained protein language models: SeqVec
(LSTM) and ProtBert (Transformer) to obtain feature vectors for each residue. The SeqVec
embedder produces a sequence representation by summing three representations: a 1-character
convolution (CharNN), and bi-directional LSTM layers. The second PLM, ProtBert, is a BERT
model is trained on the BFD-100 dataset [26], which has 2.1 million protein sequences. Finally,
the per protein representation is obtained by averaging over residue activations. The PPI datasets
used are from two organisms: Human and S. cerevisiae. The Pan’s human dataset [27] is modified
to remove duplicates and apply some filtering, see the original paper for details [23]].

* PeSTo [24] (per-residue protein interaction): The authors employ a deep GAT network on the
atoms of a protein structure. Latent atom representations are obtained through 32 SO-3 invariant
message-passing layers with increasing neighborhood sizes. Finally, cross attention is used from
the atoms in each residue, to the corresponding residue.

3.3 Results

The results of the downstream evaluation experiments are summarised in Figure[2} with corresponding
exact numerical values found in Appendix [D] For each experimental configuration, we present results
after 1, 2 and 3 epochs and also the final epoch from each fine-tuning experiment. From our
experiments, we draw three important conclusions:

1. BioCLIP’s pre-trained structure representations are informative : Observing the results for
GNN (random) and GNN (pretrained), we find that for all 7 tasks and at every epoch, the pre-
trained GNN provides better performance. This result is particularly stark in the Protein-Protein
Interaction tasks, where the pre-trained GNN significantly outperforms the randomly initialised
GNN in early epochs. From these observations, we conclude that pre-training a GNN via the
BioCLIP method can result in meaningful representations of protein structure that can aid in
downstream tasks.

2. Aligned pre-trained structure and sequence representations are additive: We find that in
25/28 cases, the results for fine-tuning of the full BioCLIP system outperforms the ESM model
alone, and in 23/28 cases the pre-trained GNN alone. We argue that, although the GNN and
ESM models are aligned, they provide different inductive biases which are mutually beneficial
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Figure 2: Performance metrics across 7 downstream tasks for: Random GNN, pre-trained GNN with
the contrastive BioCLIP objective, ESM 150M with the last three layers tuned, and the BioCLIP
model which combines ESM and the pre-trained GNN. For each task, we also provide a recent,
task-specific, benchmark represented as a dashed line.

for fine-tuning. We note that in the cases where we did not observe a benefit in combining the
representations, the drop in performance was very marginal.

3. BioCLIP is competitive with state-of-the-art methods: In 4 of the 7 problems considered, we
find that BioCLIP is able to out-perform or match a recent, state-of-the-art, method designed
specifically for that task. In the GO: Molecular Function and Enzyme Commission problems,
fine-tuning BioCLIP surpasses the results achieved by DeepFRI. Further, on the GO: Cellular
Component and GO: Biological Process tasks, BioCLIP’s performance reaches within 7% of the
performance achieved by DeepFRI. For the two PPI tasks, we find that BioCLIP is able to match
the performance of Jha et. al. Additionally, we find that BioCLIP is able to reach very close
to the performance of Jha et. al. within only a few epochs. We also note that while BioCLIP
struggled to reach the performance of PeSTo on per-residue protein interaction, it did outperform
all of the methods that PeSTo was compared to in its original publication

4 Conclusion & Future Work

This work introduces BioCLIP, a contrastive learning framework for learning structure and sequence
representations of proteins, which we have demonstrated in a practical setting by aligning a GNN to
a pre-trained PLM. We have carried out numerous empirical evaluations on a variety of downstream
tasks for protein function prediction. We show that the representations derived from BioClip are
meaningful, complementary to existing sequence embeddings and can be used to obtain competitive
performance in comparison to task-specific methods. Overall, we believe that BioCLIP addresses
the problem of limited structural data for pre-training in a systematic way, and provides a general
template for models of protein function based on their full sequential and structural representations.

There are a number of areas for future work further developing the ideas presented here. Firstly,
recent work [28]] has demonstrated that a CLIP-style model can be effectively trained using a sigmoid
loss, rather than a softmax loss, which may pave the way for training of BioCLIP with substantially
larger batch sizes. An empirical investigation in this direction may yield improved performance on
downstream tasks. We also note that the PSM used in this work was substantially smaller than the
PLM, which may limit the richness of the structural embedding obtained. This reflects the broader
problem within the geometric deep learning community of over smoothing in deeper networks [29].
Investigation into alternative models of structure, such as the EvoFormer module used in AlphaFold2
(6] and may therefore allow for larger, richer representations of structure.

*We performed a preliminary experiment pre-training a small version of the PeSTo architecture and fine-tuned
it on the per-residue PPI task. As we found that we achieved similar performance to [24], we hypothesise that
the difference in performance can be attributed to the PSM architecture and use of the all-atom representation.
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Appendix

A Related Work

Protein Language Models Recent advances in scaleable transformer architectures [20] have
facilitated an explosion in pre-trained language models, e.g. [30,131,/4]. Correspondingly, a number of
pre-trained protein language models have emerged, employing the same principles of auto-regressive
or masked-prediction while targeting the vast available protein sequence data. For example, the ESM
family of BERT-like models are trained to do masked prediction [17] which can be used for a variety
of downstream tasks [32}133]34], ProtGPT?2 is an autoregressive model capable of generating novel,
realistic protein sequences [14]]. While these PLMs in many ways represent a state-of-the-art, the
inclusion of additional structural information may improve performance in practice [33]].

Protein Structure Models Protein structure is a key modality in modelling of protein function,
with a variety of research interest in both predicting protein structure [6}36] and leveraging predicted
or experimentally obtained structural information for protein modelling [37]. With the view that
protein structure, represented as a set of residue coordinates in 3D space, can directly be mapped to a
graph structure, there is a clear affinity with the subject of graph neural networks. In particular, a
number of GNN architectures have emerged in the past decade which specifically target invariance
and equivariance with respect to the 3D coordinate system [38] 39, 40]], some of which have shown
promise in protein tasks such as prediction of solubility [41]], function [22] and binding affinity [24].
However these protein structure models (PSMs) face bespoke challenges, such as the well-studied
‘over-smoothing’ problem for GNNs [29] that limits the size and depth of these models. Additionally,
there is a relative lack of available structural data; consider that at the time of writing, the Protein
Data Bank [21]] has hundreds of thousands of experimentally obtained structures, in comparison to
the millions of available protein sequences [42], although we note that this issue can increasingly be
mitigated using predicted structures e.g. [43}144].

Pre-trained Structure Models Recently, a variety of techniques for contrastive learning on graph
representations have been proposed. Typically, these incorporate some form of structural augmenta-
tion [435]], structure masking [46] or network perturbation [47] to create neighborhoods of structure
representations for contrastive learning. Of particular relevance to this work, GearNet [48]] and Mol-
CLR [49] propose graph-augmentation approaches to contrastive learning of protein and molecule
structures, respectively. [S0] propose a mask-prediction method where a GNN is trained to reconstruct
pairwise distances and angles between residues. However, as these techniques focus on contrastive
learning between graph structures, they are, in isolation, unable to leverage the vast available protein
sequence data to improve their representations.

Multi-modal Protein Embeddings As both sequence and structure are considered key modalities
for modelling protein function, a number of works naturally consider combined representations for
downstream tasks. For example, a number of works aims for a ‘best of both worlds’ by incorporating
amino acid embeddings, obtained from a pre-trained PLM, as node features to a PSM that is
then trained to predict protein function [51} [23]. However, these approaches do not incorporate
unsupervised learning into their PSM components. The approach taken in this work can be motivated
by [52], which presents experimental results showing that representations of sequences obtained via
unsupervised learning, specifically with the ELMo model [53]], are more effective in downstream tasks
than hand-crafted representations. Further motivating the unsupervised learning of complimentary
structural representations, [53]] find that although the embeddings are obtained from sequence alone,
they do not benefit from including hand-crafted structural representations. In contrast to these
directions, a number of works provide avenues for multi-modal representations through large-scale
contrastive learning, particularly in the case of image-text modalities [10,54]. These methods provide
a systematic way to build multi-modal representations of data, which we leverage here, alongside the
ubiquitous success of PLMs, to achieve effective pre-training of data-scarce PSMs.
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B BioCLIP Implementation

B.1 Loss

BioCLIP is inspired by the Contrastive Language-Image Pre-training (CLIP) method. Consider
a batch of n paired protein sequences and structures. The goal of BioCLIP is to learn a latent
representation of each sequence, S;, and structure G5 so that the scaled cosine similarity,

yer

d(Si,G) = —2 0
(56:%3) = 5761

3

is maximised for paired sequences and structures, ¢ = j, and minimised otherwise, ¢ # j. This
can be achieved by minimising the symmetric cross-entropy loss, with a term Lg considering the
discriminative power of the cosine similarity across all structures in the batch for each sequence, and
similarly a term L considering the discriminative power of the cosine similarity across all sequences
in the batch for each structure,

7d(S;,Gi)

Ls=—— Zk’g T rd(S1.G;) @)
Td(SZ,G )

LG = - Zlog er( Gy)’ (5)

where in both cases, 7 € RT is a learned ‘temperature’ controlling the sharpness of the softmax
operator. Then the total ‘protein-level’ loss to be minimised is,

[p=lstla ©)
2

Additionally, we are interested in learning aligned latent representations at a more granular level,
as many downstream tasks consider per-residue function and interaction [22} 24]. Consider that
each protein sequence is an ordered sequence of m amino acids, a; 1 . .. @i m, and, for each amino
acid a; ; in that sequence, there exists a corresponding node v; ; within the structure’s set of nodes
Vi = {vi1...vim}. Then, as with the aligned protein-level representations .S;, G;, we also desire
ahgned remdue level representations Sj GJ that, while conditioned on their global contexts S;, G; are
themselves latent representations of thelr corresponding amino acids and nodes. Then the symmetric

cross-entropy loss is defined equivalently across the entire batch of residues,

D SRS ST
_ L log — ™
nim e S e l(SHEL)
1 1 & emd(81.67)
- Z p S o (L) ®)
i=1 " 5= Zk DY :
and the total ‘residue-level’ loss to be minimised is,
Lo+ L
Lp==""5—" ©)

As we train a single model for both protein-level and residue-level contrastive learning, the overall
loss term is simply,

L=Lp+ L. (10)

We did not find that it was necessary to introduce different weightings for the loss terms.
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B.2 Protein Language Model

We consider the esm2_t30_150M_UR50D instance of Evolutionary Scale Modeling (ESM) [[15]],
which is a BERT-style [30] transformer architecture consisting of 30 layers and 150 million total
parameters. We use the publicly available weights for this model, which are pre-trained to perform
masked amino-acid prediction on 65 million unique protein sequences taken from the UniRef protein
sequence database [S5]].

Each amino acid is represented as a token in an ordered protein sequence which is passed through a
encoder-only transformer architecture. After processing by the ESM, the latent representation S of
each amino acid token a; ; is obtained from the final layer. The representation of the entire protein
sequence S; is obtained by averaging over the amino acids’ embeddings,

Si=—>"8: (11)
m; 1

j=
B.3 Protein Structure Model

SE(3)-invariance We employ a SE(3)-invariant graph neural network based on prior work [[18]].
Each protein p is represented as a graph G = (V, E, fv, fr) where V is the set of nodes, F is the set
of edges, fy € RIVIXN is the initial node features in dimension N and f¥ € RIZI*M is the initial
edge features in dimension M. The set of edges F is constructed by taking each node’s k-nearest
neighbours in euclidean space, and each edge e € FE has an associated source node s(e) : E — V
and target node t(e) : E — V. The neighborhood V,, C E of a node v is therefore defined,

Vo e VN, ={e € E|s(e) =v} (12)

The initial node features f; ... fxl/v‘ and edge features f ... f ‘EE‘ contain information about the
local geometry, and are SE(3)-invariant. After this, any conventional message passing system can be
employed without breaking this invariance. Every node/residue v; has a 3D coordinate z; — chosen
as the coordinate of the a-carbon atom — and a feature vector fi.. There are several possibilities
to define the feature vector f{, (these can be combined via concatenation). In our experiments, we
choose the following:

* A one-hot encoding of the type of amino acid residue. This one-hot encoding serves as input
of an embedding layer that is learned during the training phase.

* A sinusoidal encoding of sequence position. As in [56], the order of nodes is fixed to the cor-
responding sequence order. For the i-th residue, the positional encoding is (¢ (¢, 1)...4(i, D))
where D is the embedding size.

Edge features are defined following the same method as [[18]. For each residue v;, a local coordinate
system is formed by (a) the unit vector ¢; pointing from the a-carbon atom to the nitrogen atom, (b)
the unit vector u; pointing from the a--carbon to the carbon atom of the carboxyl (-CO-) and (c) the
normal of the plane defined by ¢; and u;: n; = |\Zl§?\| Finally, setting: ¢; = n; X u;, the edge
features are then defined as the concatenation of the following:

« relative position edge features: p,_,; = (n] ul'q]’) (z; — ;)

* relative orientation edge features: q;_; = (n ul'q]) nj, kji = (] ulql) uj, tji
T,T T
(niuiql) v

» distance-based edge features, defined as radial basis functions: f;_,;, =€ 23y =
1,2...R where R =15and o, = 1.5

Message Passing We use a type of graph attention network [[19] described as follows. Consider
hidden node features at layer [, a:ll .. .x‘lv‘ where for [ = 0, these correspond to the initial SE(3)-
invariant node features e.g. zj = fi;, Vv € V. Then each hidden node representation undergoes

layer normalisation with affine parameters [57],
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Vv € V,y; = layer_norm (;vl”_l) , (13)

For node v’s neighborhood V,,, we construct a representation of each outgoing edge e by concatenat-
ing its original features with the normalised hidden features of the edge’s target node ¢(e),

Ve € E,zi = f& || ylt(e), (14)

where a || b denotes concatenation of vectors a and b. Multi-head dot-product attention [20] with H
heads is applied over the neighborhood, where the output of the Ath head is computed,

exp (Vvl?hylv ' Wl’fhxf)
nh= > - S Wi, (15)
€N, Deren, EXP (VVl,hylv Wi xp )

and Wﬁh, Wl’fh, W%, are the learned query, key and value projections, respectively. Finally, a residual
connection [58] is used to ensure effective gradient propagation,

Vo eV, ap = di(n]) + i, (16)

where ¢ is a simple MLP with a single hidden layer and layer normalisation applied at its input, and
ny is obtained by concatenating the outputs of the / heads, nj; ... 1] 4.

Latent Representation After L steps of message passing, 2-layer MLP ¢, is used to map each
node/residue into the PLM embedding dimension to obtain the per-residue representation,

Yo e V,G" = ¢, (z2) (17)

To obtain the representation of the structure, we employ cross attention mechanism to reduce the
nodes’ representations into a single vector. A single learned vector takes the role of the query V[/l‘fhyl”
in equation [I3] giving a reduced representation of the structure after L layers of message passing,
G . Finally, an MLP ¢g with two hidden layers, is used to map the reduced representation to the
PLM embedding dimension to obtain the per-structure representation,

G =¢s(GL) (18)

B.4 Pre-training

Data The BioCLIP GNN is pre-trained by processing all mmcif files in the Protein Data Bank

(PDB) [21] with a cutoff before 2020-05-14, resolution < 9;\, and no single amino acid accounting
for more than 80% of the sequence [59]. This results in around 490 k structures.

Dataloader We found we could get a boost in performance by sampling the batch based on sequence
similarity. Specifically, we hypothesised that the majority of protein chains will be completely
different and very easy to satisfy the pre-training loss. To force the batch to have more similar
sequences we clustered our pre-training data at 50% and minimum sequence coverage of 0.8, then we
sample clusters for the batch proportional to the square root of the cluster size, and take four samples
uniformly at random within each cluster.

Hyperparameters The BioCLIP GNN is trained for 150 thousand steps with a batch size of
128 protein sequences. A loss is computed across representations .S;, G; for all 128 proteins in
the batch. We consider all residues in the batch, and sample 2048 of them uniformly at random,
without replacement, for the purposes of approximating the loss for contrasting amino acid-node
representations a;_;, vy ;. We use the Adam optimiser [60] with a learning rate of 10~* and default
values for 31, 2. The GNN model has 3 layers of message passing with a hidden node representation
dimension of 512. Each GAT layer is followed by an MLP which has input and output of size 512
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and one hidden layer of size 2048. The per-chain and per-residue structure representation has an
MLP which input size 512, two hidden layers of size 1024 and output size 640 to match ESM. All
MLPs have the ReLLU activation function.

B.5 Fine-tuning

The initialisation of the full BioCLIP model for fine-tuning requires loading the pre-trained GNN
parameters but discarding the final MLP, concatenating with the ESM embeddings then adding a
randomly initialised MLP. This MLP has two hidden layers of size h + ¢ and an output size of ¢
which is the number of categories for that task, A is the hidden size of the GNN, h = 512. We use the
per-residue or per-chain representation depending on the task. For each task the batch size is 32 and
we use the adamw optimiser with learning rate and weight decay equal to 10~# (weight decay is 0
for the per-residue PPI task). We train GO/EC for 20 epochs, PPI for 30 epochs and per-residue PPI
for 5 epochs.

C Downstream Tasks

Function Prediction To evaluate BioCLIP in the context of protein function prediction, we consider
four multiple binary classification tasks: enzyme-commission numbers (EC) and three gene ontology
(GO) tasks: biological-process (BP), molecular-function (MF) and cellular component (CC). All
datasets are the same as in [22] and, in the case of comparison to DeepFRI, we recompute all methods’
performances on identical test sets. The datasets are divided as follows: train/validation/test datasets
are made up of 27581 / 3061 / 2991 examples for GO tasks and 15035 / 1665 / 1840 for the EC
task. The number of terms in each task is as follows: BP 1943, MF 489, CC 320 and EC 538. Class
imbalance is quite severe, the median positive class percentage across terms is BP 0.122%, CC
0.116% MF 0.105% and EC 0.057%. As each task is itself a collection of binary classification tasks,
the loss function used is binary cross entropy, averaged across all terms. We evaluate performance
with two criteria: (1) for a given term, how well does the model classify the proteins which have that
term; (2) for a given protein, how good is the model at classifying which terms are positive. The
reason we opted for two different metrics is due to the convoluted design of the GO nomenclature,
where one protein sequence can have multiple GO terms. With the above mentioned metrics we will
asses (1) which GO terms are easier to predict and (2) the degree to which we can comprehensively
annotate test sequences.

Protein-Protein Interaction We evaluate the learned BioCLIP representations on two benchmarks
of protein-protein interaction introduced in [23]. The benchmarks Human and S.cerevisiae are
composed of pairs of proteins annotated with a 0/1 label indicating whether proteins interact. The
dataset contains positive protein-protein interaction pairs from the human protein reference database
(HPRD) and the Database of Interacting Proteins (DIP) for humans and S. cerevisiae, respectively.
After preprocessing steps, such as eliminating duplicates and removing proteins with fewer than 50
amino acids, the dataset has 37K and 17K interacting pairs for humans and S. cerevisiae. Negative
instances, representing non-interacting protein pairs, are generated based on subcellular localization
differences, with totals of 36,323 and 48,594 pairs for each organism, and homologous pairs are
filtered using the CD-HIT tool at a 40% sequence identity cutoff. In total we have 22K in human
and 9K for cerevisiae after filtering lengths below 1024. The datasets are relatively balanced: for
the human targets there is 73% in the positive class, for cerevisiae there is 50%. The loss function
in both tasks is cross entropy. We use the same metric as our baseline for this task [23]] to be able
to directly compare to BioCLIP. AUCPR is a reasonable metric for this task as it is robust to the
relatively significant class in-balance that is present.

Per-Residue Protein-Protein Interaction A formulation of a per-residue protein interaction task is
provided in [24]. The task is as follows: given a static biological molecule extracted from a PDB file
for instance a protein, DNA or RNA molecule, predict for all biological sub-units (residue, nucleotide,
ligand, lipid or ion) the probability of interacting with another type of sub-unit which is not part
of the same molecule. The data is constructed by parsing an assembly in a PDB file and, using a
representative coordinate for all sub-units considered; over all sub-unit pairs belonging to different
molecules, store the pairs within a distance cutoff, in this case 5A. We use the data processing script
provided with the original paper, which processes the following unique biological sub-units: 20
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amino acids, 8 nucleic acids, 16 common ions, 31 ligands, and 4 lipids which amounts to 79 unique
types of molecules. These are subsequently grouped into five groups: amino-acids, nucleotides, ions,
ligands and lipids. As in [24] we evaluate on the MaSIF-site dataset [61} [62]]. The authors use a
model which can take a protein as input and for each residue produce five predicted probabilities
for interaction with all five sub-unit types. Note that a given residue can be in contact with multiple
other sub-unit types, or none at all. The loss function for this task is binary cross-entropy which has a
positive class weighting as in the original paper. For comparison reasons, we use the same metric as
PeSTo [24]] which is median ROCAUC. Of the 27M residues in the training dataset 14% of them are
in contact with another residue (nucleotides is 0.64%, ion 1.77%, ligand 3.40%, lipid 0.06%). Since
the residue-residue interactions are relatively balanced, we believe it is acceptable to use ROCAUC;
which also has the advantage of always knowing what a random guess is, over AUCPR.

D Results Table

Exact numerical values corresponding to bar charts shown in Figure[2]

Task ESM  GNN (random) GNN (pre-trained) BioCLIP SOTA Epochs
MF 0.289 0.164 0.292 0.440 1
0.446 0.193 0.380 0.533 2
0.515 0.210 0.390 0.539 3
0.611 0.370 0.500 0.607 0.546 Final
CC 0.394 0.295 0.395 0.386 1
0.456 0.319 0.424 0.413 2
0.460 0.318 0.413 0.466 3
0.423 0.316 0.389 0.428 0.497 Final
BP 0.314 0.250 0.281 0.341 1
0.356 0.234 0.302 0.372 2
0.378 0.235 0.315 0.395 3
0.431 0.245 0.337 0.440 0.449 Final
EC 0.073 0.057 0.113 0.447 1
0.168 0.059 0.421 0.653 2
0.346 0.063 0.550 0.757 3
0.850 0.514 0.782 0.868 0.798 Final
PPI-Human 0.824 0.923 0.990 0.987 1
0.850 0.970 0.991 0.992 2
0.872 0.979 0.992 0.993 3
0.992 0.991 0.994 0.993 0.995 Final
PPI-Cerevisiae  0.662 0.659 0.942 0.953 1
0.706 0.744 0.948 0.958 2
0.746 0.817 0.957 0.966 3
0.934 0.954 0.981 0.974 0.973 Final
Res-PPI 0.789 0.704 0.743 0.818 1
0.800 0.800 0.796 0.833 2
0.823 0.794 0.820 0.845 3
0.803 0.797 0.796 0.833 0.924 Final
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Figure 3: Performance with the alternative metric mean term-centric Fmax across the GO/EC
downstream tasks for: Random GNN, pre-trained GNN with the contrastive BioCLIP objective,
ESM 150M with the last three layers tuned, and the BioCLIP model which combines ESM and the
pre-trained GNN. For each task, we also provide a recent, task-specific, benchmark represented as a
dashed line.

E Results Table

Exact numerical values corresponding to bar charts shown in Figure 3]
Task ESM  GNN (random) GNN (pre-trained) BioCLIP SOTA Epochs

MF  0.177 0.032 0.227 0.365 1
0.374 0.052 0.312 0.470 2
0.453 0.071 0.340 0.503 3
0.554 0.287 0.449 0.554 0.487  Final
CC 0.126 0.054 0.128 0.153 1
0.198 0.060 0.163 0.207 2
0.208 0.052 0.171 0.230 3
0.267 0.077 0.167 0.264 0.265  Final
BP  0.093 0.037 0.090 0.119 1
0.135 0.043 0.106 0.170 2
0.155 0.039 0.114 0.187 3
0.250 0.039 0.148 0.263 0.240  Final
EC  0.018 0.009 0.039 0.234 1
0.061 0.010 0.315 0.589 2
0.145 0.012 0.544 0.760 3
0.826 0.533 0.795 0.854 0.722  Final
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