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Abstract

We describe protein sequence design by inverting the protein structure prediction
algorithm ESMFold, which achieves high accuracy by relying on evolutionary
patterns derived from a pretrained protein language models (PLM; ESM2). In
principle, by inverting ESMFold, protein sequences can be designed to fulfill
one or more design objectives, such as high prediction confidence, predicted
protein binding, or other geometric constraints that can be expressed with loss
functions. In practice, sequences designed using an inverted AlphaFold model,
termed AFDesign, contained unnatural sequence profiles and were shown to express
poorly, whereas an inverted RosettaFold network was shown to be sensitive to
adversarial sequences. Here, we demonstrate that these limitations do not extend to
neural networks that include PLMs, such as ESMFold. Our inverted model, termed
ESM-Design, can generate sequences with profiles that are both more native-like
and more likely to express than sequences generated using AFDesign. However
these sequences are less likely to express than sequences rescued by the structure-
based design method ProteinMPNN. The safeguard offered by the PLM came
with steep increases in memory consumption, preventing proteins greater than 150
residues from being modeled on a single GPU with 80GB VRAM. During this
investigation, we also observed the role played by different sequence initialization
schemes, with random sampling of discrete amino acids improving convergence
and model quality over any continuous random initialization method. Finally,
we showed how this approach can be used to introduce sequence and structure
diversification in small proteins such as ubiquitin, while respecting the sequence
conservation of active site residues. Our results highlight the effects of architectural
differences between structure prediction networks on zero-shot protein design.

1 Introduction

The widespread adoption of AI-based tools over the past three years has defined the field of protein
design [1]. In contrast with previous generations of protein sequence design methods, such as
position-specific scoring matrices (PSSMs) [2] and Potts models [3], deep learning models such
as protein language models (PLMs) eschew explicit probabilistic frameworks entirely [4]. Instead,
PLMs directly learn the patterns underlying sequence variation in the training data, without explicit
knowledge as to the precise nature of those patterns. A common training procedure involves masking
stretches of a protein sequence that need to be guessed, with errors backpropagated across the model
[5]. Despite the superficially trivial nature of this task, this self-supervised approach, when executed
on training databases containing millions of naturally occurring protein sequences, can expose PLMs
to sequence patterns that extend beyond those sought by the practitioner. For example, PLMs trained
on large corpuses of protein sequence data demonstrate extraordinary zero-shot capabilities in tasks
such as fitness prediction [6] and de novo protein design [7].
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Several groups have successfully designed protein sequences using structural information by repurpos-
ing state-of-the-art protein structure prediction methods such as AlphaFold2 (AF2) and RosettaFold
(RF) [8, 9, 10, 11]. The release of AF2 revolutionized the field of protein structure prediction
and spawned a rich ecosystem of competing and expansive methods, including sequence design.
In contrast with the design strategies that operate exclusively on sequence without any explicit
knowledge of structure, inverted AF2 and RF can optimize sequences by maximizing one of several
predicted confidence metrics and/or geometric constraints using either Markov Chain Monte Carlo
or backpropagation. While maximizing confidence in a predicted structure from a highly accurate
method should lead to highly stable, well-folding sequences, in practice sequences designed this way
have been reported to express poorly[9, 12].

We hypothesize that one such workaround may be found in more recent structure prediction methods,
which augment the architecture of AF2 and RF by prepending PLMs trained on large sequence
databases [13, 14]. Unlike AF2 and RF, which determine sequence profiles using alignments
provided at runtime, PLM-based structure prediction methods such as ESMFold and OmegaFold
learn sequence patterns during training. This innovation allows them to predict the structure of
proteins from a single sequence alone. We reason, however, that it may allow ESMFold to overcome
the limitations, outlined above.

We inverted the ESMFold neural network to enable protein design. We then evaluated several combi-
nations of sequence initialization schemes, optimizers, and loss functions, and partially characterized
their interplay. Strikingly, amino acid initialization played a key role in convergence and amino acid
usage rates. We found that initializing with discrete amino acids by sampling a distribution similar to
UniRef produces designs with the most “natural” sequences. The resulting sequences were both more
native-like and more likely to express than sequences generated from an inverted AlphaFold network
(AFDesign). However, ESM-Design sequences were judged less likely to express than sequences
generated by the dedicated structure-based sequence design algorithm ProteinMPNN. Moreover, in
cases where ESM-Design was used to generate diversity for a target enzyme, the designed sequences
retained conserved active site residues without being explicitly constrained. These results enrich
our understanding of the role played by the PLM during sequence design and illustrate the need for
further work in determining the utility of such methods.

2 Methods

We fully detail the methods in the corresponding supplementary section.

3 Results

3.1 Uniform Initialization Accelerates Design Convergence

In the simplest case, we sought to design for diverse, well-folded structures, maximizing pLDDT. We
found that within 300 iterations, ESMFold hallucinated proteins with pLDDT values greater than 90,
indicating very high confidence at the per-residue level. Although, it typically took as few as 100
optimization steps to converge to a unique fold. When we seeded a search against the PDB with a
sample batch of 100-residue proteins designed for high pLDDT, we found no matches (FoldSeek
version 5-53465f0 [18]). Several exemplars are shown in Supplemental Figure 4. Broadly, this
performance matched that of AFDesign.

During this initial trial, we observed that sequence initialization affected convergence, which has
previously been reported [9]. To investigate more thoroughly we ran five initialization trials: (1)
sampling the Gumbel distribution, as is default in AFDesign, (2) discretely sampling amino acids,
each with probability 0.05, (3) discretely sampling amino acids, based on their fraction in UniRef90,
(4) sampling a standard normal distribution, and (5) sampling a Gaussian distribution centered at
0.05 with a standard deviation of 0.02. The latter four sampling approaches were chosen to compare
convergence when the model was given a distribution more or less similar to the one on which it
was trained (UniRef90). The initialization trials were capped at 100 optimization steps to test early
convergence.

Of these five approaches, we observed faster convergence when initializing with distributions more
closely matching the training regime (e.g. discrete uniform or by sampling proportionally to oc-
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currence rates in UniRef90). Whereas Gumbel initializations yielded a broad range of pLDDT
values (from 40 to 60) after 100 iterations of ESM-Design, random initializations achieved pLDDT
values between 70 and 90 (Figure 1). AFDesign fared slightly better, albeit with the caveat that
uniform-initialized sequences typically converged to extended alpha helices, which is not practically
useful. Gumbel-initialized sequences did not have this issue unless the “contact” term weight in
the AFDesign loss function was set to zero. ESM-Design was also susceptible to this quirk, but
only when initializing from the Gaussian distribution. Thus, we would recommend testing multiple
initialization schemes at the start of each design project.

Figure 1: (Left) Average and standard deviation of pLDDT over the course of 100 design trajectories
with ESM-Design initialized in one of two ways (discrete uniform sampling of all 20 amino acids
or from the standard Gumbel distribution). (Center) The distribution of design pLDDTs following
an abbreviated three stage design trajectory (50, 50, 10 iterations in each stage) with a 50 step “soft”
warmup using AFDesign. Each distribution contains 100 independent design trajectories. (Right)
Sample traces of alpha-carbon RMSD with respect to 1TEN for five design trajectories. Bold line
indicates the mean, while the outline shades one standard deviation.

3.2 Design with RMSD Loss is More Challenging

Designing for high pLDDT is relatively trivial and serves primarily to provide novel backbones. A
vastly more useful objective would be to design for specific structures or substructures. To that end,
we implemented a differentiable Kabsch alignment algorithm [19], enabling an RMSD-based loss
function. We note, however, that FAPE loss and distogram loss are also valid choices. We did not
scale RMSD in the loss function, which caused RMSD loss to contribute 10-fold more than pLDDT;
while perhaps suboptimal, this provides a starting point for fine-tuning the relative weights. We tested
the loss function on a fibronectin domain (PDB: 1TEN), which has been reported to be challenging
for MCMC approaches [20]. While convergence was slower than for pLDDT loss alone, designs
eventually achieved alpha-carbon RMSD values below 2 Angstroms (Figure 1). It took five times
more optimization steps to reach these RMSD values as it did to reach pLDDT values exceeding 90.
However, we found that low RMSD values were not guaranteed, indicating that further investigation
of the overall design strategy was necessary (e.g. designing in continuous space until RMSD reaches
a certain threshold then switching to discrete space).

Optimizing a sequence for a particular structure allows us to demonstrates how hallucinated sequences
differ between ESMFold and AlphaFold. Specifically, we modified the sequence of the 76-residue
protein ubiquitin to maximize pLDDT and minimize RMSD to its crystal structure (PDB: 1UBQ).
Running ESM-Design for 100 independent trajectories of 300 steps each we generated designs that
achieved a median RMSD of 0.08 Å and pLDDT of 0.917. Remarkably, we found that the most
frequent amino acid at all 76 positions among these designs matched those of naturally occurring
ubiquitins retrieved from UniRef90 using Jackhmmer (hmmer.org) (Figure 2). In contrast, sequences
generated by AFDesign matched only at 24 of 76 positions, despite similarly low median RMSD
values. Moreover, designs generated by ESM-Design achieved a median sequence identity of 39.6%
with naturally occurring ubiquitins, illustrating how these reflect unique, de novo designed sequences.
Simultaneously, looking at the sequence alignment of the designs as a whole indicates that the
language model gravitates toward the family consensus sequence when designing for a target crystal
structure.
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Figure 2: Sequence logo comparison of ubiquitin designs, plotting frequency rather than entropy.
ESM-Design (top) more closely reproduces the UniRef90-derived MSA (middle) than AFDesign
(bottom).

3.3 ESM-Design Diversifies Enzymes While Retaining Key Residues

Another practical application for hallucination is to produce slight variations on the sequence and
structure of a protein active site. Diversification of an active site could, for example, enable catalysis
with non-natural substrates. To that end, we tested the capacity for ESM-Design to generate minimal
structural and sequence variants from a starting sequence that is known to fold and catalyze a particular
reaction. When maximizing pLDDT on an undisclosed target enzyme approximately one-hundred
and fifty residues in length, we found that 39.4% of design trajectories produced enzymes with key
conserved residues in the active site while also diversifying the remainder of the protein sequence
by 7-25%. Designs were structurally diverse as well, ranging in backbone alpha-carbon RMSD
from 1.6 to 7.6 Angstroms (Figure 3), while conserving the active site geometry. Thus, ESM-Design
provides a plausible alternative to minimal sequence and structural diversification methods, and
respects conserved residues important to function without explicit user-defined constraints.

Figure 3: (Left) Alignment of ESM-Design-diversified models (white) to the target enzyme crystal
structure (orange). The active site channel (center) is relatively unperturbed by the diversification
while loops are more structurally variable. (Center) Using UniRef90 as a standard for “nature”, we
compute KL divergence between the amino acid usage rates in UniRef90 and the designs produced
by our various approaches. We find that ESM produces sequence distributions more similar to those
observed in nature than other methods. (Right) Fraction of sequences predicted to be expressing by
an internal protein expression model.

3.4 ESM-Design Produces More Natural Designs

To test the “natural-like” quality of ESM-Design, we produced 100 high pLDDT sequences (300
iterations each), with similar designs run in AFDesign as a control, under a variety of initialization
schemes. The resulting amino acid usage rates showed a strong dependence on initialization (Supple-
mental Figure 3). The most native-like sequences were observed when sampling from a UniRef-like
distribution and using ESM-Design. AFDesign performed best, in terms of sequence similarity versus
UniRef, when initialized by sampling from the Gumbel distribution.
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As an additional point of reference, we repeated the experiment with the recently released structure-
based sequence design method ProteinMPNN, a graph neural network trained on recapitulating
sequences given a target backbone, has enabled rapid and reliable sequence design [12]. For each de
novo designed protein backbone, we designed one sequence using ProteinMPNN version 1.0.1 with a
temperature of 0.1 to test its effects on amino acid usage rates. Surprisingly, we found that MPNN
produced less native-like sequences than either ESM-Design or AF Design (Figure 3). We speculate
that this unexpected result is driven by the novel structures of the designs, which did not structurally
align to anything in the PDB.

More practically, we were interested in the likelihood of experimental success of the designs. We
predicted in silico the likelihood of expression using our in-house model, which has a previously
reported accuracy of 76%[21]. We found that ESM-Design sequences were twice as likely as
AFDesign sequences to express (Figure 3). Interestingly, despite their unnatural amino acid usage
rates, sequences designed with ProteinMPNN were predicted to express with greater confidence than
those designed using either ESM-Design or AFDesign. This observation is consistent with previous
reports of ProteinMPNN rescuing failed designs.

4 Discussion

This manuscript presents an overview of backpropagation design within ESMFold. This approach,
which we term ESM-Design, is restricted by sequence length but offers several distinct advantages
over alternatives. In designing with ESM-Design, model outputs were strongly affected by decisions
around the use of discrete vs. continuous sequences, activation function, loss function, initialization
conditions, optimizer, and overall strategy. Moreover, complex interactions between these choices
were not immediately clear. Nevertheless, several trends were apparent.

First, initialization affects the rate of convergence and ultimate amino acid usage. Unsurprisingly,
initializing with discrete amino acids sampled with frequency akin to that in UniRef results in the
fastest convergence and most natural-like designs. This contrasts with an inverted AlphaFold network,
which instead benefited from a Gumbel distribution of amino acids during initialization. Second,
several challenges became apparent when designing toward specific structures by minimizing RMSD.
Designs converged more slowly and were not guaranteed to achieve RMSDs below a certain threshold
after a fixed number of steps. Nevertheless, our results with ubiquitin suggest that including RMSD
in the loss function constrained hallucination toward ubiquitin-like sequences. In contrast, language
models lacking a structural component require an additional fine-tuning step [7] to achieve the same
effect. Third, catalytic amino acids at key positions were typically conserved during design without
introducing explicit constraints, highlighting a role played by the PLM in navigating a complex fitness
landscape defined by naturally occurring proteins. Finally, both ESM-Design and ProteinMPNN
generated sequences predicted to express with high probability, while AFDesign did not, consistent
with previous reports [8, 12]. However, only ESM-Design generated sequences with amino acid
frequencies matching those seen in UniRef. In all four cases, we found that the PLM appeared to
play a key role in regularizing sequence design away from unnatural compositions.

In conclusion, this work highlights how including a PLM can guide structure-based sequence design.
While results are promising, they are necessarily limited to small proteins due to the huge memory
footprint of the PLM and they are further muddled by the complex interplay between how sequences
are initialized, and the choice of loss function and optimizer. Future research is needed to overcome
memory limitations and identify an ideal training regime for design.
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5 Supplementary Methods

5.1 Enabling Backpropagation Design in ESMFold

Protein design by backpropagating through a structure prediction network has previously been
reported for AlphaFold [9, 10, 11]. Our approach to enabling design of input sequences in the
ESMFold network, which is built on OpenFold [15] and is visualized in Supplemental Figure 1, is no
different. Design is achieved by minimizing the loss gradient with respect to the input rather than to
the weights.

To achieve that end, the input needs to be amenable to differentiation. In ESMFold, input sequences
are tokenized as a vector of integers and prepended with a beginning of sequence (<BOS>) token.
We converted the input from a vector of length L to a one-hot encoded matrix of shape (N,L), where
N is the number of tokens and L is the sequence length plus the <BOS> token. Any downstream
operation had to be converted to a corresponding differentiable operation on a matrix (e.g. embedding
look up tables became matrix multiplications).

While the above technically enables backpropagation design, naively updating the inputs to minimize
loss will result in continuous representations of discrete amino acids, which is not representative of
reality. Several approaches were investigated here: (1) taking the arguments of the maxima (argmax)
is non-differentiable but can be made differentiable by the “straight-through” trick [16], (2) annealing
the Softmax function with a temperature is differentiable but only yields discrete solutions at T = 0,
and (3) sampling the Gumbel-Softmax distribution with the “straight-through trick” which has been
shown to perform better than the “straight-through“ trick alone [17].We find that annealing the
Softmax function with a scaling temperature provides a sufficiently smooth gradient for convergence.
Although we caution that this may depend on the loss function and optimizer.

The final components to backpropagation design are a loss function, an optimizer, and the algorithm
itself, which will vary with the design task. We empirically evaluated the most appropriate options
using two benchmark tasks of interest: backbone hallucination, where we optimized for maximum
predicted local distance difference test (pLDDT, which measures confidence of the predicted struc-
ture), and backbone design/diversification, where we minimize root mean squared deviation (RMSD,
which quantifies similarity to a reference structure) and maximize pLDDT. Based on the results of
these tests, we elected to use Adam with a learning rate ≤ 0.05. Stochastic gradient descent (SGD)
did not converge as well as Adam, while AdamW performed about the same (Supplemental Figure
2). We found that raising the learning rate accelerated convergence when minimizing pLDDT but
worsened performance when minimizing RMSD.

5.2 Improving Memory Limitations

One striking limitation of backpropagating through ESMFold is the additional memory consumption
is introduced by the 3 billion parameter language model. On a single A6000 GPU (48 GB), designing
proteins > 100 residues is not possible. One solution is to shard the model across multiple GPUs. In a
naive test, splitting the ESM2 language model and ESMFold structure module each to their own GPU
allowed the design of proteins up to 150 residues. Further sharding should permit increasing lengths,
but scaling is seemingly quadratic (Supplemental Figure 3). Alternatively, the design algorithm can
be run on CPU but at roughly a 60-fold increase in runtime.

5.3 Comparison Runs in ColabDesign

We ran AFDesign with the 961c7af version of ColabDesign locally to make comparisons. Compar-
isons were run with the same number of steps as the ESM-Design strategy outlined above. The only
notable difference was an additional “contact” term in the AFDesign loss function. Without this term,
most AFDesigns runs tended to converge to extended alpha helices.

6 Supplementary Figures
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Supplementary Figure 1: Schematic of dataflow through ESMFold. ESMFold infers structure from a
protein sequence via two major elements: a protein language model (ESM2) and a structure module.
In the language model, the string sequence is tokenized to integers. To enable backpropagation, the
integers are converted to one-hot encoded floats and corresponding integer operations are converted
to be compatible with the one-hot matrices rather than the integer vectors. Following this conversion,
the computation graph can update amino acid identities based on a gradient calculated against any
loss function.

Supplementary Figure 2: Comparison of pLDDT loss across ten runs with the Adam and AdamW
optimizers in PyTorch. There is no clear difference between the two. SGD is not shown because it
failed to converge in preliminary trials and was not further investigated.
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Supplementary Figure 3: The structure module in ESMFold scales GPU RAM usage in seemingly
quadratic fashion.

Supplementary Figure 4: Diverse samples maximizing pLDDT, colored by pLDDT (blue - white -
red). Structures are diverse although alpha is preferred over beta. All structures have pLDDT ∼90
across most positions.
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Supplementary Figure 5: Expanded version of Figure X, capturing further initialization strategies.
Using UniRef90 as a standard for “nature”, we compute KL divergence between the amino acid
usage rates in UniRef90 and the designs produced by our various approaches. We find that ESM
produces sequence distributions more similar to those observed in nature than other methods.
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