
Enhancing Ligand Pose Sampling for Molecular
Docking

Patricia Suriana, Ron O. Dror
Department of Computer Science

Stanford University
psuriana@stanford.edu, rondror@cs.stanford.edu

Abstract

Deep learning promises to dramatically improve scoring functions for molecular
docking, leading to substantial advances in binding pose prediction and virtual
screening. To train scoring functions—and to perform molecular docking—one
must generate a set of candidate ligand binding poses. Unfortunately, the sampling
protocols currently used to generate candidate poses frequently fail to produce any
poses close to the correct, experimentally determined pose, unless information
about the correct pose is provided. This limits the accuracy of learned scoring
functions and molecular docking. Here, we describe two improved protocols for
pose sampling: GLOW (auGmented sampLing with sOftened vdW potential) and
a novel technique named IVES (IteratiVe Ensemble Sampling). Our benchmarking
results demonstrate the effectiveness of our methods in improving the likelihood
of sampling accurate poses, especially for binding pockets whose shape changes
substantially when different ligands bind. This improvement is observed across
both experimentally determined and AlphaFold-generated protein structures. Addi-
tionally, we present datasets of candidate ligand poses generated using our methods
for each of around 5,000 protein-ligand cross-docking pairs, for training and testing
scoring functions. To benefit the research community, we provide these cross-
docking datasets and an open-source Python implementation of GLOW and IVES
at https://github.com/drorlab/GLOW_IVES.

1 Introduction

Protein-ligand molecular docking, which is crucial in drug discovery and molecular modeling
[Kitchen et al., 2004, Ferreira et al., 2015], predicts the three-dimensional arrangement of ligands
within target protein binding sites—a task known as "ligand pose prediction." This computational
method is vital for drug candidate exploration and understanding molecular interactions. Conventional
docking software relies on sampling algorithms that generate candidate ligand poses based on a given
protein structure. This task is inherently difficult due to the multitude of internal conformations
the ligand can adopt and the numerous possible ways it can be placed within the protein binding
site. Furthermore, a good sampling algorithm must ensure that at least one generated pose closely
resembles the experimentally determined "correct pose," which is unknown to the sampling algorithm.
Scoring functions then evaluate these poses, selecting candidates predicted to closely match the
correct pose.

While molecular docking has traditionally relied on physics-based scoring functions, recent advances
in deep learning, as indicated by studies such as [Shen et al., 2020, Francoeur et al., 2020, Shen et al.,
2022, Suriana et al., 2023], have the potential to revolutionize scoring accuracy. However, the efficacy
of deep learning hinges on a crucial factor: generating suitable sets of candidate ligand binding
poses. Existing sampling methods often struggle in this regard, frequently failing to produce any
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correct poses. This challenge intensifies when the protein structure used for docking (the "docking
protein structure") significantly differs from the conformation the protein adopts when binding to
the query ligand. The inability to sample correct poses creates a twofold problem. Firstly, for
an effective deep learning–based scoring function, correct poses must be included in the training
dataset to allow models to learn their defining characteristics. However, introducing experimentally
determined correct poses, while addressing this need, presents an artificial approach that does not
reflect real-world scenarios where such data is unavailable. Moreover, incorporating experimentally
determined poses during training could potentially bias the deep learning model’s judgment when
applied to real-world problems, where all candidate poses, including correct ones, must be generated
through sampling. Secondly, the performance of molecular docking relies heavily on the sampling
algorithm’s ability to consistently yield correct poses. Even with a perfect scoring function, the
absence of correct poses among candidates precludes prediction of a correct pose. Hence, there is a
pressing need for an enhanced, reliable sampling method capable of consistently generating accurate
ligand poses.

To address this challenge, we introduce two improved pose sampling protocols: GLOW (auGmented
sampLing with sOftened vdW potential) and a novel method called IVES (IteratiVe Ensemble
Sampling). Our protocols substantially increase the likelihood of sampling correct ligand poses, even
in scenarios where clashes between the ligand’s correct binding pose and the docking protein structure
are likely. Importantly, our methods do not rely on information about co-determined ligand poses
in the docking protein structure, making them suitable for use with unliganded or predicted protein
structures, including those generated by AlphaFold [Jumper et al., 2021, Varadi et al., 2022]. Our
benchmarking demonstrates that GLOW and IVES effectively enhance ligand pose sampling accuracy
for both experimental and AlphaFold-generated protein structures, as measured by the percentage of
successful docking cases with correct ligand poses. Additionally, IVES generates multiple protein
conformations as part of its workflow, offering considerable value for enhancing geometric deep
learning techniques on protein structures and bolstering the robustness of deep learning techniques to
small variations around correct poses in the context of protein-ligand docking.

To encourage broader engagement and utilization within the research community, we have created
carefully curated datasets containing candidate ligand poses generated using our improved sampling
methods. These datasets comprise approximately 5,000 protein-ligand cross-docking pairs, serving
as invaluable resources for training and evaluating scoring functions. To promote widespread access
and utilization, we have made available an open-source Python implementation of GLOW and
IVES, along with the newly developed cross-docking datasets. These resources can be accessed at
https://github.com/drorlab/GLOW_IVES.

2 Related Works

Numerous deep learning techniques have emerged to score candidate poses in molecular docking,
traditionally relying on datasets generated through rigid protein docking, which assume fixed protein
structures during sampling [Verdonk et al., 2003, Friesner et al., 2004, Allen et al., 2015, Forli et al.,
2016]. For example, the CrossDock2020 model [Francoeur et al., 2020] is based on poses generated
by Smina’s rigid protein docking. However, this method falls short when adjustments are needed in
the docking protein structure to accommodate the correct ligand binding pose, resulting in clashes
and rejection of the correct pose during rigid docking (see Figure 1). This limitation in sampling
correct poses presents a significant challenge and constrains the performance of scoring functions,
including those based on deep learning.

To address this, flexible protein docking methods consider protein flexibility during sampling [Jones
et al., 1997, Lemmon and Meiler, 2012, Sherman et al., 2006, Miller et al., 2021]. Strategies include
alternating ligand and protein sampling steps or temporarily substituting flexible residues with
alanine. Some, like Schrödinger IFD-MD [Miller et al., 2021], enhance accuracy by incorporating
experimentally co-determined ligand poses. Conversely, certain recent deep-learning approaches,
such as Krishna et al. [2023], directly generate the protein-ligand complex. However, substantial
computational resources are essential for all these methods, and flexible docking methods place an
added emphasis on accurately selecting flexible residues. In practical scenarios, both flexible protein
docking and deep-learning-based approaches consistently demonstrate lower accuracy compared to
rigid protein docking [Ravindranath et al., 2015, Bender et al., 2021, Krishna et al., 2023].
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Flexible protein docking methods and deep-learning-based approaches have been explored to enhance
ligand binding pose sampling, but they bring their own limitations, including computational costs
and reliance on experimental data. The introduction of GLOW and IVES seeks to tackle these
challenges, providing a promising path to improve ligand pose sampling accuracy and efficiency in
protein-ligand docking, which could benefit the development and evaluation of deep learning-based
scoring functions.

Figure 1: The native binding pose of a ligand often clashes with the experimentally determined
structure of its target protein, especially when that structure features a different ligand. In Panel A, we
observe the structure of β-secretase (BACE-1), a key drug target, bound to "compound 5" (PDB entry
5IE1 [Jordan et al., 2016]). Here, the ligand (depicted as orange spheres, each representing an atom)
packs favorably against two protein amino acids (gray spheres) in the binding pocket with no clashes.
In contrast, Panel B presents the same ligand (compound 5) in an identical geometry, but overlaid
on a BACE-1 structure determined in the presence of a different ligand (PDB entry 3CKP, [Park
et al., 2008]). In this case, the two amino acids (gray spheres) adopt different positions, resulting in
significant clashes with the ligand atoms (orange spheres).

3 Methods

3.1 Improved ligand pose sampling protocols for docking

A significant drawback of rigid protein docking is its inability to generate correct pose when it clashes
with the docking protein structures. The ligand’s correct pose receives a poor score due to these
clashes, leading to exceptionally high calculated van der Waals (VDW) energy values. To this end,
we introduce GLOW. GLOW enhances rigid protein docking by incorporating poses generated with a
softened VDW potential alongside those using a normal VDW potential.

Furthermore, we present IVES, an innovative approach to enhance ligand pose sampling accuracy
in protein-ligand docking (see Figure 2). IVES incorporates a combination of alternating protein-
ligand pose sampling strategies inspired by flexible protein docking, all while utilizing both normal
and softened VDW potentials. IVES begins with rigid protein docking, using a softened VDW
potential to create initial ligand poses, allowing some clashes with the docking structure. The
"seed poses," selected from the top N poses in this initial set based on docking scores or alternative
scoring functions for assessing protein-ligand docked poses, guide the minimization of the input
docking structure within an 8Å radius of the ligand pose, while keeping the ligand pose and other
residues fixed. Subsequently, the input ligand is redocked onto these N protein conformations,
employing both normal and softened VDW potentials independently for each conformation, allowing
for parallelization to accelerate the process. If necessary, this step can iterate by merging poses
from the prior iteration and selecting the top N ligand poses for the next iteration, although a single
iteration often suffices as subsequent ones provide marginal improvements in practice.

To make our approaches accessible to a broader scientific community, we built GLOW and IVES
on top of Smina [Koes et al., 2013] and OpenMM [Eastman et al., 2017], open-source software for
molecular docking and protein structure minimization, respectively. In general, our approaches can
be built on top of any existing software for rigid protein docking or protein minimization.
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Figure 2: Schematic of the IVES workflow. Initially, we perform rigid protein docking using softened
VDW potentials, yielding initial ligand poses. Due to this softening, some poses may clash with the
docking structure. Then, we select the top N poses as "seed poses" for guiding the minimization of
the input docking structure, producing an ensemble of N protein conformations. Residues within 8Å
of the ligand pose are allowed to move, while the rest remain fixed, including the ligand. Parallel
rigid docking with normal and softened VDW potential of the input query ligand onto these N
conformations follows. This process may be iterated, but typically one iteration suffices, as further
iterations offer minimal improvements.

3.2 Datasets

We offer datasets of candidate ligand poses generated by GLOW and IVES, potentially valuable for
training machine learning-based docking. Our dataset includes around 4,102 protein-ligand cross-
docking pairs derived from 238 unique proteins, utilizing protein structures from the high-resolution
PDBBind 2019 refined dataset [Wang et al., 2005, Liu et al., 2015]. Additionally, we provide
testing datasets categorized into four groups: (1) "typical (experimental)" with 322 experimentally
determined pairs (from Paggi et al. [2021]), (2) "challenging (experimental)" with 258 pairs requiring
significant docking protein structure adjustments to fit the ligand (from Miller et al. [2021]), (3)
"typical (AlphaFold)" features the same pairs as "typical (experimental)" but uses AlphaFold 2
protein models for docking (totaling 322 pairs), and (4) "challenging (AlphaFold)" features the same
pairs as "challenging (experimental)" but uses AlphaFold 2 protein models instead of experimentally
determined structures for docking (totaling 179 pairs). For more details, refer to S1.

4 Results

4.1 Evaluation of the sampling performance on the test sets

We evaluated the sampling performance of GLOW and IVES on test sets by measuring the percentage
of cross-docking cases that yielded any correct pose. A correct pose was defined as having a root
mean square deviation (RMSD) from the experimentally determined pose equal to or less than 2.0 Å,
a widely accepted practical threshold [Kontoyianni et al., 2004, Cole et al., 2005]. For reference, we
included two baseline methods: (1) "Default," representing typical docking scenarios, generating a
maximum of 20 poses [Francoeur et al., 2020]; (2) "Default, max poses," allowing the maximum
number of poses, representing the upper limit of the docking protocol. For GLOW, we enabled the
generation of as many poses as possible. IVES produced poses using 20 protein conformations in a
single iteration and generated a maximum of 300 poses for each protein conformation. Both GLOW
and IVES are implemented on Smina. For consistency, we used Smina for the baseline methods as
well. Additional settings details can be found in S2.

Overall, GLOW and IVES consistently outperformed baseline methods, especially in challenging and
AlphaFold benchmarks where the protein structure undergoes significant conformational changes
upon binding to the ligand, differing from the structure employed for docking (see Figure 3). These
results highlight their potential to enhance the accuracy of pose sampling in protein-ligand docking
applications.
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Figure 3: Sampling performance of GLOW and IVES on test sets, measured by the percentage of
cross-docking cases with any correct pose. GLOW (green) and IVES (red) consistently outperform the
baseline methods "Default" (blue) and "Default, max poses" (orange), especially for the challenging
and AlphaFold benchmarks where the protein structure undergoes substantial conformational changes
upon binding to the ligand, differing from the structure employed during the docking process.

4.2 Comparing IVES and GLOW to flexible protein docking

We compared the performance of GLOW and IVES with the open-source Smina flexible protein
docking ("Smina flexible"), specifically focusing on cross-docking cases where "Smina flexible"
completed within 48 hours on a single CPU, constituting 40% of the dataset (see Figure S2 for details).
Despite this selective assessment, GLOW and IVES consistently outperformed "Smina flexible,"
especially in challenging and AlphaFold benchmarks (Figure S3). Using 20 protein conformations,
GLOW and IVES demonstrated significantly faster runtimes—approximately 20 minutes and 6-7
hours, respectively—on a single CPU compared to "Smina flexible," which typically required 16
hours. While IVES’s runtime scales linearly with the number of protein conformations in a serialized
setting, it exhibits high parallelizability, completing in around 20 minutes on average when fully
parallelized. Moreover, IVES offers extensive customization, allowing users to adjust the sampling
process by specifying the number of protein conformations and the maximum number of generated
poses per docking run for each conformation. This flexibility enables a balance between thoroughness
and computational costs.

IVES also achieved comparable sampling performance to Schrödinger IFD-MD, a proprietary state-of-
the-art flexible protein docking software, using only 20 protein conformations versus IFD-MD’s 1000
conformations (Figure S5). Notably, IVES—unlike IFD-MD—does not rely on an experimentally co-
determined ligand pose in the docking protein structure, which allows IVES to work with unliganded
or predicted structures such as those from AlphaFold, broadening its applicability.

Overall, our results not only highlight the competitive sampling capabilities of GLOW and IVES,
which in some cases outperformed flexible protein docking, but also underscores their value in
scenarios where access to experimentally determined ligand poses within the docking protein structure
is unavailable.

5 Discussion

Our benchmark results demonstrate the substantial improvements achieved by GLOW and IVES
in increasing the probability of sampling correct poses in protein-ligand docking. These gains
are especially notable in challenging and AlphaFold benchmarks, where protein structures exhibit
significant conformational differences when bound to query ligands compared to those used in
docking. Additionally, IVES generates multiple protein conformations, which can be beneficial for
geometric deep learning on protein structures. Furthermore, we provide datasets of candidate ligand
poses generated by our methods for approximately 5,000 protein-ligand cross-docking pairs. These
datasets may serve as valuable resources for developing and assessing deep-learning-based scoring
functions in molecular docking.
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While IVES demonstrates the best performance, its sampling efficiency is contingent upon the
quality of the initial seed poses. Ideally, these initial poses should closely resemble experimentally
determined poses to reduce the need for generating numerous protein conformations during sampling,
as illustrated in Figure S6. The selection of these poses relies on an effective scoring function,
creating a complex interplay between scoring and sampling. Nevertheless, IVES offers a customizable
workflow for ligand pose sampling, allowing the generation of improved samples to train a machine-
learned protein-ligand docking scoring function. This scoring function, in turn, can refine seed pose
selection in IVES, establishing a dynamic feedback loop that continuously improves pose sampling
and scoring accuracy.
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Supplementary Information
S1 Datasets

To create ligand pose datasets from the PDBBind 2019 refined dataset [Wang et al., 2005, Liu et al.,
2015], we initially categorized protein-ligand complex structures based on the protein, grouping
structures of the same target protein. To ensure a balanced representation in our dataset and prevent
bias from overrepresented proteins with numerous experimentally determined structures bound to
various ligands, we randomly selected a maximum of 15 structures for each protein to serve as
docking protein structures. Furthermore, the selection of protein-ligand cross-docking pairs took into
account the Tanimoto similarity between the query ligand to be docked and the co-determined ligand
present in the docking structure [Bajusz et al., 2015], with a threshold of less than 0.4, indicating
dissimilarity. For each unique ligand, we chose up to 5 protein structures as cross-docking pairs.
This resulted in 4,102 distinct protein-ligand cross-docking pairs (derived from 238 unique proteins),
ensuring diversity and relevance in our dataset.

As outlined in 3.2, the "challenging (AlphaFold)" dataset includes the same cross-docking pairs as
"challenging (experimental)," but it employs AlphaFold protein structures for docking, in contrast to
experimentally determined ones. However, the "challenging (experimental)" dataset contains cross-
docking pairs with structures from the same protein but bound to different ligands, often referred to
as "holo structures." Consequently, the "challenging (AlphaFold)" dataset has fewer cross-docking
pairs available when using AlphaFold structures for docking, as those holo structures of the same
protein will be mapped to the same AlphaFold structure.

All the datasets contain poses generated through GLOW and IVES. We followed the protocols
described in Paggi et al. [2021] for preparing protein-ligand complex structures and ligands prior
to the docking process. IVES produced poses using 5 protein conformations in a single iteration,
generating a maximum of 300 poses for each docking to each protein conformation. Seed poses are
selected based on the RTMscore [Shen et al., 2022].

S2 Docking settings

In Figure 3, all pose sampling methods were run with the following settings: an exhaustiveness
value of 16, a minimum RMSD filter set at 1.5Å and a search space box sized at 20Å with its
center aligned to the bound ligand pose within the docking protein structure. In cases involving
AlphaFold-generated structures, the search space center was determined using an experimentally
determined ligand pose (not the query ligand). In practical scenarios where experimentally resolved
ligand poses are unavailable, search space determination can be facilitated using binding pocket
finder tools. Additionally, to create softened VDW potentials for GLOW and IVES, we adjusted the
repulsion weight to 0.2, departing from the default value of 0.840.
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S3 Distributions of the number of sampled poses across different methods

Figure S1: Distribution of the number of poses generated by GLOW and IVES compared to baseline
methods "Default" and "Default, max poses". To ensure a fair comparison between IVES, GLOW,
and "Default, max poses," we allowed "Default, max poses" and "GLOW" to generate as many poses
as possible (specifically, up to 1 million poses per ligand for "Default, max poses" and up to an
additional 1 million poses per ligand with the softened VDW potential in GLOW). Nevertheless,
IVES typically generated more poses than these other methods, because IVES utilizes multiple
protein conformations, expanding the feasible pose landscape.

S4 Comparison of GLOW and IVES sampling performances with Smina
flexible protein docking

Figure S2: Sampling performance of GLOW and IVES compared to Smina flexible protein docking
on the test sets, measured by the percentage of cross-docking cases with at least one correct pose. In
this analysis, we compare the performance of the GLOW and IVES, as described in Figure 3, with
Smina flexible protein docking ("Smina flexible"). Similar to Figure 3, "Smina flexible" is run with a
search space box of size 20Å centered around the bound ligand pose in the protein structure used
for docking. We aim to achieve a similar pose count for "Smina flexible" whenever possible. It’s
important to note that "Smina flexible" operates under a 48-hour time limit, with runs exceeding this
duration considered failures. Among the results, 20% of "Smina flexible" runs did not complete within
48 hours, 40% completed within the timeframe but failed to generate poses, while the remaining 40%
completed within 48 hours and successfully generated poses. These statistics collectively contribute
to the relatively inferior performance of "Smina flexible" compared to other methods, including the
baseline approaches "Default" and "Default, max poses."
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Figure S3: Sampling performance of GLOW and IVES compared to Smina flexible protein docking
across multiple datasets, measured by the percentage of cross-docking cases with at least one correct
pose, focusing on cases where "Smina flexible" completed within 48 hours on one CPU and generated
poses. This analysis differs from that of Figure S3 in that we only consider cross-docking cases
where "Smina flexible" successfully completed within 48 hours on one CPU and generated poses,
accounting for approximately 40% of the total cases. Even in this subset, both GLOW and IVES
consistently outperform "Smina flexible", particularly in challenging and AlphaFold benchmarks
where the protein structure undergoes substantial conformational changes upon binding to the ligand,
differing from the structure employed during the docking process. In addition, GLOW and IVES
are considerably faster than Smina flexible protein docking. On average, GLOW finishes in about
20 minutes, while IVES typically takes 6-7 hours on a single CPU. In contrast, "Smina flexible"
runs, completed within a 48-hour timeframe, average around 16 hours. It’s worth highlighting IVES’
high parallelizability, achieving an average completion time of approximately 20 minutes when fully
parallelized. Furthermore, IVES offers extensive customization options, allowing users to adjust
sampling thoroughness by selecting the number of protein conformations or setting the maximum
number of generated poses per docking with each conformation. This flexibility empowers users to
strike a balance between thoroughness and computational costs.

Figure S4: Distribution of the number of poses generated by GLOW and IVES compared to Smina
flexible docking ("Smina flexible") and baseline methods "Default" and "Default, max poses". Here,
we only consider cross-docking cases where "Smina flexible" successfully completed within 48 hours
on one CPU and generated poses, accounting for approximately 40% of the total cases. To ensure
a fair comparison, we allowed "Default, max poses" and "GLOW" to generate as many poses as
possible.
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S5 Comparison of IVES sampling performance with Schrödinger IFD-MD
flexible protein docking

Figure S5: Sampling performance of IVES vs. Schrödinger IFD-MD on "challenging (experimental)"
dataset. Here we compare the sampling performance (measured by the percentage of cross-docking
cases with at least one correct pose) of IVES versus Schrödinger IFD-MD (with refinement). IVES
(in red) exhibited comparable performance to Schrödinger IFD-MD (in brown), despite using only 20
protein conformations compared to IFD-MD’s 1000. Notably, IVES doesn’t rely on an experimentally
co-determined ligand pose bound in the docking structure, making it applicable to docking to
unliganded or predicted structures such as those generated by AlphaFold.
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S6 The impact of the number of protein conformations and seed pose quality
on IVES sampling performance

Figure S6: Sampling performance of IVES as measured by the percentage of cross-docking cases
with at least one correct pose as a function of the number of protein conformations used for sampling.
As we increase the number of protein conformations employed by IVES, we observe a significant
increase in the percentage of cross-docking cases yielding correct poses. This increase is most
noticeable when using 1 to 5 protein conformations. It’s important to note that IVES runtime scales
proportionally with the number of protein conformations, but its high parallelizability efficiently
utilizes computational resources. Therefore, for those with computational constraints, running
IVES with 5 protein conformations strikes a favorable balance between resources and sampling
performance. Efficient IVES sampling relies on the quality of seed poses chosen for generating
protein conformations. Better seed poses, ideally close to the "correct" pose, reduce the need for large
number of protein conformations, thus lowering computational demands. We employ both the Smina
docking score and RTMscore [Shen et al., 2022], a machine-learned scoring function for ranking
ligand poses, to rank and select seed poses. In our evaluation, RTMscore emerges as the better choice
for ranking, enhancing IVES’s sampling efficiency with fewer protein conformations compared to
when using Smina docking score (highlighted in red vs. green). This emphasizes the critical role of
seed pose quality in optimizing IVES’s sampling outcomes.
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