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1Prescient Design, Genentech 2Antibody Engineering, Genentech
3Department of Computer Science, New York University

4Center for Data Science, New York University

Abstract

We introduce a single-step, score-based denoising framework for generative mod-
eling of protein sequences from higher dimensional embeddings of pretrained
language models. Our latent Walk-Jump Sampler (or L-WJS) framework learns
the manifold of a smoothed latent space of a pretrained protein language model.
New sequences are generated by score-based exploration using Langevin MCMC
(walk) on the smoothed latent space and denoising back (jump) to the latent space.
Our framework combines the attractive properties of the rich and semantically
meaningful representations from pretrained protein language models and the im-
proved sample quality of score-based modeling with the ease of training with a
single-step denoising framework. We demonstrate that latent-WJS is data efficient,
generates novel and diverse sequences that recapitulate biophysical properties of
the underlying distribution, and opens-up avenues for sampling (both unguided and
guided) from the latent space of various pretrained models.

1 Introduction

Score-based generative models have exhibited state-of-the-art performance in image generation
(Ho et al., 2020). Latent diffusion models (LDMs) are score-based diffusion models that apply
the diffusion framework in the latent space of pretrained autoencoders (Rombach et al., 2022), An
important advantage of the LDM framework is that the pretrained autoencoders only need to be
trained once and can therefore be reused for multiple trainings, different datasets and to explore a
range of tasks.

Protein language models are pushing the boundaries of learning information at evolutionary scale
from millions of protein sequences (Lin et al., 2023b; Rives et al., 2021). These models learn
rich representations of protein sequences capturing residue-level biophysical properties to remote
homology of proteins. Furthermore, language models encode secondary and tertiary structure
information; a feature that has been exploited in the latest state-of-the-art protein structure prediction
methods (Lin et al., 2023b; Jumper et al., 2021; Ruffolo et al., 2021, 2023).

In light of these advancements in score-based generative modeling and representation learning of
protein and antibody sequences, we introduce the latent walk-jump sampler (latent-WJS or L-WJS)
for the specific problem of generating protein sequences. L-WJS extends the discrete walk-jump
sampler (dWJS) (Frey et al., 2023) built on the neural empirical Bayes (NEB) (Saremi & Hyvärinen,
2019) formalism to the smoothed latent space of pretrained protein language models. With the
L-WJS, we present a single-step denoising model at a single fixed noise-level to learn the manifold
of the smoothed high-dimensional space of pretrained language models. Similar to LDMs, such an
approach allows the reuse of the embedded space of pretrained language models (encoder-decoder
architectures) for multiple trainings and tasks. Unlike LDMs, the walk jump sampling formalism
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decouples generation via Langevin MCMC (walk) from the denoising (jump) steps. Our proposed
L-WJS framework has the following unique features which distinguishes it from dWJS and existing
generative models:

1. Data is “noised/corrupted” and “denoised/recovered” in the latent space instead of discrete
input space akin to latent diffusion models such as Stable Diffusion.

2. Such a framework allows us to “walk” in a smoothed latent space that is semantically
meaningful unlike the discrete one-hot input space.

3. The use of pretrained language models allows us to leverage the rich embedding space of
general protein language models and leads to automatic fine-tuning in the sequence space of
interest such as the observed functional space of antibody sequences against a specific target
of interest.

4. As a by-product of the walk jump framework, the Langevin MCMC based walk provides a
principled way to navigate a smoothed manifold of the rich-representations from pretrained
protein language models.

1.1 Related Work

The discrete walk-jump sampler (dWJS) (Frey et al., 2023) introduced an extension of the NEB
formalism to discrete data (one-hot encoded amino acid space) for antibody protein sequences. Here,
we extend the dWJS formalism to the latent space. In this extension, we have been inspired by
latent diffusion models (LDM), where the diffusion process occurs in the latent space of a pretrained
autoencoder, enabling state-of-the-art results on text-conditioned image generation (Rombach et al.,
2022). At a high level, this work combines these two distinct works into one.

Generative modeling of protein and antibody sequences has been dominated by autoregressive
models such as ProGen (Madani et al., 2023) and ProGen2 (Nijkamp et al., 2022), IgLM (antibody-
specific model trained with the infilling objective) (Shuai et al., 2021) and ProtGPT2 (decoder-only
transformer model trained on proteins) (Ferruz & Höcker, 2022). At the same time, masked protein
language models such as ESM (Rives et al., 2021), ESM2 (Lin et al., 2023b) and AntiBERTy
(Ruffolo et al., 2021) have been trained on large corpuses of protein (Consortium, 2022) and antibody
sequences (Olsen et al., 2022) to yield rich representations of protein and antibody sequences. Our
work (latent-WJS) combines advancements in generative modeling (LDMs), representation learning
(protein language models) with the NEB formalism to yield a generative model for sampling from
the smoothed embedded/latent space of protein language models (see Figure 1 for a schematic).

2 Latent Walk-Jump Sampler

For a detailed background on walk-jump sampling and its application to antibody sequence generation
in the discrete input space, we refer the readers to Saremi & Hyvärinen (2019) and Frey et al. (2023).
We extend the discrete walk jump sampler to the latent space z of a pretrained autoencoder with an
encoder (E) and decoder (D) such that encoder maps the discrete input x to the latent space z and
the decoder maps z back to x. Following the NEB formalism, we transform the latent variable z with
additive Gaussian noise, such that Y = Z +N , N ∼ N(0, σ2I). The least-squares estimator of Z
given Y = y is the Bayes estimator given by (Robbins, 1956; Miyasawa, 1961)

ẑ(y) = E[Z|y] = y + σ2∇ log p(y), (1)
where p(y) =

∫
p(y|z)p(z)dz is smoothed probability density. The estimator (1) is often expressed

directly in terms of g(y) = ∇ log p(y) known as the score function (Hyvärinen, 2005) which is
parameterized with a neural network denoted by gϕ : Rdz → Rdz . The estimator (1) then takes the
following parametric form:

ẑϕ(y) = y + σ2gϕ(y). (2)
Putting this all together leads to the following least-squares denoising objective

L(ϕ) = Ez∼p(z),ε∼N(0,σ2I)∥z − ẑϕ(z + ε)∥2,

which is optimized with stochastic gradient descent. Following training we sample from the smoothed
distribution in the latent space with Langevin MCMC using the learned score function and then use
the protein language model decoder to arrive at sequences x̂(y) = D(ẑϕ(y)).
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Figure 1: Latent Walk-Jump Sampler (Appendix A.1).

Table 1: Mean edit distance over the validation set (naive paired-OAS) between decoded ground truth
(z) and denoised (ẑ) latents for latent-WJS models with the ESM2 pretrained encoder

# hidden layers Latent size / Position Noise Factor (σ) Edist (z, x) Edist (ẑ, x) ↓
320 0.0 5.1

1 320 1.0 5.1 3.8
1 320 2.5 5.1 15.7
2 640 2.5 5.1 3.9
2 640 5.0 5.1 4.7
2 640 7.0 5.1 6.6
2 640 10.0 5.1 10.7

3 Results

3.1 L-WJS achieves high fidelity reconstruction of input sequence from denoised latents

First we investigated the quality of the decoded sequences from the denoised latents in comparison
to the clean latents. We report results for L-WJS models trained with the pretrained ESM2 (8M
parameters) encoder and latent space constructed from either the last layer or the last and penultimate
layer of the ESM2 model. Unlike Stable Diffusion (Rombach et al., 2022), our latent space is
very high-dimensional (latent size between 320 to 640 per residue). For L-WJS, the choice of an
appropriate noise factor for training is determined by the variance of the embedded space (Appendix
A.1). Consequently, for comparison, we train models at a range of noise levels (σ) representing
different amounts of corruption to the latent space.

In Table 1, we report the edit distance (Edist) between the input sequence and the decoded sequence
from denoised (ẑ) and clean (z) latents. As increasing levels of noise is added to the latents, it becomes
more challenging for the model to reconstruct the input from the denoised latents. Nevertheless,
models trained at fairly high noise levels (7.0 and 10.0 for ESM2 with two hidden layers) recover
input sequences from denoised latents with sufficiently low edit distances, comparable to those of
the sequences decoded from clean latents. Remarkably, at low to medium noise levels (2.5 to 5.0),
sequences decoded from denoised latents are closer to the input sequence (lower edit distance) than
those decoded from the clean latents. Thus, the denoising task improves the latent representation
insofar as recovering the input sequence is concerned even though the model is only trained with
a reconstruction loss (mean-square error or MSE loss) on the denoised latents (not the decoded
sequence).

3.2 L-WJS generates diverse samples that recapitulate biophysical properties of natural
antibodies

For the antibody sequence generation problem, we seek to generate sequences that not only match
the properties of natural antibody sequences but also exhibit novelty and diversity. Keeping in line
with previous work, in Table 2, we report the Wasserstein distance (Wproperty) for 15 biophysical
properties between the sampled sequences and the reference distribution, the uniqueness (number of
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Table 2: Metrics for heavy chain from 2000 samples generated with 20 denovo seed sequences
(reported for heavy only in original paper). For L-WJS, we report metrics for the least number of
Langevin steps needed to achieve the lowest Wasserstein distance (Wproperty). Step sizes and number
of steps are reported in Table 5. *Note that achieving high diversity (Edist, IntDiv) without matching
the reference distribution (Wproperty) is not desirable.

Model Wproperty ↓ Uniqueness ↑ Edist (ẑ, x) ↑ IntDiv ↑
dWJS (energy-based) 0.056 1.0 58.4 55.3
dWJS (score-based) 0.065 0.97 62.7 65.1
IgLM 0.087 1.0 48.6 34.6
ESM2 0.15 1.0 70.99* 77.56*
L-WJS-ESM2 (score-based) σ=2.5 0.053 1.0 56.6 54.1
L-WJS-ESM2 (score-based) σ=5.0 0.054 1.0 51.9 46.1
L-WJS-ESM2 (score-based) σ=7.0 0.052 1.0 54.2 49.5
L-WJS-ESM2 (score-based) σ=10.0 0.051 1.0 55.2 42.4

unique sequences sampled), the mean of the edit distance of sampled sequences from the reference
distribution (Edist) and the mean of the edit distance within the generated sequences (internal diversity
or IntDiv). We compare our results to dWJS, IgLM (Shuai et al., 2021) and ESM2 (Lin et al., 2023b)
as reported by Frey et al. (2023) (Appendix A.3). Sampled sequences are shown in Figure 2.

L-WJS generated sequences exhibit low Wasserstein distances to the biophysical property distributions
of sequences sampled from paired OAS. While L-WJS exhibits comparable Edist to dWJS, the
internal diversity of the generated sequences is consistently lower than those generated with dWJS.
We attribute this lower internal diversity to the latent space being “stickier” than the discrete space i.e.
sequences starting close by (say from the same seed) in latent space collapse to similar sequences.

3.3 L-WJS enables high sample efficiency and extrapolation beyond observed data

One of the expected advantages of using a pretrained sequence encoder and decoder framework is to
expand the sequence space of a small dataset in a semantically meaningful manner. For example, a
recent study fine-tuned an LDM on a small set of extremely visually appealing images to generate
images that were visually very appealing (Dai et al., 2023). Such fine-tuning is relevant for antibody
sequence generation as well. For example, while the paired sequences in the OAS range in the
hundreds of thousands, only a few hundred thousand antibody sequences have crystal structures and
even fewer sequences have crystal structures for the antibody-antigen complex.

Figure 2: Example of generated sequences (AHo numbering scheme (Honegger & PluÈckthun,
2001)) from L-WJS-ESM2 (sigma=7.0) model trained on pOAS. Generated sequences exhibit length
variability, resemble natural antibodies and show high diversity in high entropy regions (CDRs) and
lower diversity in framework regions. See Figure 4 for coloring scheme.

In Table 3, we report the performance of the L-WJS on smaller datasets (1000 samples) derived from
SAbDAb (Dunbar & Deane, 2015) (Appendix A.1). While both dWJS and L-WJS have impressive
Wproperty metrics on the SAbDAb dataset, L-WJS generates samples with considerably higher mean
internal diversity and edit distance from the reference set.
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Table 3: Metrics on SAbDAb dataset (Dunbar et al., 2013). dWJS was trained with the score-based
objective. L-WJS refers to L-WJS-ESM2 model trained with σ=7.0. Metrics are reported for the
heavy chain for 2000 samples generated with 20 seeds with 100 samples per seed.

Dataset Model Wproperty ↓ Uniqueness ↑ Edist (ẑ, x) ↑ IntDiv ↑
SabDAb L-WJS 0.055 1.0 54.3 48.2
SabDAb dWJS 0.052 1.0 50.2 36.7

Table 4: Predicted affinity for sampled CDR H3 sequences for Trastuzumab antibody for models
trained on binders from Mason et al. (2021) dataset. *Models trained on paired OAS only.

Model pbind ↑
dWJS (energy-based) (Frey et al., 2023) 0.96
dWJS (score-based) (Frey et al., 2023) 0.91
L-WJS 0.91
L-WJS* 0.76

3.4 Langevin MCMC in smoothed latent space conserves structure of starting seed antibody

We further investigated the characteristics of the sequences sampled in a single trajectory by “walk-
ing” on the smoothed latent space. To this end, we tracked the sequences generated at every step
along a long (200 steps) Langevin MCMC trajectory. We folded these sequenceswith ImmuneB-
uilder (Abanades et al., 2023) and characterized their germlines with ANARCI (Dunbar & Deane,
2016). We notice three important characteristics. First, the sequences along a single trajectory
explore a structural space in the vicinity of the seed (Figure 5). Second, the generated samples show
higher variability in CDR regions and lower variability in the framework regions (as expected). And
lastly, the germline of the seed sequence is either preserved or constrained to structure-preserving
germlines in a significant number of samples along an MCMC trajectory (Figure 6). We surmise that
the Langevin MCMC walk enables exploration of the local structural neighborhood of a sequence
reminiscent of structure-conditioned generation (Hsu et al., 2022; Dauparas et al., 2022; Mahajan
et al., 2022, 2023).

3.5 L-WJS captures the distribution of HER2 binders

A common objective of antibody design or sequence generation is affinity maturation. To this end,
we trained the L-WJS model on a set of 9,000 unique binders from Mason et al. (2021) dataset. We
then generated 2000 sequences starting from the Trastuzumab sequence as the seed and predicted the
fraction of sequences classified as binders by an affinity classifier trained on the full dataset (binders
and non-binders) by Frey et al. (2023). The fraction of predicted binders for the L-WJS model
fine-tuned on the binders is comparable to that of the score-based dWJS (Table 4). Furthermore, 76%
of the sequences generated from L-WJS model trained on paired OAS sequences (without fine-tuning
on binders) are predicted to bind HER2.

4 Conclusion

In this work, we introduced L-WJS, a single-step denoising score-based model that learns the manifold
of the embedded space of pretrained protein language models with the NEB formalism (Saremi
& Hyvärinen, 2019). L-WJS extends the dWJS framework Frey et al. (2023) to generate protein
sequences from the latent space of pretrained protein language models. Applied to the task of protein
sequence generation, L-WJS is both sample efficient and generates diverse, high-quality antibody-like
sequences. In future work, we aim to explore guided sampling and conditional generation akin to
latent diffusion models (Rombach et al., 2022; Jiang et al., 2023).
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A Appendix

A.1 Model architecture, training and datasets

Denoising network architecture: For all L-WJS models, we implemented a transformer-based
architecture for the denoising network. For the models trained on paired OAS, we trained a transformer
with 6 hidden layers, 8 attention heads and a feed forward dimension of 1152, and 144 features in
the encoder/decoder inputs, and SiLU activations. Larger models did not improve performance. For
models trained on the SAbDAb datasets, we implemented a smaller decoder-only transformer with 3
hidden layers, 8 attention heads and a feed forward dimension of 576, and 72 features in the decoder
inputs with SiLU activations.

Pretrained ESM2 model: For all results reported in this work, we use the embeddings from the last
and second last hidden layers of the pretrained ESM2 model with 8M parameters (Lin et al., 2023a).
For decoding, we use the ESM2 decoder from HuggingFace that takes the last hidden representation
and returns the logits per token/position on the sequence. To obtain a sequence from the logits, we
simply take the argmax (amino acid token corresponding to the logit with the largest value) along the
amino acid dimension.

Full model architecture: The full model consists of three main components (Figure 1): the
pretrained encoder from ESM2 model, the denoising network that parameterizes the score function
and the decoder for ESM2 model. A one-hot encoded antibody sequence is inputted to the pretrained
ESM2 encoder that outputs an embedding z of size L ∗D ∗ Nhidden where L is the length of the
chain (heavy or light), D is the size of the embedded space (320) and Nhidden is the number of
hidden layers. Thus the output for a single chain from the pretrained encoder is L ∗ 320 when
only last hidden layer is used and L ∗ 640 when the last two layers are used. The embedded latent
is concatenated for the heavy and light chains such that the resulting embedding z with a size of
(Lheavy + Llight + Lmtoken) ∗ D ∗ Nhidden, where Lchain is the length of the chain and Lmtokens

are the sequence start and end tokens, transformed with Gaussian noise y and fed to the denoising
transformer network. The denoising network outputs a tensor of the same length as the smoothed
latent y. We then use (2) to predict ẑ from gϕ(y). This follows separating the ẑ into embeddings
corresponding to heavy and light chains. ẑ corresponding to each chain is then decoded by the ESM2
decoder. Either the full ẑ (Nhidden=1) or partial ẑ corresponding to the last layer only (Nhidden=2) is
decoded with the pretrained ESM2 model’s decoder followed by the argmax operation to obtain x̂.

Code will be made available at https://github.com/Genentech/latent-walk-jump.

Datasets Paired sequences were padded to a maximum length of 297 (149 for the heavy chain and
148 for the light chain).

pOAS dataset preparation: Datasets were prepared by clustering the paired sequences (containing
heavy and light chain pairs) from the Observed Antibody Space (OAS) database (Olsen et al., 2022).
Sequences were clustered at 95% sequence identity with 80% coverage using MMseqs2 (Steinegger
& Söding, 2017) and divided into training and validation sets. We did not observe a significant change
in performance at 85% clustering. All models reported in Tables 1 and 2 were trained on naive
paired OAS sequences.

SAbDAb dataset preparation: SAbDAb datasets consisted of entries from the PDB with the
structure of the antibody-antigen complex. The antibody-antigen sequences were clustered on the
antigen sequences with MMseqs2 (Steinegger & Söding, 2017) at 40% sequence identity and 80%
coverage (after removing any non-protein letters).

A.2 Noise Factor

In Figure 3, we show the mean and variance of the embedded space (for each layer) of the pretrained
ESM2 (8M parameters) for antibody sequences sampled from the Observed Antibody Space. Since
the embedded space (for penultimate layer of ESM2) lies between ±10.0, we train models with
latents derived from hidden noise factors ranging from 2.5 (low-noise) to 10.0 (very-high noise).
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Figure 3: ESM2 embeddings

Table 5: Step-sizes and number of steps. *Similar performance.

Model Step-size Steps

L-WJS-ESM2 (score-based) σ=2.5 0.5 200
L-WJS-ESM2 (score-based) σ=5.0 0.5 50
L-WJS-ESM2 (score-based) σ=7.0 0.25 50
L-WJS-ESM2 (score-based) σ=7.0 * 0.5 20
L-WJS-ESM2 (score-based) σ=10.0 0.5 10

A.3 Sample generation and evaluation

Denovo generation For generating denovo sequences with L-WJS-ESM2 models, we initialized the
seed sequence (fixed-length AHo numbering scheme (Honegger & PluÈckthun, 2001); 149 positions
for heavy chain and 148 positions for light chain) by sampling each position from the corresponding
position of an arbitrary sequence in the paired OAS.

Evaluation and comparison with ESM2, IgLM and dWJS We reuse evaluation metrics from
Frey et al. (2023) in Tables 2 and 4. Briefly, Frey et al. (2023) generated samples from IgLM (Shuai
et al., 2021) using the prompt shown below:

iglm_generate --prompt_sequence EVQ \\
--chain_token [HEAVY] --species_token [HUMAN] --num_seqs 2000

For ESM2 baseline (Lin et al., 2023b), they performed infilling at a high masking rate of (40%) to
mimic ab initio/de novo generation. Frey et al. (2023) also noted that ESM2 (as expected) does not
generate antibody-like sequences, and the high Edist and IntDiv scores are therefore meaningless.
For latent-WJS, ESM2 baseline serves two purposes. First, it is a powerful general protein language
model baseline to show the gap in performance between a general, pre-trained protein MLM and
latent-WJS that relies on ESM2 embeddings but is trained as a score-based single-step denoising
model.

We use the underdamped Langevin MCMC algorithm (same as dWJS) from Sachs et al. (2017) also
used by Frey et al. (2023) with the same hyperparameters. To generate samples for models trained at
different noise factors, we tested a range of step-sizes and number of steps. We chose a combination
of step-size and number of steps that resulted in the best Wproperty metrics. In Table 5, we report the
number of steps and step-sizes used to report metrics in Table 2.

A.4 Example sequences from L-WJS

In Figure 4, we show the sequence logos for a denovo seed sequence.
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Figure 4: Example of generated sequences (AHo numbering scheme (Honegger & PluÈckthun, 2001))
from (i) L-WJS-ESM2 (sigma=7.0) model trained on pOAS and (ii) L-WJS-ESM2 (sigma=2.5) model
trained on a subset of SAbDAb. Generated sequences exhibit length variability, resemble natural
antibodies and show high diversity in high entropy regions (CDRs) and lower diversity in framework
regions. Starting seed sequence is show in orange. Logos were generated with Logomaker with
“charge” color scheme. Asterisk (*) represents a gap-token in AHo numbering scheme. CDRs are
defined as: “L1”: (23, 42), “L2”: (56, 72), “L3”: (106, 138), “L4”: (81, 89), “H1”: (23, 42), “H2”:
(56, 69), “H3”: (106, 138), “H4”: (81, 89).

A.5 Characterization of sequences sampled along a single trajectory

To characterize the sequences sampled along a single Langevin MCMC trajectory (or walk), we
initialized the trajectory from a random sequence from the paired OAS and folded the generated
sequences along a trajectory with Immunebuilder (Abanades et al., 2023). We further characterized
the germline of the seed and sampled sequences with ANARCI (Dunbar & Deane, 2016). In Figure 5,
we show the folded sequences and sequence logos from two trajectories. Mean RMSD stays under
1.0 angstrom at a step size of 0.5. In Figure 6, we show the germline of sampled and seed sequences.

Figure 5: Folded structures and sequence logos (heavy-Top, light-Bottom) for each step along two
200 step Langevin MCMC trajectories at a step-size of 0.25 sampled with L-WJS-ESM2 (σ=7.0)
model. For coloring and characters in sequence logos, see Figure 4.
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Figure 6: Germline of sampled sequences for each step along two 200 step Langevin MCMC
trajectories at a step-size of 0.25 sampled with L-WJS-ESM2 (σ=7.0) model. Asterisk (*) denotes
the cell with the same sampled germline as the seed.
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