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Abstract

Frame averaging (FA), a recent progress in geometric deep learning, is a general
framework that endows a given architecture with the ability to transform data
equivariantly. However, serving FA as a model wrapper introduces additional
computation that grows linearly with the group’s cardinality and may hinder the
exploitation of 3D structures, making it challenging to model macro-molecules
such as proteins and nucleic acids. In this paper, we present FAFormer, an equiv-
ariant Transformer model that incorporates FA as a basic component within each
layer. Such incorporation allows FAFormer to model the coordinates in the latent
space directly without using other elaborate geometric features. Building on this
foundation, we introduce an equivariant cross-attention module to FAFormer to
capture the interactions between node and coordinate representations. Besides, an
equivariant feed-forward network is proposed for enhancing the communication
between them. To evaluate FAFormer’s performance, we establish two benchmark
datasets for nucleic acid-protein contact prediction and compare FAFormer with 8
different baseline models. With these two innovations, FAFormer outperforms all
the baselines and achieves state-of-the-art performance.

1 Introduction

Machine learning methods have recently shown promise in modeling and understanding biological
molecules, such as predicting the protein tertiary structure [20, 4], designing the molecule with
high binding affinity [9, 17], and approximating the quantum mechanics [14]. One key factor
contributing to the success of these methods is their capacity to exploit molecular symmetry by
learning transformations that are equivariant to specific symmetry groups [27, 22, 11, 13, 29, 28, 24,
19]. For example, some of them solely rely on the invariant features extracted from the molecules to
exhibit invariant transformations while others achieve this by mapping the coordinate system into the
spherical harmonics space.

Recently, a novel line of research focuses on designing an encoder-agnostic equivariant framework
with frame averaging (FA) ⟨·⟩F [25, 34]:

⟨Φ⟩F =
1

|F(X)|
∑

g∈F(X)

ρ2(g)Φ
(
ρ1(g)

−1X
)

(1)

where Φ : V → W is the mapping function between normed vector spaces V and W , ρ1(g) and
ρ2(g) are representations of the group G over V and W , and F : V → 2G is the frame that maps the
vector space into a group. If a frame is G-equivariant, then any given map Φ can achieve equivariance
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Figure 1: Overview of our proposed FAFormer architecture. (a) The input consists of the node
features and coordinate features, and FAFormer includes a stack of equivariant cross-attention
modules and equivariant FFNs. (b) Equivariant cross-attention module includes the projection, FA
transformation, and query/key embedding fusion. (c) Equivariant FFN includes standard FFN for node
representations and two transformations for coordinate representations. (d) Gate attention utilizes
node representations to module the fusion between updated and original coordinate representations.∑

deontes aggregation, ⊙ denotes element-wise multiplication, and ⊗ denotes multiplication. Gray
cells indicate the operation related to FA.

(or invariance) by averaging predictions across that frame. As an example, one can simply encode the
mapped coordinates with a vanilla Transformer [32] and average the results over the group to exhibit
an equivariance transformation.

However, despite its generality and ease of use, the computation of the backbone model scales linearly
with the cardinality of G [11, 18] due to the independent encoding for different group elements.
Specifically, applying Principal Component Analysis (PCA) to the frame results in an 8x increase in
computation, making it intractable for modeling macro-molecules such as protein and nucleic acid.
Besides, merely using FA as a model wrapper and encoding the geometric features together with node
features may diminish the exploitation of the geometric information, as shown in our experiments.

In this work, we present FAFormer, an equivariant Transformer architecture for nucleic acid-protein
complexes modeling. Instead of serving FA as an external geometric wrapper on top of the model,
FAFormer instantiates FA as an integral geometric module within each layer, which eliminates the
need for separate encoding under distinct group elements, yet preserves the equivariant transformation.
Moreover, it incorporates the equivariant cross-attention module, equivariant feed-forward network,
and gate activation to enhance expressive power and allow communication between node and
coordinate representations. To evaluate its performance, we clean up and construct two contact
prediction benchmarks for DNA-Protein and RNA-Protein complexes from multiple sources [6, 5, 1],
and FAFormer outperforms all baseline models, achieving state-of-the-art results.

2 Architecture

The main idea of FAFormer is incorporating FA as a basic component into Transformer, allowing
it to directly represent coordinates in the latent space. Such a strategy enables effective modeling
of molecules without depending on elaborate spatial features. Specifically, the input of FAFormer
comprises the node features X ∈ RN×D and coordinate features C ∈ RN×3, where N is the number
of the residues or nucleotides and D is the hidden size. FAFormer processes and updates the input
features at each layer:

X(l+1),C(l+1) = f (l)(X(l),C(l)) (2)

where f (l)(·) represents l-th layer of FAFormer. Each layer contains an Equivariant Cross-Attention
Module presented in Section 2.1 and an Equivariant Feed-Forward Network presented in Section 2.2.
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Frame. Here fF (·) is used to denote the mapping based on the frame F . Specifically, it projects a
given set of coordinates into different vector spaces using the group G computed by F :

{Cg}G = fF (C) (3)

where Cg ∈ RN×3 is the coordinates transformed by the group element g. The notation |G|
is denoted as the cardinality of G. Following the previous methods [25, 11], the three principle
components u1,u2,u3 computed by PCA construct the group with 8 group elements:

G = F(C) = {[±u1,±u2,±u3]} (4)

Besides, fF−1(·) denotes the inverse mapping which first maps each projected coordinates Cg using
the inverse group element g−1, then averages the results over the group to equivariantly obtain the
coordinates:

C ′ = fF−1({Cg}G) (5)

2.1 Equivariant Cross-Attention Module

Motivated by recent studies on multi-modality learning [7, 16, 10], we propose Equivariant Cross-
Attention Module to enable the node and coordinate representations to complement each other
through the shared cross attention map. In general, it processes them with separate branches and
fuses the query/key embeddings for generating the attention map biased by their interactions.

Feature Transformation. Similar to the Transformer, the attention module of FAFormer first
transforms the node features X ∈ RN×D to the query, key, and value matrices:

XQ = XWQ, XK = XWK , XV = XW V (6)

where WQ,WK ,W V ∈ RD×D′
are the learnable projections. With frame averaging, we can also

transform the coordinates features C ∈ RN×3 equivariantly and model the representations in the
latent space similar to the node features. Specifically, the coordinates are first projected using Equ.3,
then transformations are averaged over the group:

CQ =
1

|G|
∑
g

Norm(Cg)W
′
Q,g, CK =

1

|G|
∑
g

Norm(Cg)W
′
K,g (7)

where W ′
Q,g,W

′
K,g ∈ R3×D′

are the learnable projections for each group element g, and Norm(·)
is the normalization which scales the coordinates such that their root-mean-square norm is one [19]:

C/

√
1

ν
||C||22 = Norm(C) (8)

where ν is a non-learnable scalar.

Attention Map Calculation. To enable a cross-attention between node and coordinate representa-
tions, we fuse their query/key matrices and compute the attention map with dot-product operation:

ZQ = XQ +CQ, ZK = XK +CK , (9)

A = Softmax(ZQZ
T
K/

√
D) (10)

where A ∈ RN×N . It can be observed that the resulting attention map A is biased by the interactions
between these two representations, which can align the node representation of a residue/nucleotide
with its geometric context. Since CQ,CK are obtained through an equivariant transformation, the
attention calculation is also equivariant to the 3D structure.

Aggregation. Node representations are updated with the attention map and the residue connection:

X ′ = LN
(
(AXv)W output

)
+X (11)
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where LN is the layernorm [2] and W output ∈ RD′×D is a learnable matrix. As for the coordinate
representations, we additionally employ gate attention [20, 3] which applies the node representations
as input to modulate the aggregation:

C ′ = xAttn
gate ⊙AC + (1− xAttn

gate )⊙C, (12)

where xAttn
gate = σ

(
XaAttn

gate + bAttn
gate

)
(13)

where aAttn
gate ∈ RD×1,bAttn

gate ∈ RN×1 are learnable gating vectors, σ(·) is the sigmoid function, and ⊙
is the element-wise multiplication operation.

2.2 Equivariant Feed-Forward Network

To further enhance the communication, we design an Equivariant Feed-Forward Network that updates
both node and coordinate representations. We first project the coordinates C into {C ′

g}G using Equ.3
and transform it into latent space:

{Cg}G = {Norm(C ′
g)W g}G (14)

where Cg ∈ RN×D′
,W g ∈ R3×D′

. It is then split up into two types of features through separate
transformations:

Cu =
1

|G|
∑
g

CgW u, Cv = fF−1

(
{CgW v}G

)
(15)

where Cu ∈ RN×D,Cv ∈ RN×3,W u ∈ RD′×D,W v ∈ RD′×3. The final updated node represen-
tations X ′ are calculated as a standard FFN [32] projection of the concatenated node features and the
transformed coordinate features, resulting in:

X ′ = FFN([X,Cu]) +X, (16)
This allows the node representations to engage with geometric features via the cross-attention map
while also directly integrating spatial information into the feature vectors. As for the coordinate
representations, we also employ the gate attention to encourage consistency between node and
coordinate representations:

C ′ = xFFN
gate ⊙Cv + (1− xFFN

gate )⊙C, (17)

where xFFN
gate = σ

(
XaFFN

gate + bFFN
gate

)
(18)

where aFFN
gate ∈ RD×1,bFFN

gate ∈ RN×1.

3 Experiments

To show the effectiveness of FAFormer, we collect two benchmarks for nucleic acid-protein contact
prediction and compare the model with 8 baseline methods. During the experiments, only the
coordinates of the Cα atoms from each protein residue and the C3 atoms from each nucleotide of the
nucleic acids are used as coordinate features. For node feature generation, we employ ESM2 [23] for
proteins and RNA-FM [8] for RNA. The one-hot embedding is utilized as DNA’s node feature.

Dataset. Different from the previous studies [33, 26, 35] which only focus on modeling the protein
and identifying the binding residues, the task of our datasets is to predict the exact contact pairs
between protein {Si}N and nucleic acid {S′

j}N ′ :

Model(Si, S
′
j) =

{
1, Si contacts with S′

j

0, Other (19)

The DNA/RNA-Protein Complex data, i.e., DPC and RPC, is collected from PDB [6], NDB [5] and
RNASolo [1] databases. We filter out the complexes with the sequence length less than 5 or greater
than 800. Following the previous studies on Protein-Protein Interaction [30, 31], a residue-nucleotide
pair is determined to be in contact if any of their atoms are within 6Å from each other. We split
complexes to ensure that no protein in the validation or test datasets shares over 50% sequence
identity with any protein in the training dataset2. The statistics are shown in Table 1.

2Note that we don’t use 30% as the threshold since it results in a very limited validation and test set.
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#Train #Val #Test Label

DPC 2,941 195 192 1.144%
RPC 1,084 104 108 1.344%

Table 1: Dataset statistics where "Label" is the average ratio of the contact pair over all pairs.

Baselines. As for the contact prediction task, we compare FAFormer with two classes of models:
1) graph neural network-based methods, including EGNN [27] and GVP-GNN [19]; 2) Transformer-
based methods, including Transformer [32], FA [25] with Transformer, se3Transformer [13] and
Equiformer [22]. We further compare GraphBind [33] and GraphSite [35] on the task of binding site
prediction. For each model, we individually embed the protein and DNA/RNA. The representations of
residues and nucleotides are concatenated from all pairs and fed into a classifier to conduct prediction.

Results. To comprehensively evaluate the performance on label-imbalanced datasets, we apply F1
and PRAUC as the evaluation metrics. The comparison results on contact prediction are presented in
Table 2 from which FAFormer achieves the best performance over all the baseline models. It also
can be observed that Transformer exhibits the worse performance in most cases, highlighting the
importance of structural information in this task. Furthermore, even when FA equips the Transformer
with the capability to handle structural information, its performance on the RPC dataset suggests that
merely serving FA as a wrapper might not be adequate to fully exploit the geometric structure.

Metric Transformer FA se3Transformer Equiformer GVP-GNN EGNN FAFormer

DPC F1 0.0848 0.1458 0.0196 0.0638 0.1442 0.1109 0.1651
PRAUC 0.1166 0.1377 0.1001 0.0992 0.1403 0.1357 0.1477

RPC F1 0.0396 0.0446 0.0539 0.0940 0.0995 0.0647 0.1177
PRAUC 0.0970 0.1019 0.0929 0.0977 0.1046 0.0959 0.1188

Table 2: Comparison results on complex contact prediction.

We also show the results of the binding site prediction task, which only uses protein as input and
predicts the potential binding sites on it. As shown in Table 3, FAFormer still achieves the best
performance over the current SOTA methods GraphBind and GraphSite, demonstrating the expressive
power of FAFormer to model the geometric structure.

Metric GraphBind GraphSite FAFormer

DPC F1 0.5194 0.4969 0.5565
PRAUC 0.6137 0.6259 0.6334

RPC F1 0.4786 0.3905 0.5019
PRAUC 0.5072 0.5138 0.5375

Table 3: Comparison results on protein binding site prediction.

4 Conclusion

In this study, we embed the frame averaging (FA) mechanism as a geometric module rather than using
it as an external model wrapper, and present FAFormer. FAFormer directly models the coordinates
in latent space without extracting additional geometric features, and incorporates several modules
to allow the communication between the node and geometric features effectively. We establish two
benchmark datasets for predicting contact pairs in nucleic acid-protein complex, and FAFormer
achieves the SOTA performance over all the baseline models.
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A Experimental Detail

Running environment. The experiments are conducted on a single Linux server with The AMD
EPYC 7513-32 Core Processor, 1024G RAM, and 8 RTX A5000-24GB. Our method is implemented
on PyTorch 1.13.1 and Python 3.9.6.

Training details. For all the baseline models and FAFormer, we fix the batch size as 8, number
of layers as 3, and train the model for 50 epochs. Adam [21] with a learning rate of 0.001 is used
as the optimizer. The number of nearest neighbors is set as 30 for all the GNN-based methods.
Binary cross-entropy loss is used for contact identification tasks with a positive weight of 4. We
report the model’s performance on the test set using the best-performing model selected based on its
performance on the validation set.

Hyperparameters. Here we show the hyperparameters of all the baseline models and FAFormer:

• FAFormer: The hidden size, dropout rate, and attention dropout rate are set as 64, 0.3, and 0.3
respectively. We initialize the weight of the gate module with zero weights, and bias with a constant
value of 1, ensuring a mostly-opened gate. GELU [15] is used as the activation function.

• GVP-GNN: The hidden size of node scalar feature, node vector feature, edge scalar feature, and
edge vector feature are all set as 32. The dropout rate is fixed as 0.2. For a fair comparison, we
only extract the geometric feature based on Cα, i.e., the forward and reverse unit vectors oriented
in the direction of Cα between neighbor residues.

• EGNN: The hidden size is set as 64. We apply gate attention to each edge update module and
residue connection to the node update module. SiLU [12] is used as the activation function.

• Equiformer&se3Transformer: The hidden size, number of attention heads, and the hidden size of
each attention head are set as 64, 4, 16. We exclude the neighbor nodes with a distance greater than
100Å. Based on our experiments, we set the degree of spherical harmonics to 1, as higher degrees
tend to lead to performance collapse according to our experiments.

• Transformer&FA+Transformer: We set the hidden size, dropout rate, and attention dropout rate as
64, 0.2, and 0.2. The number of attention heads is set as 1 since we don’t observe any improvement
with more attention heads.

• GraphBind: The hidden size and dropout ratio are set as 64 and 0.5. We apply addition aggregation
to the node and edge update module, following the suggested setting presented in the paper.

• GraphSite: The hidden size and dropout ratio are set as 64 and 0.2. The number of attention layers
and attention heads are 2 and 4 respectively. Besides, we additionally use the DSSP features as the
node features, as suggested in the paper.
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