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Abstract

The successful application of machine learning in therapeutic antibody design relies
heavily on the ability of models to accurately represent the sequence-structure-
function landscape, also known as the fitness landscape. Previous protein bench-
marks (including The Critical Assessment of Function Annotation [32], Tasks
Assessing Protein Embeddings [22], and FLIP [6]) examine fitness and mutational
landscapes across many protein families, but they either exclude antibody data or
use very little of it. In light of this, we present the Fitness Landscape for Antibodies
(FLAb), the largest therapeutic antibody design benchmark to date. FLAb currently
encompasses six properties of therapeutic antibodies: (1) expression, (2) thermosta-
bility, (3) immunogenicity, (4) aggregation, (5) polyreactivity, and (6) binding
affinity. We use FLAb to assess the performance of various widely adopted, pre-
trained, deep learning models for proteins (IgLM [27], AntiBERTy [25], ProtGPT2
[11], ProGen2 [20], ProteinMPNN [7], and ESM-IF [13]); and compare them to
physics-based Rosetta [1]. Overall, no models are able to correlate with all proper-
ties or across multiple datasets of similar properties, indicating that more work is
needed in prediction of antibody fitness. Additionally, we elucidate how wild type
origin, deep learning architecture, training data composition, parameter size, and
evolutionary signal affect performance, and we identify which fitness landscapes
are more readily captured by each protein model. To promote an expansion on
therapeutic antibody design benchmarking, all FLAb data are freely accessible and
open for additional contribution at https://github.com/Graylab/FLAb.

1 Introduction

The innate and adaptive immune systems are pivotal for safeguarding the human body, with antibodies
acting as specialized proteins evolved to combat diseases. Antibody engineering exploits their
therapeutic potential, resulting in over 150 therapeutic antibodies targeting diverse diseases [4].
The efficacy of therapeutic antibody candidates hinges on achieving a delicate balance of drug-like
biophysical properties, often characterized by intricate trade-offs where enhancing one property may
compromise others [18].
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The flourishing field of AI now shows promise in driving antibody design by generating new and
diverse therapeutic candidates that have desirable biophysical characteristics in significantly less time.
[5]. As the diversity of deep learning approaches increases [10, 28, 31, 30, 9, 17, 2, 3], it becomes
vital to converge on a systematic benchmark for evaluating performance. Current antibody design
methods are evaluated with less informative metrics (like native sequence recovery), which does not
does provide a clear indication of therapeutic potential. In this study, we curate experimental fitness
data from eight studies spanning antibody expression, thermostability, immunogenicity, aggregation,
polyreactivity, and binding affinity into the Fitness LAndscape for Antibodies (FLAb). Then, we
assess a collection of models relevant to antibodies for their ability to correlate likelihoods to fitness
properties. Our long term vision is that FLAb will help the development of models that can filter new
antibody design candidates more efficiently than what is more typically done experimentally.

2 Related work

Previous endeavors to establish benchmarks for function prediction have laid a foundation for
protein engineers to assess new designs. The Critical Assessment of Function Annotation (CAFA)
aims to assign gene ontology classes to proteins [32]. The Task Assessing Protein Embeddings
(TAPE) evaluates different pretrained models in predicting three protein structure properties (remote
homology, secondary structure, residue contacts), as well as two fitness properties (fluorescence
and stability) [22]. Dallago et al. introduced FLIP, which examines complex fitness landscapes
and performance across a diverse set of proteins encompassing various functions [6]. However,
these benchmarks exclude antibody data, motivating us to curate publicly accessible antibody fitness
data. Related work has also assembled antibody sequence and structure data, notably the Observed
Antibody Space (OAS [21]) of annotated sequences from immune repertoires and the Structural
Antibody Database (SAbDab [8]) of all antibody structures available in the Protein Data Bank. These
databases focus on sequence and structure, but not fitness metrics.

3 Results

3.1 Fitness Landscape Collection

Jain et al. define the characteristics that comprise antibody developability, which includes (1) high-
level of expression, (2) high conformational and colloidal stability, (3) low immunogenicity, (4)
high binding affinity towards the target antigen, (5) a low propensity for aggregation, and (6)
low polyreactivity [15]. To assess the efficacy of protein design models in capturing essential
characteristics of therapeutic antibodies, we have compiled a collection (Table 1) of 17 mutational
landscapes of distinct antibody families with a total of 13,384 associated fitness metrics relevant
to Jain et al.’s definition of antibody developability [12, 16, 19, 23, 26, 29, 15]. Each sequence is
associated with at least one fitness label pertaining to the six aforementioned developability factors.
Additional detail on fitness landscape descriptions and datasets collected can be found in Supp. A.2.
A glossary of domain specific terminology is provided in Supp. A.13. We hypothesize that if a protein
model displays statistically significant correlations with the antibody fitness landscapes, they can be
considered reliable predictors for new therapeutic antibody design candidates.

3.2 Pipeline for Model Evaluation

We detail our pipeline for benchmarking protein language models in Supp. A.3. We used the antibody
variable region sequence or structure as inputs for each model to assess their predictive capabilities,
based off the corresponding model’s perplexity scores (averaged over all residues in the heavy and
light chains). We report the Pearson (linear relationships, r), Spearman (monotonic relationships, ρ),
and Kendall tau (ordinal relationships, τ ) correlations to establish the connection between the model
uncertainty values and the fitness metrics associated with the sequences in the dataset (Supp. A.5). If
a protein language model correctly captures the biophysical landscapes of an antibody during training,
it should assign higher confidence (low perplexity) to high fitness antibodies and low confidence
(high perplexity) to low-fitness antibodies. All models were previously trained in their respective
studies; we performed no additional fine-tuning prior to calculating perplexities.

Numerous computational models have been investigated for antibody design encompassing diverse
approaches: (1) Decoder-only language models are trained using next-token prediction, and we
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Table 1: Number of unique fitness values from available antibody datasets.

Antibody set
Exp.

(µg/mL)
Tm

(°C)
Imm.

(% ADA)
Binding

(nM)
Agg.

(Wv shift)
Poly.
(min)

GSK CA1 34 34 - 29 - -
GSK CA2 25 22 - 22 - -
GSK CA3 11 8 - 11 - -
GSK CA4 24 24 - 19 - -
Hie C143 - 2 - 16 - -
Hie mAb114 - 7 - 20 - -
Hie mAb114 UCA - 2 - - - -
Hie MEDI8852 - 2 - 15 - -
Hie MEDI8852 UCA - 6 - 20 - -
Hie REGN10987 - 8 - 13 - -
Hie S309 - 10 - 19 - -
Koenig G6 4275 - - 4275 - -
Marks imm - - 217 - - -
Rosace Adalimumab - 14 - 14 - 14
Rosace CD3022 - 6 - 6 - 6
Rosace Golimumab - 5 - 5 - 5
Shane. Trast. multi - - - 24 - -
Shane. Trast. zero - - - 422 - -
Warszawski D44 - - - 2049 - -
Wittrup CST 274 137 - - 822 411

Expression is measured in µg/mL, thermostability with melting temperature, immunogenicity with
percent of patients experiencing an anti-drug antibody response, binding with a dissociation constant
KD, aggregation with wavelength shift, and polyreactivity with retention time.

investigate the ProGen2 suite, IgLM, and ProtGPT2; (2) encoder-only language models capture
continuous representations of sequences, and we investigate AntiBERTy; and (3) inverse folding
models predict protein sequences from structures, and we investigate ESM-IF and ProteinMPNN.
To compare these deep learning methods versus physics-based models, we also calculated Rosetta
energy for all sequences. Supp. A.4 provides an overview of all models tested and their corresponding
(pseudo-)perplexity equations.

Figure 1: Examples of good and poor fitness prediction performance. (a) On a thermostability
dataset of mutants of a patient-derived antibody that cross-neutralizes SARS-CoV-1 and 2, the
language model correctly assigns higher confidence (lower perplexity) to the high melting temperature
antibody variants (r = −0.84, ρ = −0.88, τ = −0.73). (b) On an immunogenicity dataset of percent
anti-drug antibody responses (% ADA) from administered antibody therapeutics, the language model
incorrectly assigns both high and low confidences to therapeutics that produce a 0% ADA response
(r = 0.48, ρ = 0.32, τ = 0.23).
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Figure 2: Summary of performance for each model-dataset pair. Pearson’s correlation coefficients
(PCCs) for various protein model perplexities with a) aggregation, b) binding affinity, c) expression, d)
immunogenicity, e) polyreactivity, and f) thermostability fitness prediction. The sign of the correlation
was inverted for aggregation, expression, and thermostability, so that useful correlations will have
positive PCC (blue).

3.3 Fitness correlations with model perplexities

We asked whether model likelihoods, expressed as average perplexities, would correlate with exper-
imentally measured fitness. In Fig. 1, we show two examples with the ProGen2-Small model. To
summarize the correlations of all tested models over all datasets, we plotted the Pearson’s correlation
coefficients (PCCs) in a heat map (Fig. 2; Spearman and Kendall tau coefficients are similar; see
Supp. A.15). Supp. A.6 shows correlation plots for top performing models in each of the six fitness
landscapes. ProGen2-Small obtained the most top performances (on seven datasets), with ProGen2-
Medium, ProGen2-OAS, ESM-IF, and Rosetta Energy tied for second best (each are a top performer
on six datasets). However, no model was a top performing model in all six fitness classes.

3.4 Intrinsic biophysical properties are more accurately predicted than extrinsic properties

We next sought to identify different trends in the PCCs, such as whether models perform better
on intrinsic properties, which are driven by inherent properties of the antibody (thermostability,
aggregation), or extrinsic properties, which result from target biology and mechanism of action
(expression, immunogenicity, binding affinity, polyreactivity). As shown in Supp. A.7, the absolute
value of the PCC for all models was on average above 0.6, while it was significantly lower for binding
affinity (< 0.4), expression (< 0.42), and immunogenicity (< 0.5). Thus, the intrinsic properties are
better correlated with model likelihoods, which is unsurprising, since the models do not have access
to contextual information.

3.5 Models are more accurate at distinguishing intra-family versus inter-family antibody sets

We next asked whether models were better at distinguishing multi-point mutants of antibodies
originating from the same wild type (intra-family) or diverse antibodies from different wild type
origins (inter-family). The absolute value of the PCC on the Hie et al. intra-family thermostability
datasets is 0.77, while the thermostability prediction for the Jain et al. inter-family CSTs is 0.12 (Supp.
A.8). The clinical stage therapeutics have each followed a different co-evolutionary maturity and
selection processes, and therefore capturing these large sequence differences and properly assigning
relatively nuanced fitness confidences may be more difficult than distinguishing sequences with less
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variability (e.g. single- and multi-point mutations). For the aggregation landscape we only have
inter-family datasets (six from Jain et al.), and on average the average absolute PCC is below 0.2.

3.6 Parameter size impacts performance more that architecture and dataset composition

We also asked how correlations are affected by deep learning properties, e.g. architecture, dataset
composition, and parameter size. We compared architectures by examining results of AntiBERTy
(encoder-only language model) and IgLM (decoder-only language model), which are models trained
on the same dataset of 558M antibody sequences from the Observed Antibody Space (OAS) [21]. For
all six landscapes, AntiBERTy and IgLM display a similar performance, with the biggest variation
being a greater range in correlations for polyreactivity datasets for AntiBERTy (Supp. A.9). A similar
result was observed for dataset composition: When comparing three ProGen2 models with similar
architecture yet distinct training datasets (ProGen2-OAS is trained on 554M antibody sequences,
and ProGen2-Medium and -Base are trained on different compositions of UniRef90 and BFD30),
no single model outperforms on all six landscapes (Supp. A.9). Prior studies reveal that an increase
in model size typically leads to improved prediction performance [20, 17, 24]. In Supp. A.10, we
plot the performance of four ProGen-2 models with increasing size: small (151M), medium (764M),
large (2.7B), and xlarge (6.4B). While aggregation, binding affinity, expression, and immunogenicity
prediction did not vary with model size, polyreactivity and thermostability improved noticeably. Thus,
larger parameter sizes sometimes better captures the full complexity of the antibody fitness landscape.

3.7 Structure-based and sequence-based models perform similarly

We next asked whether explicitly providing structural information affect correlation performance.
The sequence-based methods comprise AntiBERTy, IgLM, the ProGen2 suite, and the structure-
based methods are ProteinMPNN, ESM-IF, and Rosetta Energy. Across all six fitness landscapes,
sequence-based methods on average outperform the structure-based methods, with the most significant
disparity being thermostability prediction (Supp. A.11). While sequence-based models must learn
both structural syntactic and semantic mapping rules, structure-based methods already have the
input encoded with structural interactions between CDRs and surrounding residues [5]. For the
structure-based methods, no antigen information was provided, which could improve antibody fitness
prediction in particular for the binding affinity landscape. Future work could predict the binding pose
of each antibody mutant with their respective target antigen to score with structure-based methods.

3.8 Some models favor evolutionary signal rather than physical fitness

Finally, we investigated whether any models are biased towards evolutionary signal rather than
physical protein fitness. The prevailing methods for protein structure prediction relies on an input
protein representation coupled with a multiple sequence alignment (MSA) of homologous proteins
to map evolutionary relationships between corresponding residues of genetically-related sequences.
However, a language model that learns patterns in protein sequences across evolution may become
biased towards evolutionary signal and assign higher fitness towards evolutionarily conserved mu-
tations rather than evolutionarily divergent, possibly higher fitness mutations - a phenomenon that
may be observed with some of the models benchmarked in FLAb. AntiBERTy, IgLM, and the entire
ProGen2 suite assign higher confidence to the wild-type golimumab antibody, rather than the mutant
antibody designs that have higher thermostability (Supp. A.12). However, physics-based Rosetta
identifies the higher thermostability antibodies as more stable (lower Rosetta energy) than the wild
type. Future work may consider encoding physics-based priors like Rosetta into a language model to
negate evolutionary bias.

4 Conclusion

We constructed an antibody therapeutic property database and benchmarked the ability of widely
adopted deep learning models to capture antibody properties. No model correlates well with all
six properties, and model performance varies across datasets of the same property. While intrinsic
biophysical properties are more readily captured, many struggle with extrinsic properties like expres-
sion, immunogenicity, binding affinity, and polyreactivity. Additionally, the number of learnable
parameters seems to influence performance more than the model pretraining data composition or
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architecture. Promising directions for protein language models involve incorporating protein structure,
antigen information, physics-based priors, or the ever-growing antibody fitness data in the model.

Unfortunately, there are still too few data points in these datasets for training new models (a recent
study estimates that at least 104 binding affinities are needed for the binding affinity prediction task
[14]). In practice, we will need more nuanced metrics than any single model’s likelihoods, since
they should not be expected to capture all diverse fitness metrics from immunogenicity to binding
affinity. Looking toward the discovery of new data and the development of new models, we invite
contributions to FLAb toward working to the goal of achieving reliable, well-behaved antibody
therapeutics from computational designs.
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A Supplementary material1

A.1 Dataset and code availablility2

Data and model scoring methods used for benchmarking in FLAb can be accessed at3

https://github.com/Graylab/FLAb.4

A.2 Landscapes and dataset descriptions5

Figure 1: Six classes of biophysical data relevant to antibody developability. Desirable values for
each property is shown in green, while undesirable values are shown in red. (a) Antibody expression
is assessed using ELISA fluorescent signal, with high expression indicating high optical density (1.0-
1.5). (b) Thermostability is assessed through differential scanning calorimetry, which measures the
heat capacity change of a sample with temperature, where temperatures above 70°C are considered
ideal. (c) Immunogenicity was quantified as the percentage of patients developing anti-drug antibodies
(ADA) in response to therapeutic administration, where an ideal, non-immunogenic antibody results
in 0% ADA response. (d) Binding affinity is assessed using the equilibrium dissociation constant (Kd),
with a desirable Kd typically falling in the low nanomolar to picomolar range. (e) Aggregation can
be measured using an AC-SINs assay, where no change change in the measured plasmon wavelength
shift is ideal. (e) Polyreactivity can be measured with CIC retention time, where therapeutic antibodies
are expected to have a retention time of at least 10 minutes.

Expression ensures the production of antibodies in a host cell system, which is necessary to isolate6

a molecule for further testing and directly affects production yield and cost of manufacturing. The7

enrichment ratio quantifies the expression of each variant antibody compared to a wildtype antibody.8

The largest set of expression data is from Koenig et al., who conducted an extensive mutational9

analysis over 4275 mutations at all positions within the variable domain of a high-affinity anti-VEGF10

antibody (G6.31) [7]. We also analyze 4 sets of designed antibodies (CA1, CA2, CA3, and CA4)11

from GlaxoSmithKline and our lab, and expression titer in HEK cells for a list of clinical stage12

therapeutic (CST) antibodies [6].13
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Thermostability ensures an antibody will maintain its structure and function when exposed to heat,14

particularly during manufacturing, storage, and administration. Antibodies with high thermostability15

are more likely to remain potent over extended periods and under different storage conditions. A16

diverse set of thermostability measures come from Hie et al. who employed language model-guided17

evolution techniques to investigate mutations in seven antibodies. This set comprised four clinically18

relevant and highly matured antibodies (MEDI8852, mAb114, S309, and REGN10987), as well as19

three unmatured antibodies (MEDI8852 UCA, mAb114 UCA, and C143), providing a set of melting20

temperature values for mutants of the set of evolved antibodies [4]. We also provide thermostability21

data for the aformentioned GSK antibodies and Adalimumab, CD3022, Golimumab from Rosace et22

al.[10].23

Immunogenicity refers to the ability of a therapeutic antibody to elicit an undesirable immune response24

in the body, leading to the generation of anti-drug antibodies (ADAs). ADAs can recognize and25

neutralize therapeutic antibodies, reducing their efficacy and potentially causing adverse effects.26

Minimizing immunogenicity is important for therapeutic antibodies to maintain their efficacy and27

safety. Marks et al. provides a dataset of 198 human, 229 humanized, 63 chimeric, and 13 murine28

antibody sequences, as well as reported anti-drug antibody (ADA) responses from patients for 21729

therapeutics [8].30

Binding affinity ensures the prolonged physical contact during an interaction between an antibody31

and target antigen, impacting their ability to block pathways or target disease molecules. GSK, Hie et32

al., and Rosace et al. provide a combined 13 sets of antibody binding affinity data. Warszawski et33

al. aimed to investigate the mutational tolerance of 135 positions within the anti-lysozyme antibody34

D44.1, for a total of 2048 mutants [15], and the Koenig et al. G6.31 mutant dataset provides 4275 data35

points for binding [7]. Shanehsazzadeh et al. redesign the trastuzumab antibody with 442 zero-shot36

mutants and 24 multi-step mutants [13].37

Polyreactivity of an antibody allows it to bind to multiple antigens. In the context of therapeutic38

antibodies, although polyreactivity can sometimes be beneficial (if it is desired to bind to multiple39

targets) or problematic (if the antibody interfers with normal cellualar function due to off-target40

binding). Rosace et al. provide polyreactivity data for the Adalimumab, CD3022, and Golimumab41

variants [10], and Wittrup et al. provide polyreactivity measurements using BVP, CIC, ELISA, and42

PSR assays on CSTs [6].43

Aggregation refers to the process of individual antibodies coming together to form larger assemblies, or44

aggregates. Aggregation can be problematic as it leads to reduced therapeutic efficacy and potentially45

harmful immune responses. The only aggregation data is 822 fitness values from AC-SINS, CSI,46

HIC, SAS, SGAC, and SMAC assays on CSTs [6].47

A.3 Scoring pipeline48

Figure 2: Pipeline for benchmarking protein language models. All fitness datasets contain columns
for antibody heavy chain sequence, antibody light chain sequence, and an associated fitness metric.
For each protein language model, we separately input the heavy and light sequence to return two
perplexity scores, and we tabulate the average perplexity between the two sequences. For structure-
conditioned language models, we first predict the antibody structure with IgFold [11], and then
tabulate the single perplexity scored from the model. Correlation metrics (Pearson’s, Spearman’s and
Kendall tau’s correlations) are calculated between average perplexity and the fitness measure. No
antigen information is provided for any benchmarked models.
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A.4 Classes of language models scored49

A.4.1 Decoder-only language models50

Decoder-only language models have proven to be effective in generating plausible and novel protein51

sequences. These models are trained using a next-token prediction objective, where the probability52

of the next amino acid is influenced by the entire preceding sequence. During training, a database53

of sequences is utilized to predict P (si|s<i), enhancing the model’s ability to generate accurate54

sequences.55

We evaluate the zero-shot prediction of therapeutic properties by correlating to the perplexity of each56

sequence under those models:57

ppl(x) = exp

 
� 1

n

nX

i=1

ln p(xi|x<i)

!
, (1)

where x = (x1, x2, ..., xn) is a sequence consisting of n tokens.58

The decoder models we benchmark are ProGen2 [9], IgLM [14], and ProtGPT2 [3]. The ProGen259

models come in various sizes, ranging from 151M to 6.4B parameters, pretrained on a mixture of60

UniRef90 and BFD90 databases. IgLM formulates the design task based on text-infilling using a61

standard left-to-right decoder (GPT-2), trained on a non-redundant set of 558M antibody sequences62

obtained from the Open Antibody Sequence (OAS) database. ProtGPT2 is a 738M parameter model63

trained on 50M non-annotatedsequences spanning the entire protein space [3].64

A.4.2 Encoder-only language models65

Encoder-only language models capture comprehensive information in a continuous abstract represen-66

tation. These models are utilized for this purpose, allowing the learning of representations that can be67

broadly applied. A subset of residues is randomly chosen and replaced with a special mask token.68

The model is then trained to predict the identities of these masked residues.69

In an encoder-only model, an estimation of perplexity can be obtained by calculating the exponential70

of the negative pseudo-log-likelihood, or pseudo-perplexity:71

pseudo ppl(x) = exp

 
� 1

n

nX

i=1

ln p(xi|x{\i})

!
, (2)

where x{�i} is the set of all residues except xi.72

In this category of models we focus on AntiBERTy, a 26M parameter model pretrained on 558M73

natural antibody sequences from OAS [12].74

A.4.3 Structure-conditioned language and network models75

Generative deep learning architectures that predict protein sequences from structures are known as76

structure-conditioned language models. Like decoder-only language models, for structure-encoded77

models we can evaluate the perplexity for each antibody sequence-structure pair:78

ppl(x) = exp

 
� 1

n

nX

i=1

ln p(xi|x{\i}, structure)

!
. (3)

ESM-IF uses an autoregressive encoder-decoder architecture, where the model is tasked with recov-79

ering the native sequence of protein from the coordinates of its backbone atoms [5]. ProteinMPNN80

uses a message-passing neural network with 1.4M parameters that predicts protein sequences using81

several protein backbone geometry [2]. Structures of all antibody mutants are predicted with IgFold82

[11] prior to scoring with inverse folding models.83

3



A.4.4 Physics-based models84

We seek to compare the performance of protein language models mentioned in 4.1 - 4.3 versus85

empirical models of protein energy, which has been a longstanding approach for protein design86

efforts. Rosetta, the classic protein structure prediction and design software, employs an optimized87

energy function ref2015 that assesses the energy of atomic interactions within a globular protein [1].88

Score functions within Rosetta are composed of weighted sums of various energy terms. Some of89

these terms correspond to physical forces, such as electrostatics and Van der Waals (VdW) interactions,90

while others represent statistical terms, like the likelihood of observing specific torsion angles in91

Ramachandran space:92

E({xi}ni=1, structure) =
X

t={energy types}

wt✏t({xi}ni=1, structure) (4)

Where ✏i is a Rosetta energy term, and wi is the respective weighted number. Rosetta’s energy93

calculation does not directly correspond to physical energy units, and are instead expressed in Rosetta94

energy units. A lower score indicates a higher likelihood of the structure being closer to the native95

structure. Structures of all antibody mutants are predicted with IgFold prior to calculating Rosetta96

energy.97

A.5 Statistical correlation98

After obtaining predicted scores from each of the benchmarked models, we used a set of one linear99

and two non-linear correlation metrics to determine what relationships exist with the respective fitness100

dataset. Pearson’s correlation coefficient measures the strength and direction of the linear relationship101

between two variables, defined as:102

r =
n (
P

xy)� (
P

x) (
P

y)rh
n
P

x2 � (
P

x)2
i h

n
P

y2 � (
P

y)2
i (5)

where r✏[�1,+1], n is the number of data points, x is the fitness measurement and y is perplexity.103

We also calculate Spearman’s correlation coefficient, which captures the strength and direction of the104

monotonic relationship between two variables, defined as:105

⇢ = 1� 6
P

d2i
n(n2 � 1)

(6)

where ⇢✏[�1,+1], n is the number of data points, and
P

d2i is the squared difference between the106

ranks of variables x and y.107

Kendall’s tau coefficient is used to quantify the strength and direction of the ordinal relationship108

between two variables, defined as:109

⌧ =
nc � ndp

(n0 � n1)(n0 � n2)
(7)

Where ⌧✏[�1,+1], n0 is the total number of pairs of data points, n1 is the number of pairs that have110

tied values for the first variable, n2 is the number of pairs that have tied values for the second variable,111

nc is the number of concordant pairs of data points, and nd is the number of discordant pairs of data112

points.113
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A.6 Overview of top performing models114

Figure 3: Performance plots for top performing model in each fitness landscape. From left
to right across each row, the top performing model for the CST AC-SINS aggregation dataset
was ProGen2-OAS; for the trastuzumab binding affinity dataset was ProGen2-Small; for the D25
expression dataset was ESM-IF; for the mAb immunogenicity dataset was ProGen2-Medium; for
the CD3022 polyreactivity dataset was ESM-IF; and for the golimumab thermostability dataset was
Rosetta energy.

A.7 Intrinsic biophysical properties are more accurately predicted than extrinsic115

Figure 4: Comparison of performance on intrinsic and extrinsic biophysical property prediction.

Intrinsic properties are impacted by inherent properties of the antibody, while extrinsic properties
result from target biology and mechanisms of action. It can be seen that models better predict fitness
variations in intrinsic properties.
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A.8 Models are more accurate at distinguishing intra-family versus inter-family antibody116

datasets117

Figure 5: Comparison of performance on intra-family and inter-family datasets. Models are
more accurate at distinguishing intra-family versus inter-family antibody sets. It can be seen that
models better predict fitness variations in intra-family datasets.

A.9 Architecture and dataset composition deviations do not significantly impact performance118

Figure 6: Comparison of performance on architecture and data composition variations. AntiB-
ERTy and IgLM are trained on the same dataset of 558M antibodies, allowing for a comparison of
architectural differences. ProGen2-OAS, Medium, and Base are 764M parameter models trained
on different datasets, allowing for a direct comparison of dataset differences. In both instances,
architectural and dataset differences do not seem to significantly impact performance.
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A.10 Parameter size influences performance over architecture and dataset composition119

Figure 7: Comparison of performance on parameter size variations. ProGen2 introduced several
models with varying parameter sizes, including Small (151M), Medium (764M), Large (2.7B), and
XLarge (6.4B) - allowing for a comparison of the effect of parameter size on performance.
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A.11 Structure-based and sequence-based models perform similarly120

Figure 8: Comparison of performance on structure-based and sequence-based models. Sequence-
based models bar plots indicate the average performance across AntiBERTy, IgLM, ProtGPT2, and
ProGen2. Structure-based models bar plots indicate the average performance across ProteinMPNN,
ESM-IF, and Rosetta.

A.12 Some models favor evolutionary signal rather than physical fitness121

Figure 9: Protein language models might exhibit bias towards evolutionary signal. Displayed
are the scores of ProGen2-XL and Rosetta energy for mutants of clinically approved Golimumab. It
can be seen that the language model incorrectly assigns higher confidence to the wildtype antibody,
while physics-based Rosetta correctly assigns higher stability to the more thermostable Golimumab
variants.
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A.13 Glossary of terms122

Antibody. Antibodies, also known as immunoglobulins, are Y-shaped proteins produced by special-123

ized white blood cells called B cells. They play a crucial role in the immune system by124

recognizing and binding to specific foreign substances, called antigens, such as pathogens or125

toxins. This binding marks the antigens for destruction by other immune cells. The primary126

region of variability and binding, the Fv region, consists of a heavy chain and light chain127

sequence.128

CDRs. Complementarity-determining regions (CDRs) are short stretches of amino acids within the129

variable regions of antibodies. These loops are responsible for directly interacting with130

antigens. By altering their conformation, CDR loops create a unique antigen-binding site,131

allowing antibodies to recognize a diverse array of antigens.132

Therapeutic antibody. Therapeutic antibodies are antibodies that are designed or engineered for133

medical use. They can be utilized to treat various diseases, including cancers, autoim-134

mune disorders, and infectious diseases, by targeting specific molecules involved in these135

conditions.136

Developability. Antibody developability refers to the set of biological biophysical characteristics that137

determines it’s potential to be manufactured and perform it’s therapeutic objective in a pa-138

tient. These characteristics include high-level expression, high solubility, covalent integrity,139

conformational and colloidal stability, low polyspecificity, and low immunogenicity.140

Protein fitness. Protein fitness refers to the ability of a protein to perform its intended biological141

functions effectively. A protein’s fitness is multi-dimensional and context-dependent, deter-142

mined by its structure, stability, and interactions with other molecules. Proteins with higher143

fitness are more likely to contribute positively to cellular processes.144

Fitness landscape. The fitness landscape of proteins represents the relationship between protein145

variations (mutations) and their corresponding fitness levels. It describes how different146

mutations can impact a protein’s function, stability, and interactions within a biological147

context.148

Thermostability. Thermostability refers to an antibody’s ability to maintain its structure and function149

when exposed to elevated temperatures. Antibodies with high thermostability are more150

resilient and can have longer shelf lives.151

Expression. Antibody expression is the process by which cells, often genetically engineered, produce152

antibodies. This can occur within organisms or in laboratory settings. Efficient expression is153

crucial for generating sufficient quantities of antibodies for research or therapeutic purposes.154

Immunogenicity. Immunogenicity refers to the likelihood of an antibody itself inducing an immune155

response when introduced into an organism. Overly immunogenic antibodies might trigger156

adverse reactions in patients.157

Binding affinity. The binding affinity of antibodies defines how strongly an antibody interacts with158

its target antigen. A high binding affinity implies a strong and specific interaction, which is159

desirable for effective antigen recognition and neutralization.160

Polyreactivity. Polyreactivity is the ability of an antibody to bind to a variety of self and foreign anti-161

gens, which may be completely unrelated, and is often attributed to a more conformationally162

flexible antigen binding pocket.163

Aggregation. Aggregation of antibodies refers to the process by which individual antibody molecules164

come together to form large complexes or aggregates. These aggregates can reduce efficacy,165

trigger an immune response, or affect the storage stability after manufacturing.166

A.14 Limitations167

A limitation to this work is that the available labeled antibody fitness datasets are currently small.168

Many of these datasets consist of a relatively small number of data points, often containing fewer than169

30 data points. While these datasets provide insights into the prediction capabilities of AI models, the170

limited data points present challenges in establishing robust correlations between true and predicted171

fitness. Out of 1872 of the calculated correlations (52 datasets, 12 models, and 3 correlations per172

dataset-model pair), only 515 correlations had an associated p-value less than 0.05. Nevertheless,173

this benchmark provides a starting point for assessing the predictive potential of AI models in the174

9



realm of therapeutic antibody fitness. The results obtained offer crucial insights into the strengths175

and weaknesses of different approaches, guiding future research efforts towards enhancing predictive176

accuracy and robustness. Additionally, we call upon antibody engineers in academia and industry177

to generate additional data and contribute it to this repository. Future work correlating antibody178

embeddings with these properties must use caution with the currently small size of FLAb.179

Additionally, since the fitness datasets we provide contain experimental data from independent studies,180

the exact conditions for each experiment are likely different from one study to another, ultimately181

leading to inconsistencies in the reported experimental data (e.g., binding affinities may be affected by182

different solution concentrations in each study). The limited availability of public experimental data183

on therapeutic antibody candidates hinders the comprehensive evaluation of protein language models184

and development of novel protein design models. We urge collaboration between experimentalists185

and computational scientists to share therapeutic antibody data, enabling thorough analysis and186

improving the therapeutic antibody design process.187

A.15 Summarizing heat map of statistical correlations188

Figure 10: Summary of performances for each model-dataset pair. Linear (Pearsons’s) and non-
linear (Spearman’s, Kendall tau’s) correlations are provided for a) aggregation, b) binding affinity, c)
expression, d) immunogenicity, e) polyreactivity, and f) thermostability fitness prediction. Models
generally perform best with thermostability and binding affinity datasets of single point mutants, but
struggle with aggregation and expression datasets of antibodies with differing wildtype origins.
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