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Abstract

Machine learning (ML) for protein design frequently requires large datasets of
protein fitness generated by high-throughput experiments, and many ML models
use these datasets for training, fine-tuning, and benchmarking. However, these
approaches do not account for underlying experimental noise, potentially making
their conclusions inaccurate. In this work, we present FLIGHTED (Fitness Land-
scape Inference Generated by High-Throughput Experimental Data), a Bayesian
method for generating fitness landscapes with calibrated errors from noisy high-
throughput experimental data. We apply FLIGHTED to datasets generated by
single-step enrichment-based selection assays such as Fluorescence-Activated Cell
Sorting (FACS) and phage display and to data from a novel high-throughput assay
DHARMA (direct high-throughput activity recording and measurement assay) that
ties fitness to base editing activity. Our results suggest that de-noising single-step
selection data generates well-calibrated predictions that are sufficient to change
which models perform best in benchmarking studies. Applying FLIGHTED to
DHARMA provides more accurate fitness measurements with better calibrated er-
rors; FLIGHTED-DHARMA can be used to generate large protein fitness datasets
with up to 106 variants. FLIGHTED can be used on any high-throughput assay and
makes it easy for ML scientists to account for experimental noise when modeling
protein fitness.

1 Introduction

Machine learning (ML) approaches have been remarkably successful in a variety of protein design
problems [9, 8]. Many of these approaches rely on data generated by high-throughput experiments;
this data is used as training or fine-tuning data for a large ML model which optimizes the desired
protein function [3, 2, 26, 9]. Fitness measurements from high-throughput experiments are also
more broadly used for benchmarking protein language models and in silico retrospective model
performance evaluations [5, 20, 19, 14, 15].

However, high-throughput experiments are inherently noisy; for example, experiments like deep
mutation scanning (DMS) or phage display that rely on a single selection step have substantial noise
in the measured enrichment ratio [7, 21, 4]. Despite warnings in the literature, most ML protein
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modeling efforts completely ignore any experimental noise present in large fitness datasets. Using
noisy datasets for training, benchmarking, and evaluating models can lead to inaccurate conclusions.

In this paper, we present FLIGHTED (Fitness Landscape Inference Generated by High-Throughput
Experimental Data), a new approach to generating reliable fitness landscapes with calibrated errors
from noisy high-throughput experiments. Previous work in this area has been limited to single-step
selection experiments [4, 21] or limited in the complexity of ML model [7]. FLIGHTED is applicable
to any high-throughput experiment and an arbitrarily complex ML model.

Key Contributions We present three key contributions:

1. FLIGHTED, a Bayesian method to generate fitness landscapes with calibrated errors from
noisy high-throughput experimental data, which can be generalized to any high-throughput
experiment.

2. FLIGHTED-Selection, a model for single-step selection experiments (including phage
display and deep mutational scans) that produces robust, calibrated errors and can be used
to correct datasets for benchmarking.

3. A new high-throughput experimental assay, DHARMA, and denoising model FLIGHTED-
DHARMA that can be used to generate fitness datasets with millions of data points.

2 Methods

Figure 1: A Comparison between FLIGHTED and a Conditional Variational Auto-Encoder. This
provided the motivation for selection of the model and guide for FLIGHTED.

FLIGHTED was motivated by analogy to a conditional variational auto-encoder (CVAE), as shown
in Figure 1. In general, a high-throughput experiment may be modeled as shown in the bottom left of
Figure 1. This probabilistic graphical model is identical to that of a CVAE [23], where an output z is
predicted from an input x through a latent variable y. We can use stochastic variational inference
for learning like the CVAE. Stochastic variational inference has two main advantages. It allows for
model parameters to be fit once to a calibration dataset and then used to estimate a posterior given
any subsequent experimental measurements. Further, the models built can have arbitrary complexity
(including neural networks), since the posterior does not need to be solved for exactly.

Instead of an arbitrary neural network, we use biological knowledge to develop a specific probabilistic
graphical model of how to generate an experimental readout from fitness. Our guide, or variational
distribution, must predict fitness from the experimental readout; we use a neural network since we do
not have specific biological knowledge here.

Given these building blocks, we proceed as follows:

1. Use biological knowledge to build a probabilistic graphical model for a given high-
throughput experiment.

2. Pick a neural network architecture for the guide to predict fitness from the experimental
readout. Simpler architectures tend to perform the best.

3. Generate a calibration dataset via simulation or experiment that includes both experimental
readouts and ground-truth fitness values.

4. Train the model on solely the experimental readouts, and evaluate model accuracy and
calibration using the calibration dataset.
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Figure 2: FLIGHTED-Selection Model Performance. (a) Single-step selection assays always include
sampling noise when reads are sampled for sequencing. (b) The probabilistic graphical model used
for FLIGHTED-Selection. (c) Simulations indicate that the enrichment ratio has considerable noise
in a single-step selection experiment due to sampling. (d) Typical FLIGHTED-Selection predictions
for a given enrichment ratio. (e) FLIGHTED-Selection model predictions are well-calibrated. (f)
FLIGHTED-Selection model performance is robust to changes in number of reads selected pre- and
post-selection if there are more reads than variants (204 here). (g) Mean squared error of downstream
protein models on the GB1 dataset [25] following standard benchmark splits [5] with and without
FLIGHTED-Selection. The top-performing model changes, suggesting that FLIGHTED-Selection
affects the conclusions of these benchmarking studies.

The resulting model is trained in a fully unsupervised fashion without any ground-truth fitness data;
the calibration dataset is only used for hyperparameter tuning and to ensure model accuracy. Learning
from only experimental readouts is possible because the biological knowledge used to build the model
constrains the space of possible models.

3 Results

3.1 Single-Step Selection

Single-step enrichment-based selection assays are experimental assays in which a library of variants
is produced, a selection step occurs to select fitter variants, and the remaining selected population
is measured; see Figure 2a [11, 22]. These include mRNA display, phage display, and many DMS
studies, and comprise a substantial portion of fitness landscapes used for ML [25, 5]. Fitness is usually
measured as the enrichment ratio, or the ratio of variant sequences sampled post- to pre-selection
[11]. However, the enrichment ratio is an inherently noisy measurement due to sampling noise, the
noise associated with sampling the reads to be sequenced from a larger library [11]. Sampling noise
is unavoidable in a single-step selection assay and the source of noise we choose to model [11].

To understand the impacts of sampling noise and generate calibration datasets for downstream training,
we ran simulations of a single-step selection assay on a randomly generated fitness landscape with
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204 variants. Figure 2c plots the probability distributions of the enrichment ratio for a given fitness,
showing there is considerable noise. Therefore, enrichment ratio is not a reliable measure of fitness.

The probabilistic graphical model for FLIGHTED-Selection is shown in Figure 2b; exact mathemati-
cal statements can be found in the appendix. The guide model uses the logit of the enrichment ratio as
the mean and predicts the variance using linear regression. FLIGHTED-Selection is trained on a cali-
bration dataset of simulations on a randomly generated landscape. We use simulations as the training
data since we need to know the ground-truth fitness to accurately evaluate FLIGHTED-Selection’s
performance; there is no easy way to measure ground-truth fitnesses for given real-world single-step
selection experiments. Typical model predictions are shown in Figure 2d for given enrichment ratios;
for more active variants, single-step selection experiments produce less reliable fitness measurements.

To evaluate model performance, we focused on calibration of the variance, since the mean was not
predicted. We generate a separate random fitness landscape to eliminate data leakage, simulate
single-step selection assays, and compute the z-value of the true fitness compared to the model
prediction. The resulting distribution is shown in Figure 2e and looks very similar to a normal
distribution, suggesting that FLIGHTED-Selection is well-calibrated. The mean log likelihood of our
predictions is −0.97, very close to that expected for a normal distribution.

Next, we evaluated the robustness of FLIGHTED-Selection to various experimental conditions. The
model is robust to most parameters (see Figure 2f and Supplementary Figures S3 and S4). The
parameters that matter the most are the number of reads drawn pre- and post-selection. If the number
of reads sampled is fewer than the number of variants (204), the model is no longer well-calibrated.

Our results suggest that ML methods currently benchmarked on single-step selection datasets need to
be re-benchmarked. Unlike previous work [4, 7], we do not believe a comparison between models
trained on the original noisy data and the corrected data is appropriate; this is an apples-to-oranges
comparison since the test set has changed. As an example, we looked at the popular GB1 dataset
as processed by the FLIP benchmark [25, 5], using FLIGHTED-Selection to add error bars to each
datapoint in the dataset. A comparison of the 4 GB1 benchmark tasks with and without FLIGHTED is
shown in Figure 2g, for models proposed by FLIP. On 3 out of the 4 tasks, the top-performing model
changes between the original and corrected datasets. Our results demonstrate that protein fitness
datasets from single-step selection experiments need to be corrected with FLIGHTED-Selection to
account for sampling noise.

3.2 DHARMA

To mitigate some of the flaws in single-step selection assays, we turn to DHARMA (direct high-
throughput activity recording and measurement assay), a recently developed high-throughput protein
fitness assay [24]. DHARMA measures fitness by linking protein fitness to transcription of a base
editor; this base editor is targeted to a contiguous DNA segment ("canvas") where it randomly causes
C→T edits, as shown in Figure 3a. Higher fitness leads to higher base editor transcription and more
C→T edits [24].

DHARMA can be run in high-throughput on up to 106 variants at once, since the readout is measured
by cheap long-read sequencing. It can measure any protein function that can be linked to transcription,
which includes protease activity, gene editing, and protein and DNA binding [13]. However, transcrip-
tion is an inherently stochastic process [17] so DHARMA output is noisy; Figure 3e demonstrates
that repeated DHARMA experiments on the same variant can result in differing C→T edit counts.
Therefore denoising via an ML model is essential for reliable fitness measurements.

The probabilistic graphical model for FLIGHTED-DHARMA is shown in Figure 3b; exact mathe-
matical statements can be found in the appendix. The guide predicts both the mean and variance of
fitness given a single DHARMA read. We generated a calibration dataset by running a DHARMA
experiment on a 3-site library of T7 polymerase. Ground-truth fitness measurements were produced
by Fluorescence-Activated Cell Sorting (FACS) on a subset of 119 variants, in which T7 polymerase
drives the expression of GFP instead of base editor. Error was minimized in these FACS measure-
ments by using a large number of cells per variant. To eliminate data leakage, FLIGHTED-DHARMA
was not trained on any DHARMA read from any variant for which FACS was measured. Concretely,
in Figure 3f we show the predicted number of C→T edits with error given a particular fitness.
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Figure 3: FLIGHTED-DHARMA Model Performance. (a) DHARMA links fitness to edit rates of a
DNA segment (canvas) via transcriptional control of a base editor, an inherently noisy process. (b)
The probabilistic graphical model for FLIGHTED-DHARMA. (c) FLIGHTED-DHARMA improves
performance of fitness predictions when compared to a baseline model that predicts number of
C→T mutations. (d) FLIGHTED-DHARMA is reasonably well-calibrated on even small subsets of
DHARMA reads. (e) Noise in DHARMA as a function of true fitness. (f) FLIGHTED-DHARMA’s
prediction of number of C→T mutations as a function of fitness. (g) Canvas nucleotides most likely
to be edited according to FLIGHTED-DHARMA are found at guide RNA binding sites, as expected.

Fitnesses predicted by FLIGHTED-DHARMA can be related to the FACS readout by an arbitrary
nondecreasing function. We used a validation set to fit this to a piecewise linear function. The initial
flat section of the piecewise linear functions corresponds to low-activity variants where background
fluorescence dominates the FACS measurement. We then evaluated model performance on the
remaining test set, as shown in Figure 3c. FLIGHTED-DHARMA was compared to a baseline
model that predicted the mean and variance of C→T mutation count. We found that FLIGHTED-
DHARMA’s MSE was 0.72, an improvement over the baseline MSE of 0.78.

We also evaluated the calibration of our predicted variances. In Figure 3d, we selected random subsets
of DHARMA reads and measured the true and predicted error of FLIGHTED-DHARMA. We then
computed z-scores to evaluate model calibration. The mean log likelihood was −3.93, suggesting
that FLIGHTED-DHARMA is slightly overconfident but decently well-calibrated. Baseline model
performance was substantially worse with a mean log likelihood of −8.00 (see Supplementary Figure
S7). Since our calibration tests included small subsets of DHARMA reads, we can be confident that
FLIGHTED-DHARMA will produce reasonable errors even when given few DHARMA reads. This
aids experimentalists by informing them whether a given number of DHARMA reads is sufficient
for a fitness measurement. Unlike single-step selection, predicted errors in a DHARMA fitness
measurements decrease as fitness increase, suggesting that DHARMA may sometimes be more
appropriate for measuring the fitness of highly active variants.

Finally, since FLIGHTED uses a biological model of DHARMA, we can examine the parameters of
that biological model directly to see whether they make sense. In Figure 3g, we compute the logit of
the C→T edit probability at a given canvas residue as a function of fitness. The probability of a C→T
edit increases and is more fitness-dependent every 48 residues. The base editor is targeted at these
locations, so we expect the probability of a C→T edit to increase and be more dependent on base
editor activity, as we see. This is an example of how FLIGHTED leads to an interpretable model.
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4 Discussion

FLIGHTED has consistently generated fitness landscapes with calibrated errors for two very different
high-throughput experiments. Since it is Bayesian, it can be easily extended further. We are currently
working on an extension to multi-step selection experiments like Phage-Assisted Continuous Evolu-
tion (PACE) [6, 13] and extensions to other high-throughput experiments should be straightforward.
FLIGHTED also makes combining data from different high-throughput experiments possible.

Our results on FLIGHTED-Selection suggest that common ML benchmarks like FLIP [5] or Prote-
inGym [15] need to be corrected to account for noise inherent in single-step selection. Correcting
these benchmarks may change downstream evaluations of protein models. Further, single-step
selection experiments may not be well-suited for distinguishing between highly active variants.

FLIGHTED-DHARMA enables the use of DHARMA as a data generation method for machine
learning. The noisy nature of biological circuits presents challenges in effectively using DHARMA
to quantify activities. We provide calibrated error estimates that inform practitioners when they have
enough DHARMA reads to make a reliable fitness estimate. DHARMA can be used to cheaply
generate large datasets of up to 106 variants, and in some contexts may be more accurate that single-
step selection experiments on distinguishing between highly active variants. This is an example of
how FLIGHTED can select which experiment is used to generate the most accurate fitness landscape
data for downstream ML training.

4.1 Data and Code Availability

All code used is available at this Github repository, including code to set up and use FLIGHTED-
selection and FLIGHTED-DHARMA on new datasets. All data used to generate figures in this
paper is available at this Zenodo repository. Any further information (like hyperparameter scans for
generating the FLIGHTED models) can be obtained by contacting the authors.
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A Detailed Methods

All models were implemented using the probabilistic programming package Pyro [1] alongside
PyTorch [16]. Use of Pyro makes model development substantially easier due to rapid iteration of
model architectures.

A.1 Single-Step Selection

Simulation and Dataset Generation Single-step selection experiments were simulated on a land-
scape of Nvar = 204 variants, with the ith variant having a fitness or selection probability pi uniformly
distributed between 0 and 1, i.e. pi ∼ U([0, 1]). The total initial population Ninit = 1011. Each variant
i had an initial population drawn from the Dirichlet distribution Ninit,i ∼ NinitDir(α), α = (1, . . . , 1).
An initial pre-selection sample Nsampled, init,i was drawn according to a multinomial distribution
Mult(Ninit,i), with Nsampled, init = 108 samples being drawn.

In the selection step, the ith variant had a post-selection population drawn from the binomial
distribution, i.e. Nfinal,i ∼ B(Ninit,i, pi). The post-selection sample Nsampled, final,i was similarly
drawn according to a multinomial distribution Mult(Nfinal,i) with Nsampled, final = 108 samples being
drawn. We ran 100 simulations on a single landscape to generate training data and to assess the noise
levels in the enrichment ratio as shown in Figure 2c.

The parameters of this simulation were selected to be similar to those used in generating the GB1
dataset [25]. Simulations with smaller numbers of reads drawn both pre- and post-selection were used
to assess robustness. Simulations were also run with varying Dirichlet parameters and using a beta
distribution for the selection probability instead of a uniform distribution; these did not significantly
affect the noise found in the enrichment ratio.

The FLIGHTED-Selection Model The model is an implementation of the probabilistic graphical
model shown in Figure 2b in Pyro. The sequence-to-fitness function is simply a dictionary lookup,
with the fitness of each variant i defined as a parameter to be optimized. Fitness means mi and vari-
ances σi are predicted by the sequence-to-fitness function/dictionary, and the variance is transformed
by a softplus function F to ensure it is positive. The fitness of each variant is then sampled from
a normal distribution N (mi, F (σi)) and transformed by a sigmoid function to be between 0 and
1. To avoid issues near the boundaries, fitnesses are clamped to be between 0.001 and 0.999. The
initial population of each variant Ninit,i is a per-data-point parameter in Pyro. We then sample from
the multinomial and binomial distributions as described in the simulation section to implement the
desired probabilistic graphical model.

The guide predicts the fitness mean for a given experiment as logit
(ENR
100

)
, where ENR is the enrich-

ment ratio. The scale factor of 100 ensures that the transformed enrichment ratio is between 0 and
1 before being fed into the logit function; it can be changed arbitrarily with no impact on model
performance after retraining. The variance is predicted by a linear model with 2 inputs: Nsampled, init,i

Nsampled, init

and Nsampled, final,i

Nsampled, final
. The predicted variance is also transformed by a softplus function to ensure that it is

positive.

Each data point for the FLIGHTED-Selection model consists of an experiment or simulation, not the
outcome of a single variant within an experiment, because the number of reads of a given variant
sampled pre- and post-selection depends on the population of other variants in the sample. To combine
predictions from the guide model for different experiments in a single batch, we simply multiply the
relevant Gaussians and sample the fitness from the resulting combined Gaussian distribution.

We used a learning rate of 10−2, a learning rate on the landscape model (the sequence-to-fitness
function) of 10−1, a batch size of 10, 150 epochs, 10 particles in the ELBO loss function in Pyro,
and a plateau learning rate scheduler with a patience of 4 epochs. Other hyperparameters can be
found in the released code. The model was trained on 80 of the 100 simulations, validated on another
10 (randomly split), and tested on the final 10. To minimize data leakage, final test results were
computed on a randomly generated set of 100 simulations on a completely different random fitness
landscape.
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GB1 Landscape Benchmarking To compute the corrected GB1 landscape with FLIGHTED-
Selection, we took the guide and ran inference on the released GB1 landscape data, which provided
both pre- and post-selection read counts in addition to the enrichment ratio [25]. We omitted all
data points that were omitted in the original study due to not being observed. We then followed the
published data splits provided by FLIP [5] to generate datasets both with and without FLIGHTED-
Selection for the GB1 problem. Models trained on datasets with corrections from FLIGHTED-
Selection are trained with a weighted mean-squared-error (MSE) loss, weighted by the inverse
variance. Weighted MSE is used to account for the variance, assuming that the likelihood of the data
is the same as that of a normal distribution with the provided variance. Performance results reported
in Figure 2g are regular MSEs for the datasets without corrections and weighted MSEs for datasets
with corrections.

The models tested largely follow the ones proposed in FLIP with a few modifications, but we
specify all the details here for clarity [5]. The linear regression model (labeled Linear) takes one-hot
embeddings of the full sequence and runs them through 1 linear layer. It uses an Adam optimizer with
a learning rate of 10−2, a batch size of 256, and a weight decay of 1. The CNN model (labeled CNN)
takes one-hot embeddings of the full sequence and has 1 convolutional layer with 1024 channels and
filter size 5, and same padding. It then has a 1D batch normalization layer and a ReLU activation,
followed by an embedding neural network consisting of a linear layer to 2048 dimensions and a
ReLU activation. Then there is a max-pooling layer over residues, a dropout layer with probability
0.2, and a final linear layer for the output. The CNN is trained with a batch size of 256 and an Adam
optimizer with a learning rate of 10−3 and weight decay of 0 for the convolutional layer, a learning
rate of 5 ∗ 10−5 and weight decay of 0.05 for the embedding layer, and a learning rate of 5 ∗ 10−6

and weight decay of 0.05 for the output layer. Unlike the original FLIP paper, we did not use early
stopping and trained all models for a full 500 epochs, using validation set performance to select the
optimal model.

The models labeled TAPE, ESM-1b, ESM-1v, and ESM-2 all use mean embeddings across the entire
sequence that are fed into a feedforward neural network to compute the output [20, 12, 18]. The
output feedforward neural network has 2 layers with a hidden dimension equal to the embedding
dimension of the protein language model and ReLU activation. All models are trained with an Adam
optimizer with batch size 256 and learning rate 10−3. The TAPE model used was the transformer, the
ESM-1v model used was version 1, and the ESM-2 model used was the 3 billion parameter version
(due to memory issues with the larger model).

The models labeled TAPE (CNN), ESM-1b (CNN), ESM-1v (CNN), and ESM-2 (CNN) use residue-
level embeddings that are fed into a CNN, similar to the baseline CNN described above. The
intermediate dimension output by the embedding neural network is set to be twice the dimension of
the output of the protein language model. All other parameters remained the same.

A.2 DHARMA

T7 Polymerase Dataset Generation We engineered a biological circuit to associate the enzymatic
characteristics of T7 RNA polymerase variants with mutations accumulating on a designated DNA
sequence, known as the canvas. T7 RNA polymerase is an enzyme responsible for transcribing DNA
into RNA, and we constructed a library of variants with different recognition and activity profiles.

The transcription of the base editor, an enzyme that can induce mutations, is controlled by a T3
promoter. This promoter is selectively recognized by a subset of the T7 RNA polymerase variants.
To moderate the expression levels of the T7 polymerase library and prevent rapid saturation of the
canvas—which would compromise the collection of meaningful activity data—we used both a weak
constitutive promoter and a weak ribosomal binding site.

We incorporated this biological circuit into cells already containing plasmids that express the single
guide RNA (sgRNA), through a technique called electroporation. The sgRNA serves to guide the base
editor to the specific canvas sequence where mutations are to be introduced. After electroporation,
the cells were grown continuously in a bioreactor. Following this growth period, the region of the T7
polymerase library and the canvas with mutations was selectively amplified as contiguous fragments
of DNA. The amplified material was then subjected to long-read Nanopore sequencing for detailed
analysis of the mutations and activities of different T7 RNA polymerase variants.
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To facilitate data analysis, we implemented a data processing pipeline. Its core function is to identify,
tabulate, and assign mutations present in each sequencing read to the corresponding library member.
This assignment is based on internal barcodes represented as degenerate codons in the T7 RNA
polymerase sequence. The pipeline accepts raw sequence reads in standard genomic formats and
performs length-based filtering and optional sequence trimming. An algorithm incorporating local
sequence alignment is used for barcode recognition and classification during the demultiplexing
of reads. Additionally, each read is aligned to the reference sequence of the canvas to identify the
location of each C→T mutation, which is then stored in a matrix for downstream ML model training.

The FLIGHTED-DHARMA Model The model is an implementation of the probabilistic graphical
model shown in Figure 3b in Pyro. The sequence-to-fitness function is simply a dictionary lookup,
with the fitness of each variant i defined as a parameter to be optimized. Fitness means mi and vari-
ances σi are predicted by the sequence-to-fitness function/dictionary, and the variance is transformed
by a softplus function F to ensure it is positive. The fitness of each variant is then sampled from a
normal distribution N (mi, F (σi)) and fitnesses are clamped at −2.

For each position i in the canvas, we set a learnable parameter ri for a baseline rate of generic
mutations (which accounts for most sequencing error from the long-read sequencing). For positions
that are cytosines, we set a learnable parameter mi for the fitness-dependent slope and bi for the
intercept. Then for all cytosines, given a fitness f of the variant, the logit of the C→T edit is set to
mi + bif and the logit of any other mutation or deletion is ri. For non-cytosine residues, we simply
have a logit of any mutation set to ri. We sample from the one-hot categorical distribution for each
residue independently to get the output DHARMA read, i.e. from Cat((1,mi + bif, ri)) for cytosine
residues and Cat((1,−∞, ri)) for non-cytosine residues.

The guide predicts fitness (with variance) from a single DHARMA read. We used a feedforward
network with 2 layers with a hidden dimension of 10 and a ReLU activation between the two layers.
To simplify the learning problem, only cytosine residues were fed into the guide and each position was
featurized as either a C→T edit or a non-C→T edit (including both no mutation or other mutations
or deletions). Variances were transformed under the softplus function. Fitnesses of variants with
multiple reads can be predicted by multiplying the appropriate predicted Gaussians of the individual
read.

The ELBO loss used 1 ELBO particle. The landscape model (sequence-to-fitness function) learning
rate was 10−2, the learning rate elsewhere was 10−4, and the batch size was 2. We used a plateau
learning rate scheduler with a patience of 1 epoch and a factor of 0.1, stepped based on the training
loss (not validation loss). The model was trained for 25 epochs.

To minimize data leakage, all reads corresponding to sequences in the fluorescence dataset were
eliminated from training. 10% of the remaining reads were held out as a validation set to pick the
optimal epoch for the model.

Many of the hyperparameters were carefully tuned using a grid search. For tuning, we wanted to use
the MSE with the FACS data, so we needed to fit the predicted fitnesses to the FACS data. We did
not use Spearman correlation so we could measure true error (as opposed to rank-order error) and so
we could account for situations where the function relating the FACS data to predicted fitness was
not increasing (as happened here). For this, we split out a 50% of the FACS data to use as a fitness
regression/validation set and evaluated the mean of the logarithm of all FACS samples. Each model
was given the option of fitting using either a piecewise linear function or a linear regression. The
linear regression was fit normally. The piecewise linear function corresponded to the functional form

f(x) =

{
a x ≤ xc

m(x− xc) + a x > xc.

This ensured that for low fitnesses, the predicted fluorescence was constant, as would be expected for
background fluorescence. We then used orthogonal distance regression, as implemented in scipy, to
fit the piecewise linear function accounting for errors in both predicted fitness and the FACS data.
[10] Between the linear regression and piecewise linear fit, the function with the lower MSE on the
validation data was selected.

This validation set MSE was also used for selecting hyperparameters, leaving the remaining 50%
of the FACS data as a test set used solely for evaluating model performance as shown in Figure
3c. Hyperparameters tuned included the batch size, learning rate, learning rate scheduler step, and
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Figure S1: Fitness vs. Enrichment Ratio for Single-Step Selection Simulation. Another perspective
on the noise in Figure 2c, showing significant noise in the enrichment ratio.
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Figure S2: Noise in Single-Step Selection Simulations Increases for Higher Enrichment Ratio. In
the left figure, the x-axis is the minimum enrichment ratio and the y-axis is the Pearson r between
enrichment ratio and fitness for all data points above that minimum. The drastic drop-off in Pearson
r as minimum enrichment ratio increases shows that high-activity variants essentially provide 0
information from just their enrichment ratio. The right figure shows that this is a significant number
of variants. We also tried filtering at a minimum of 10 reads, which improves results but still shows
significant noise.

number of layers in the guide model. We also evaluated the optimal number of hours to grow the cells
in the bioreactor, as an example of an experimental parameter than can be tuned using FLIGHTED.

Model Evaluation Model performance was measured with the 50% held-out test set of the FACS
data, as described above, using the fitnesses predicted by the guide model in FLIGHTED-DHARMA
and the fitness-to-fluorescence function fit on the validation set. The results of that performance
evaluation are shown in Figure 3c.

We then evaluated calibration of the model. To increase the number of data points (since we only had
192 variants measured through FACS), we subsampled subsets of reads for each variant. Specifically,
for all test set variants, we sampled 10 subsets each of sizes ranging from 1 to the maximum possible
number of reads. We then predicted the fitness of each variant using the given subset of reads with
the guide model. We computed the true fitness using the FACS data, eliminating any data points
where the true fitness was below the baseline of the piecewise linear function. We then computed the
z-score by comparing this predicted and true fitness. This generates the plots shown in Figure 3d.

B Supplementary Results

B.1 FLIGHTED-Selection

Noise in Single-Step Selection Simulations We provide a few more perspectives on the level of
noise found in single-step selection experiments based on our simulations. First, Figure S1 shows
the enrichment ratio and fitness of all variants in a single-step selection simulation. This is another
perspective on the data shown in Figure 2c.
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Figure S3: Robustness of FLIGHTED-Selection as a Function of Number of Variants. As the number
of variants increases, the log likelihood of FLIGHTED-Selection becomes slightly worse, but not
substantially so.

To directly show the extent of the impact on downstream ML, we measure the Pearson correlation
between fitness and enrichment ratio. In Figure S2, we do so for subsets of the data with increasing
minimum enrichment ratio cutoffs. The Pearson r drops off dramatically as the minimum enrichment
ratio increases, showing that noise in the enrichment ratio for high-activity variants is so significant
that the data itself is essentially meaningless. The right half of Figure S2 shows that this is still a
significant number of variants, at least 1000.

Many papers including the GB1 landscape [25] filter their data by using a minimum number of reads
to reduce noise. To evaluate the effect of this, we set a minimum number of 10 reads and repeated
the above analysis. We still found considerable noise in the enrichment ratio as shown in Figure S2
(orange line) indicating that setting a minimum is not sufficient to reduce noise in the enrichment
ratio.

FLIGHTED-Selection Model Performance We examine the robustness of FLIGHTED-Selection
as a function of various parameters of the data generation process. In Figure 2f we showed the log
likelihood as a function of number of reads sampled pre- and post-selection and demonstrated that
the model was very reliable as long as the number of reads sampled was greater than the number
of variants (at 204). Next, we fix the number of reads sampled pre- and post-selection and evaluate
robustness as a function of number of variants. In Figure S3, we see that the log likelihood of
FLIGHTED-Selection does not get considerably worse as a function of the number of variants.

We also experimented with varying various parameters of the random distributions in the simulation
to see whether that affected FLIGHTED-Selection model performance. We replaced the uniform
distribution used to draw the selection probabilities with a beta distribution, and varied the argument of
the beta distribution. This represents fitnesses that peak at lower or higher values as opposed to being
uniform between 0 and 1. We also replaced the argument of the Dirichlet distribution used for drawing
the initial population with (α, . . . , α), allowing for biases in the initial population towards one variant.
In Figure S4, we see that these factors generally have very little effect on robustness. A Dirichlet
distribution with parameter (0.1, . . . , 0.1) does show some drop in log likelihood, corresponding to a
case where one variant is a dramatically larger proportion of the population. So in situations where
one variant has dominated the population, FLIGHTED-Selection should not be used.

B.2 FLIGHTED-DHARMA

FLIGHTED-DHARMA Model Performance To better contextualize the fitness-to-FACS fit, we
show the fits on the validation set for both FLIGHTED-DHARMA and the baseline model in Figure
S5. Generally, FLIGHTED-DHARMA’s predicted fitnesses were fit using a piecewise linear function,
while depending on the timepoint, the baseline model used either a linear or piecewise linear function.

We next examine the calibration of FLIGHTED-DHARMA as compared to the C→T baseline model.
First, we directly examine calibration on the test data, using all reads available for each datapoint in
the test set. In Figure S7, we see the true and predicted errors from FLIGHTED-DHARMA and the
baseline model on the test set data, as well as the histogram of z scores for both models. The baseline
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Figure S4: Robustness of FLIGHTED-Selection as a Function of Simulation Parameters. The beta
distribution is used to determine the distribution of fitnesses and the Dirichlet distribution is used
to determine the distribution of initial populations. We see that these parameters in general have
minimal effect on FLIGHTED-Selection log likelihood, but with very low Dirichlet parameters there
is a decrease in performance.
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Figure S5: Accuracy on Validation set for (left) Baseline and (right) FLIGHTED-DHARMA. This
shows the fit between the fitnesses predicted by each model and the log FACS mean, as done by either
a piecewise linear function or a linear function.
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Figure S6: Calibration of FLIGHTED-DHARMA as Compared to Baseline. The baseline model’s
true errors are not related to the predicted error, while FLIGHTED-DHARMA has higher true error
when predicted error is higher. As such, FLIGHTED-DHARMA is considerably better calibrated
with many fewer z-score outliers.
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Figure S7: Calibration of Baseline C→T Model. The baseline model’s calibration is considerably
worse compared to FLIGHTED-DHARMA’s in Figure 3d.

model predicted errors are largely unrelated to true error, while the FLIGHTED-DHARMA model’s
predicted errors increase as true error increases. The log likelihood of the baseline model on this
dataset was −19.8 while the log likelihood of FLIGHTED-DHARMA was −10.0, so FLIGHTED-
DHARMA shows considerable improvement.

This is a relatively small dataset since we did not subsample subsets of reads as we did in Figure 3d.
The subsampling process gives us a better understanding of how FLIGHTED-DHARMA behaves
with very small subsets of reads. In Figure S7, we have the calibration of the baseline model as
compared with that of FLIGHTED-DHARMA in Figure 3d. The calibration is considerably worse,
with the z-score distribution looking very non-normal and a much lower log likelihood of −8.00 as
compared to FLIGHTED-DHARMA’s log likelihood at −3.93.
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