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Abstract

We present FrameFlow, a method for fast protein backbone generation using SE(3)
flow matching. Specifically, we adapt FrameDiff, a state-of-the-art diffusion model,
to the flow-matching generative modeling paradigm. We show how flow matching
can be applied on SE(3) and propose modifications during training to effectively
learn the vector field. Compared to FrameDiff, FrameFlow requires five times fewer
sampling timesteps while achieving two fold better designability. The ability to
generate high quality protein samples at a fraction of the cost of previous methods
paves the way towards more efficient generative models in de novo protein design.

1 Introduction

Generative models have demonstrated the potential to design novel protein structures for bespoke
functions. Much of this success is due to advancements in diffusion models, which have been applied
to various protein representations, ranging from carbon-alpha only [1], to torsion angles [2] and
the SE(3) backbone frame representation [3]. Of these, the frame representation has been shown to
achieve state-of-the-art results in de novo protein design tasks such as RFdiffusion [4].

However, a major drawback of diffusion models is their inference speed, with ∼ 1000 model
forward passes often required to produce high-quality samples. This can make large-scale inference
prohibitively expensive if the score model is large, as in the case of RFdiffusion. Recently, flow
matching methods, which remove stochasticity from the sampling path, have emerged as an alternative
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to diffusion models, and have been generalised to Riemannian manifolds [5, 6]. The connection
between flow matching and optimal transport is particularly appealing, as the linear interpolating
schedule enforces straighter sampling trajectories that can be simulated with fewer integration steps
[5]. These benefits have already been demonstrated in the computer vision domain, where flow
matching provides results comparable to diffusion-based models at a fraction of their cost [7].

Motivated by these results, we develop flow matching in the context of protein backbone generation.
We present FrameFlow, an adaptation of the FrameDiff [3] diffusion model to flow matching. In
concurrent work, Bose et al. [8] also develop an SE(3) flow matching method for protein backbone
generation, but don’t demonstrate a speed-up during sampling compared to diffusion models. They
focused on using minibatch optimal transport and stochastic differential equations to achieve higher
designability. In contrast, in this work we take advantage of the flow matching framework to focus on
improved performance and efficiency.

The paper is organized as follows. Section 2 describes flow matching on the SE(3) manifold, and
introduces FrameFlow for regressing the conditional vector field. Section 3 presents our results when
training FrameFlow on the SCOPe dataset [9]. By using flow matching, we obtain 2 fold better
designability, comparable diversity and equal novelty scores compared to FrameDiff, while using five
times fewer sampling timesteps. Compared to GENIE [10], we achieve a 23 times sampling speedup
while maintaining a significantly higher designability score.

2 Method

2.1 SE(3) flow matching

Flow matching on Riemannian manifolds. Flow matching (FM) [5] is a simulation-free method
for learning continuous normalizing flows (CNFs) [11], a class of deep generative models that
generates data by integrating an ordinary differential equation (ODE) over a learned vector field.
Recently, flow matching has been extended to general Riemannian manifolds [6], which we use to
model the space of protein backbones. We first give a general introduction to flow matching on
manifolds, before specializing to our application.

On a manifold M, the CNF ϕt(·) : M → M is defined by integrating along a time-dependent vector
field vt(x) ∈ TxM where TxM is the tangent space of the manifold at x ∈ M:

d

dt
ϕt(x) = vt(ϕt(x)), ϕ0(x) = x. (1)

Time is parameterized by t ∈ [0, 1]. The flow is used to transform a simple prior density p0 towards
the data distribution p1 using the push-forward equation pt = [ϕt]∗p0, where the density of pt is

pt(x) = [ϕt]∗p0(x) = p0(ϕ
−1
t (x))e−

∫ t
0

div(vt)(xs) ds.

We refer to the sequence of probability distributions {pt : t ∈ [0, 1]} as the probability path. The
vector field vt that generates a given pt is intractable in general but can be learned efficiently by
decomposing the target probability path pt as a mixture of tractable conditional probability paths,
pt(x|x1). Each conditional path satisfies p0(x|x1) = p0(x), and p1(x|x1) ≈ δ(x− x1). The desired
unconditional probability path pt can then be written as an average of the conditional probability
paths with respect to the data distribution: pt(x) =

∫
pt(x|x1)p1(x1) dx1.

Let ut(x|x1) ∈ TxM be the conditional vector field that generates the conditional probability path
pt(x|x1). The key insight of FM is that the unconditional vector field vt can be learned using an
objective which targets the conditional vector field ut(x|x1):

LCFM := Et,p1(x1),pt(x|x1)

[
∥vt(x)− ut(x|x1)∥2g

]
,

where t ∼ U([0, 1]), x1 ∼ p1(x1), x ∼ pt(x|x1) and ∥·∥2g is the norm induced by the Riemannian
metric g. This loss can be reparameterized by defining the conditional flow, xt = ψt(x0|x1), where
ψt is the solution to d

dtψt(x) = ut (ψt (x0|x1) |x1) with initial condition ψ0(x0|x1) = x0. The
conditional flow matching loss can then be written as:

LCFM = Et,p1(x1),p0(x0)

[
∥vt(xt)− ẋt∥2g

]
. (2)

Once trained, samples can be generated by simulating eq. (1) using the learned vector field vt.
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Flow matching on SE(3). We now describe the application of FM to protein backbone generation.
The backbone atom positions of each residue in a protein backbone are parameterized by a rigid
transformation T ∈ SE(3) (see Jumper et al. [12], Yim et al. [3]). Each frame T = (r, x) consists of
a rotation r ∈ SO(3) and a translation vector x ∈ R3. The protein backbone is made of N residues
meaning it can be parameterized by T = [T (1), . . . , T (N)] with T ∈ SE(3)N . Our development
focuses on a single frame, but extends to all frames in a backbone since SE(3)

N is a product space
and we choose an additive metric over the frames. For notational simplicity, we use superscripts to
refer to residue indices while subscripts refer to time.

Following Yim et al. [3], we define a metric on SE(3) by choosing ⟨(a, y), (a′, y′)⟩SE(3) =

⟨a, a′⟩SO(3) + ⟨y, y′⟩R3 where ⟨a, a′⟩SO(3) = Tr(aa′T)/2 and ⟨y, y′⟩R3 =
∑3

i=1 yiy
′
i are the canoni-

cal metrics on SO(3) and R3 for tangent vectors a ∈ so(3) and y ∈ R3, respectively. This metric
enables us to consider SO(3) and R3 independently when training and sampling.

Our priors are chosen as the uniform distribution on SO(3) and the unit Gaussian on R3, p0(T0) =
U(SO(3)) ⊗ N (0, I3). Following Chen and Lipman [6], the conditional flow Tt = ψt(T0|T1) is
defined to be along the geodesic path connecting T0 and T1:

Tt = expT0

(
tlogT0

(T1)
)
, (3)

where expT is the exponential map and logT is the logarithmic map at point T . Notably, distance
along the geodesic varies linearly with time. With our choice of metric, eq. (3) simplifies to the
following:

Translations (R3) : xt = (1− t)x0 + tx1

Rotations (SO(3)) : rt = expr0
(
tlogr0(r1)

)
. (4)

Both R3 and SO(3) are simple manifolds where closed form geodesics can be derived. Specifically,
expr0 can be computed using Rodrigues’ formula and logr0 is similarly easy to compute [3]. With
these considerations in mind, our overall objective can be written as:

LSE(3) = Et,p1(T1),p0(T0)

[
N∑

n=1

{∥∥∥v(n)x (Tt, t)− ẋ
(n)
t

∥∥∥2
R3

+
∥∥∥v(n)r (Tt, t)− ṙ

(n)
t

∥∥∥2
SO(3)

}]
,

where (n) refers to the nth residue, t ∼ U([0, 1 − ϵ]) for ϵ = 10−3. The vectors {v(n)x , v
(n)
r }Nn=1

approximate the vector field as in eq. (2), and are modeled with an SE(3)-equivariant neural network
(Section 2.2). Following our definitions of x(n)t and r(n)t we compute their time derivatives and
approximate them as:

ẋ
(n)
t =

x
(n)
1 − x

(n)
t

1− t
, ṙ

(n)
t =

log
r
(n)
t

(r
(n)
1 )

1− t
, v(n)x :=

x̂
(n)
1 − x

(n)
t

1− t
, v(n)r :=

log
r
(n)
t

(r̂
(n)
1 )

1− t
,

(5)
where {(x̂(n)1 , r̂

(n)
1 )}Nn=1 are predictions of the clean frames given the corrupted frames Tt at time t.

Following Yim et al. [3], we reparameterize the objective as predicting the clean data:

LSE(3) = Et,p1(T1),p0(T0)

[
1

(1− t)2

N∑
n=1

{∥∥∥x̂(n)1 (Tt, t)− x
(n)
1

∥∥∥2
R3

+

∥∥∥logr(n)
t

(
r̂
(n)
1 (Tt, t)

)
− log

r
(n)
t

(
r
(n)
1

)∥∥∥2
SO(3)

}]
. (6)

Symmetries. We perform all modelling within the zero center of mass (CoM) subspace of RN×3

as in [3]. This entails simply subtracting the CoM from the prior sample and all datapoints. As xt is a
linear interpolation between the noise sample and data, xt will have 0 CoM also. This guarantees that
the distribution of sampled frames that the model generates is SE(3)-invariant. To see this, note that
the prior distribution is SE(3)-invariant and the vector field {v(n)x , v

(n)
r }Nn=1 is equivariant because

we use an SE(3)-equivariant architecture to predict {x̂(n)1 , r̂
(n)
1 }Nn=1. Hence by Köhler et al. [13], the

push-forward of the prior under the flow is invariant.
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2.2 FrameFlow

Section 2.1 relies on learning an equivariant vector field using an equivariant neural network. In
this section, we discuss the choice of network architecture and additional modifications to improve
performance.

Network Architecture. To learn T̂ (n)
1 = (r̂

(n)
1 , x̂

(n)
1 ) for every residue n, we utilize the FramePred

architecture introduced in FrameDiff [3] which incorporates Invariant Point Attention (IPA) updates
introduced in Jumper et al. [12] to encode spatial features and ensure its outputs are equivariant with
respect to the input. Between IPA layers are transformer layers [14] used to encode sequence-level
features. Unlike FrameDiff, we do not predict the psi angle to recover the oxygen atom but use the
planar geometry of the backbone to impute the oxygen atoms, as done in RFdiffusion. All other
hyperparameters, e.g. hidden dimensions, and the use of self-conditioning [15], follow FrameDiff.

Loss modifications. We weight the rotation loss terms in eq. (6) by 0.5 to be on a similar scale as
the translation loss. We notice the loss explodes for t ≈ 1 due to the 1/(1− t)2 term; we found it
beneficial to clip this scaling to 1/(1− min{t, 0.9})2.

SO(3) inference scheduler. Our development of SO(3) FM (Section 2.1) follows Chen and Lipman
[6] in using a linear scheduler κ(t) = 1 − t. However, we found this schedule to perform poorly
for SO(3) in the context of SE(3) FM. Instead, we utilize a exponential scheduler κ(t) = e−ct for
some constant c. For high c, the rotations accelerates towards the data faster than the translations
which still follow the linear schedule. The SO(3) flow in eq. (4) and vector field in eq. (5) become
the following when re-derived,

rt = expr0
((
1− e−ct

)
logr0(r1)

)
v(n)r = c log

r
(n)
t

(
r̂
(n)
1

)
. (7)

We find c = 10 or 5 to work well and use c = 10 in our experiments. Interestingly, we found the best
performance when κ(t) = 1− t was used for SO(3) during training while κ(t) = e−ct is used during
inference. We found using κ(t) = e−ct during training made training too easy with little learning
happening. The vector field in eq. (7) matches the vector field in FoldFlow when inference annealing
is performed. However, their choice of scaling was attributed to normalizing the predicted vector
field rather than the schedule.

Alternative SO(3) prior. Rather than using the U(SO(3)) prior during training, we find using
the IGSO3(σ = 1.5) prior [16] used in FrameDiff to result in improved performance. The choice
of σ = 1.5 will shift the r0 samples away from π where near degenerate solutions can arise in the
geodesic. During sampling, we still use the U(SO(3)) prior.

Pre-alignment. Following Klein et al. [17] and Shaul et al. [18], we pre-align samples from the
prior and the data by using the Kabsch algorithm to align the noise with the data to remove any global
rotation that results in a increased kinetic energy of the ODE. Specifically, for translation noise X0 ∼
N (0, I3)

N and data X1 ∼ p1 where X0, X1 ∈ RN×3 we solve r∗ = argminr∈SO(3) ∥rX0 −X1∥22
and use the aligned noise r∗X0 during training. We found pre-aligment to aid in training efficiency.

3 Experiments

Training. Following GENIE [10], we evaluate FrameFlow by training it on SCOPe with proteins
below length 128 for a total of 3938 examples and evaluating on the protein monomer generation task.
Our model is trained for 1 day using two NVIDIA A100-48GB GPUs using the batching strategy
from FrameDiff of combining proteins with the same length into the same batch to remove extraneous
padding. We use the Adam [19] optimizer with learning rate 0.0001, β1 = 0.9, β2 = 0.999.

Metrics. To evaluate the model, we sample 10 backbones for every length between 60 and 128 then
use ProteinMPNN [20] to design 8 sequences for each backbone. We then compute three metrics
used in GENIE and FrameDiff: designability, diversity, and novelty. Designability is the main metric
where the structure of each of the 8 sequences are predicted using ESMFold [21]. Then we compute
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Figure 1: Sampling trajectories for FrameFlow (ODE) and FrameDiff (SDE). FrameFlow leads to
much straighter integration paths, which leads to structure appearing sooner in the sampling process
and allows for fewer timesteps to be used during sampling.

the minimum RMSD, referred to as scRMSD, between all the ESMFold predictions and the sampled
backbone. A sample is deemed designable if scRMSD < 2.0 Å. Designability is reported as the fraction
of designable samples. Diversity is computed by computing the number of structural clusters using
MaxCluster [22] over all samples with then dividing by the total number of designable samples. We
also report the total number of clusters. Novelty is performed by considering designable samples and
using FoldSeek [23] to search for similar structures and computing the highest average TM-score
[24] of samples to any chain in PDB, referred to as pdbTM. We report novelty as the average pdbTM
across all samples.

Baselines. We compare our results to GENIE and FrameDiff, two diffusion models for protein
backbones that do not rely on using a pre-trained folding network (unlike RFdiffusion). We use the
GENIE GitHub weights trained on the same training set6 while FrameDiff is re-trained using its
default recommended settings. We expect FrameFlow to underperform RFdiffusion which we were
unable to re-train on the smaller dataset. Our baselines are intended to demonstrate tradeoffs in speed
and performance.

3.1 Results

We use the Euler-Maruyama integrator for SDE sampling and the Euler integrator for ODE sampling.
We demonstrate the effect of different numbers of integration timesteps for all methods. Our results
are shown in Table 1. We use SDE sampling for GENIE and FrameDiff since these were the methods

Table 1: Protein backbone generation results.

Model Timesteps Designability (↑) Diversity (clusters) (↑) Novelty (↓)

GENIE SDE
1000 0.22 0.76 (131) 0.54
750 0.11 0.79 (60) 0.51
500 0.0 - -

FrameDiff SDE 500 0.42 0.36 (104) 0.66
100 0.39 0.32 (86) 0.66

FrameDiff ODE 100 0.26 0.43 (76) 0.65
10 0.16 0.53 (59) 0.66

FrameFlow ODE
500 0.81 0.22 (123) 0.69
100 0.77 0.28 (147) 0.67
10 0.33 0.54 (124) 0.63

6https://github.com/aqlaboratory/genie/tree/main/weights/scope_l_128
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used in their respective papers. In GENIE, we find designability is low while diversity and novelty
are favorable compared to FrameDiff and FrameFlow when using 1000 timesteps. The designability
of GENIE even at 1000 timesteps7 is significantly lower than that of FrameFlow and FrameDiff
at 100 timesteps. We note that low designability can skew the diversity and novelty metrics since
they are defined conditioned on samples being designable. However, performance in GENIE rapidly
deteriorates when we reduce the number of timesteps, and is unusable at 500 timesteps, being unable
to produce designable samples.

Importantly, FrameFlow when sampled with only 100 timesteps outperforms the performance of
FrameDiff on designability. Using the probability ODE sampling procedure for FrameDiff also
does not result in improved performance. FrameFlow’s performance deterriorates rapidly with 10
timesteps which other ODE integrators could improve upon. We note that FrameFlow and FrameDiff
use exactly the same architecture. This demonstrates the ability of flow matching to significantly
reduce inference costs in protein backbone generation.

Diversity appears lower for FrameFlow. However, this is due to diversity being inversely proportional
to the number of designable samples. We follow the diversity definition used in prior works, but note
this metric can be artificially high by methods with low designability. Table 1 includes in parantheses
the number of clusters which demonstrates FrameFlow discovering more modes than FrameDiff in
the data distribution. GENIE has a high number of clusters and the best novelty indicating its high
coverage despite low designability.

While GENIE has less parameters (4.1M) than FrameDiff/FrameFlow (17.4M), it uses expensive
triangle updates [12] that requires high memory cost and greater compute for each forward call.
Sampling a length 100 protein with 1000 timesteps on an NVIDIA V100 GPU takes GENIE 128
seconds while for FrameDiff/FrameFlow sampling with 100 timesteps takes 5.7 seconds.

Lastly, we visualize the sampling trajectory of both FrameDiff (SDE) and FrameFlow (ODE) for
a length 100 protein in Figure 1. Our observations mirror the original motivations behind FM for
achieving straighter and faster trajectories.

4 Discussion

In this work, we presented SE(3) flow matching using the previously developed theory from Chen and
Lipman [6] and Yim et al. [3]. We adapted FrameDiff, an SE(3) diffusion model, into a flow matching
model called FrameFlow and demonstrated FrameFlow’s superior performance over FrameDiff and
GENIE. Our experiments are preliminary demonstrations of the potential of flow matching to aid
in scaling generative models for protein design as neural networks increase in size and complexity.
Concurrent work, FoldFlow, did not exploit the improved speed and efficiency of flow matching,
but instead utilized minibatch optimal transport [25, 7] for improved designability. We believe there
is much to explore in the space of flow matching techniques to improve performance in real-world
applications with protein design.
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