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Abstract

Protein structure prediction field has been revolutionised by deep learning with
protein folding models such as AlphaFold 2 and ESMFold. These models enable
rapid in silico prediction and have been integrated into de novo protein design and
protein-protein interaction (PPI) prediction. However, biologically relevant features
dependent on conformational distributions cannot be estimated with these models.
Diffusion models, a novel class of generative models, have been developed to learn
conformational distributions and applied to de novo protein design. Limited work
has been done on protein structure inpainting, where a masked section is recovered
by simultaneously conditioning on its sequence and the rest of the structure. In
this work, we propose FrameDiff inPainTing (FrameDiPT), a generalised model
for protein inpainting. This is important for T-cells given the hyper-variability of
the complementarity determining region (CDR) loops. We evaluated the model on
CDR loop design for T-cell receptors and achieved comparable prediction accuracy
to ProteinGenerator and RFdiffusion with limited training data and learnable
parameters. Different from deterministic structure prediction models, FrameDiPT
captures the conformational distribution at different regions and binding states,
highlighting a key advantage of generative models.

1 Introduction

Proteins play an essential part in almost all cellular processes. Accurate modelling of protein
structure is important to assess the behaviour of existing and de novo proteins. While models such
as AlphaFold 2 [Jumper et al., 2021, Evans et al., 2021], RoseTTAFold [Baek et al., 2021] and
ESMFold [Lin et al., 2022] have revolutionised computational protein modelling with high-quality
predictions, their deterministic nature does not reflect the dynamic nature of proteins. Diffusion
denoising models [Sohl-Dickstein et al., 2015, Ho et al., 2020], a novel class of generative models,
have achieved superior performance in image synthesis. RFdiffusion [Watson et al., 2023] integrated
the diffusion model with a pre-trained RoseTTAFold to perform de novo protein design, motif
scaffolding and binder design. While recent works have leveraged diffusion models for conformational
distribution tasks by training on molecular force fields [Abdin and Kim, 2023, Zheng et al., 2023],
limited work has been done on protein structure inpainting tasks where only a subset of the residues
are of interest. By fixing the majority of residue positions, we sample the conformational distribution
in the area of interest while avoiding incorrect global structure predictions.
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In this work, we focus on T-cell receptors (TCRs) and peptide-major histocompatibility complexes
(pMHCs), which are crucial for cell-mediated immunity. The complementarity determining region
(CDR) loops of TCRs, especially the CDR3 loops, are highly variable and thereby able to bind
with different pMHCs [Minguet et al., 2007, Xu et al., 2020]. Understanding the conformational
distribution is therefore beneficial to downstream tasks such as TCR maturation and binding prediction.
We choose to model the distribution of CDR3 loops and keep the rest of the structure fixed as
contextual information. This differs from DiffAB [Luo et al., 2022] which designs antibody CDR
sequences and structures given antibody-antigen frameworks, since, in our inpainting task, the amino
acid sequences are known. We extended FrameDiff [Yim et al., 2023], an SE(3) diffusion model
for de novo protein backbone generation, to generic protein structure inpainting, a model we term
FrameDiff inPainTing (FrameDiPT). After training for 2 GPU-weeks on 32K monomer structures, an
18M parameter FrameDiPT model reached satisfying prediction accuracy compared to deterministic
models including AlphaFold 2, ESMFold as well as diffusion-based models such as RFdiffusion
and ProteinGenerator [Lisanza et al., 2023]. Importantly, the compared methods were trained on
larger datasets including TCR-like structures, while FrameDiPT training intentionally excluded all
structures similar to TCRs and antibodies. FrameDiPT also captured conformational distribution
differences at different regions and binding states.

2 Related work

Diffusion models [Sohl-Dickstein et al., 2015, Ho et al., 2020] were first applied to image generation,
where images are synthesised via progressive denoising. Different from images which have no
limitation in sampling space, molecules and proteins have intrinsic geometric constraints on bond
angles and lengths. AlphaFold 2 [Jumper et al., 2021] represents each residue as a rigid frame thus
preventing structural violations. Similarly, heavy atom side chain positions can be described by
dihedral angles in lieu of bond lengths [Baek et al., 2021]. With these rigid representations, diffusion
models on the Riemannian manifolds SO(2) and SO(3) [Huang et al., 2022, Leach et al., 2022] are
applied to proteins to ensure plausible structure sampling.

While small molecule designs [Shi et al., 2021] model all atoms, most protein diffusion models focus
on de novo protein design where only backbone atoms [Watson et al., 2023, Yim et al., 2023, Wu et al.,
2022] are generated, reducing the model complexity and computational costs. Full-atom structures
can be obtained by sampling a sequence via inverse folding models such as ProteinMPNN [Dauparas
et al., 2022], and then predicting structure using protein folding models. Alternatively, full-atom
generation models such as cg2all [Heo and Feig, 2023] can be used to generate full structures based on
coarse-grain representations. Other works such as Chroma [Ingraham et al., 2022], which attempts to
preserve the average bond angle and radius of gyration through an anisotropic diffusion process, and
EigenFold [Jing et al., 2023] which performs diffusion on a harmonic decomposition of the protein
chain instead of directly in the coordinate space of residues, attempt to integrate physical priors into
the diffusion processes. Some work also attempts to learn sequence-structure joint distributions and
thus performs protein sequence-structure co-design [Zhang et al., 2023, Anand and Achim, 2022,
Luo et al., 2022, Chu et al., 2023]. However, there is limited research focusing on the task of protein
structure inpainting. Wang et al. [2022] proposed a deep learning model for scaffolding protein
functional sites, however, with a deterministic model. RFdiffusion targets various tasks including
motif scaffolding but relies on ProteinMPNN to generate sequence. Similarly, Gao et al. [2023]
proposed a language diffusion model DiffSDS for unknown-sequence protein backbone inpainting.

3 Method

3.1 FrameDiff

Yim et al. [2023] introduced FrameDiff, a graph-based SE(3)-equivariant neural network, which
achieves comparable performance to RFdiffusion for de novo protein backbone design with much less
training data and without a pre-trained structure prediction network. FrameDiff uses the backbone
rigid-frame representation T with an additional torsion angle ψ to determine the position of the
backbone carbonyl oxygen atom. The forward diffusion process is performed on the rigid-frame
representation, i.e. the translation X given by the coordinates of the Cα atom and the rotation R
defined by the frame formed by the N − Cα − C atoms for each residue. The torsion angle ψ is not
involved in the diffusion process but is predicted by the model. The backward diffusion process is
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defined by denoising score matching [Vincent, 2011]. Training losses consist of both the rigid-frame
losses and the atom-level losses. We refer the readers to Yim et al. [2023] for further details.

3.2 FrameDiPT

We extend FrameDiff to FrameDiff inPainTing (FrameDiPT) for protein structure inpainting with
the following modifications.

Randomly mask a contiguous region for diffusion For all training monomers, a contiguous region
of 8-50 amino acids is randomly selected and the diffusion process is applied only in this region.
For the input node features, the diffusion timestep t is set to 10−5 in the fixed region to indicate the
residues are not being diffused. For convenience, we call the randomly selected contiguous region
the "diffused region" and the remaining part of the structure the "context region".

Add amino acid types as node features In contrast to de novo protein design, the amino acid
sequence is given in the inpainting task. An extra node feature aatype is concatenated to the original
node features of FrameDiff. For a protein with Nres residues, the aatype node feature is of shape
(Nres, 21) containing 20 standard amino acid types and 1 for unknown amino acid type. Similarly,
edge features are modified accordingly.

Training loop During the training loop, the diffusion noising process is only performed in the
diffused region. The resulting noised structure is then given as input to the model to predict the
original structure. Loss is only computed over the diffused region. Different from FrameDiff, we
train the model on clustered data with a sequence similarity threshold of 90%. In each epoch, only
one structure is randomly sampled from each cluster. This approach outperforms FrameDiPT trained
with non-clustered data (Appendix B).

Inference loop In the inference loop, the context region along with the sampled random noise in the
diffused region are given as the initial state. In each inference step, the model predicts the backbone
rigid frames T̂(0) from T(t), where T(t) represents the rigid frames at time t and t = 0 corresponds
to the ground truth. A reverse diffusion step is performed to get T(t−dt) from T(t) and T̂(0) where dt
is the step size. Then the context region in T(t−dt) is replaced by the original structure, to ensure the
context region stays fixed. Finally, we extended our model to run inference on multimers by adding a
residue gap of 200 between different chains, following the trick used in Motmaen et al. [2023].

4 Experiment setting

Training We train FrameDiPT using data from RCSB Protein Data Bank (RCSB PDB)1 (Appendix A)
with the same hyperparameters as FrameDiff. It was trained for 2 weeks with 1 NVIDIA A100 GPU
for 95 epochs with a length batching strategy. Each batch contains a collection of different diffused
instances of the same backbone structure, and the number of samples per batch adapts to the sequence
length of the structure with a maximum batch size of 128.

Evaluation A TCR and TCR:pMHC dataset has been curated for evaluation (Appendix C). It contains
three splits: 21 unbound TCR structures; 62 TCR:pMHC class I complexes; and 18 TCR:pMHC
class II complexes. For each TCR or TCR:pMHC sample, the CDR3 loop in both TCR alpha and
beta chains are masked as the diffused region and 100 inference steps are performed to get the final
prediction. cg2all2 is used to convert the predicted structure to an all-atom structure. We report
the root-mean-square-deviation (RMSD) on the backbone and full-atom structure for evaluation.
For diffusion models, we developed a sample selection strategy using kernel density estimation. A
Gaussian kernel with standard deviation of 30Å is fitted over the carbon alpha coordinates of the
inpainted region to estimate density. The sample corresponding to the highest density is used as a
proxy for the "most-likely" sample.

Baseline diffusion models ProteinGenerator performs diffusion in sequence space and structure
is predicted via RoseTTAFold given the generated sequence. We adapted ProteinGenerator to the
inpainting task by supplying the input sequence. RFdiffusion is used by masking out both the structure
and sequence of TCR CDR3 loops, thus full-atom RMSD is not applicable. Empirically, we found

1https://www.rcsb.org/docs/programmatic-access/file-download-services
2https://github.com/huhlim/cg2all
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providing sequences to RFdiffusion deteriorated the performance since the model was not trained in
this mode.

5 Results and discussions

Table 1: Backbone and full-atom RMSD comparison. A signed Wilcoxon paired two-sided rank
statistical test between FrameDiPT and ProteinGenerator is performed at significance level p-value <
0.05. Underline means significantly better than ProteinGenerator which outperforms RFdiffusion.

Method RMSD TCR TCR:pMHC-I TCR:pMHC-II

ProteinGenerator Backbone 2.87 ± 0.48 2.34 ± 0.73 3.01 ± 0.55
Full-atom 3.58 ± 0.62 3.24 ± 0.79 3.59 ± 0.39

RFdiffusion Backbone 3.23 ± 0.93 3.32 ± 0.72 3.81 ± 0.91

FrameDiPT Backbone 2.70 ± 0.43 2.18 ± 0.45 2.91 ± 0.54
Full-atom 3.48 ± 0.52 2.93 ± 0.59 3.90 ± 0.46

Comparison to protein diffusion models We compared FrameDiPT with existing diffusion models,
ProteinGenerator and RFdiffusion, for inpainting tasks (Table 1). The original FrameDiff is not
applicable as it does not take any sequential or structural information as input. Across five samples,
FrameDiPT achieved median RMSD of 2.70Å, 2.18Å, and 2.91Å on unbound TCR, bound TCR with
pMHC-I, and pMHC-II, respectively. This performance is comparable with ProteinGenerator and
RFdiffusion which have larger networks and have been trained on larger datasets (Appendix D). A
signed Wilcoxon paired two-sided rank test was performed which indicated no statistically significant
difference between results. Importantly, the training of FrameDiPT explicitly excluded TCR:pMHC
and antibody structures (Appendix A), demonstrating the strong generalization capacity of the
proposed method. The RMSD is further reduced across all datasets when generating 25 samples
(Table 5). This indicates that FrameDiPT is capable of sampling structures that are specified in crystal
structures. It is important to highlight that, although the structures were evaluated using RMSD,
RMSD to X-ray structure is not the perfect metric as the crystalised conformation represents only a
snapshot of the dynamic.

Capturing conformational distributions While CDR3 loops are highly flexible, the N- and C-
terminal flank regions should be more constrained, as they are mainly beta strands. We thus performed
inpainting on these flanks of the same length as the CDR3 loop to compare the variance of generated
samples, which is defined as the average inter-sample backbone RMSD (Table 2). Lower backbone
RMSD and sample variance were observed in the flanks. Notably, the C-terminal flank has a smaller
variance than N-terminal, correctly reflecting how the C-terminus fully encompasses a beta strand
while the N-terminal flank starts on the small loop leading the beta strand before the CDR3 loop. The
correlation between normalised carbon-alpha B-factors and sampling variances (Figure 9b) is 0.366.
The moderate correlation is not surprising, as B-factors aggregate different effects from experimental
uncertainty to structural flexibility in a variable manner between structures.

Table 2: Backbone RMSD and sample variance of different diffused regions. N- and C-terminal
flanks have lower RMSD and variance, consistent with structural properties of the diffused regions.

Diffused region Metric TCR TCR:pMHC-I TCR:pMHC-II

CDR3 Backbone RMSD 2.70 ± 0.43 2.18 ± 0.45 2.91 ± 0.54
Variance 1.60 ± 0.20 1.58 ± 0.34 1.85 ± 0.34

N-terminal flank Backbone RMSD 0.89 ± 0.23 1.59 ± 0.48 1.71 ± 0.39
Variance 0.92 ± 0.37 0.96 ± 0.23 0.93 ± 0.30

C-terminal flank Backbone RMSD 0.71 ± 0.12 0.69 ± 0.08 0.76 ± 0.14
Variance 0.26 ± 0.10 0.32 ± 0.13 0.38 ± 0.10

4



(a) CDR3α PCA (b) CDR3β PCA (c) PDB 2BNU (d) PDB 2BNQ

Figure 1: Plots of the first two principal components of PCA describing a) CDR3α and b) CDR3β Cα

position loop conformations with ground truth marked as a star. A clear distinction between samples
drawn from the unbound (2BNU) and bound (2BNQ) conformations can be seen on the alpha chain.
A clear difference in modes can be seen on the beta chain. c) 2BNU and d) 2BNQ visualizations
with context structure, ground truth CDR3 alpha, ground truth CDR3 beta and peptide; FrameDiPT
predictions in cyan, yellow and orange alongside ESMFold prediction.

Conformation changes upon binding The CDR conformations differ in the bound and unbound
states [Armstrong et al., 2008]. This is due to intermolecular forces and steric constraints induced
by the pMHC complex influencing the position of loop residues. Pairs of structures (6 for pMHC-I
and 2 for pMHC-II) are found that represent unbound and bound states of the same TCRs. For each
structure, 100 samples were generated, with inpainting applied to the CDR3 loops on the alpha and
beta chains. Figure 1 shows a clear separation between unbound and bound samples in terms of CDR3
loop conformations for 2BNU and 2BNQ, with significant differences between distribution centroids.
More examples can be found in Appendix E.3. This underlines the strength of diffusion models in
capturing different conformations, which could be useful for downstream binding classification tasks.
For example, sampling loop conformations of different or mutated bound TCR:pMHC complexes and
evaluating them through energy-scoring methods could help to discriminate weak and strong binders.

Quantifying uncertainty Figure 9a shows the correlation between the median backbone RMSD and
the variance of generated samples. Interestingly, when the sampled structures are different between
them, the samples themselves may be inaccurate. The variance can thus be used as a metric to analyse
the overall quality of generated samples for a test instance.

Comparison to deterministic protein folding models FrameDiPT has been compared with pre-
trained deterministic protein folding models such as AlphaFold 2 (Table 7). AlphaFold 2 with custom
templates where CDR3 loops were masked had lower RMSD to the ground truth crystal structures.
The difference to FrameDiPT is significant, indicating further room for improvement.

6 Conclusion

In this work, we proposed a novel inpainting task for protein structure generation. We trained the
proposed FrameDiff inpainting (FrameDiPT) model on 32K monomer structures and evaluated it
on TCR CDR3 loop design. With no TCR and antibody structures present in the training data and
only 18M parameters, FrameDiPT achieved similar RMSD to other TCR-aware pre-trained large
diffusion models such as ProteinGenerator and RFdiffusion. Despite only being trained on monomers,
FrameDiPT could capture the conformational distribution of the diffused region and the TCR:pMHC
binding interaction. While FrameDiPT is able to sample structures close to the crystal structures, the
RMSD remains significantly higher than AlphaFold 2 which has a larger network and larger training
set. In the future, FrameDiPT could be improved with more training data and scaling up the network
to close the gap. Moreover, downstream applications such as TCR:pMHC binding classification can
be considered.
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A Training data

Data used to train FrameDiPT model was downloaded from RCSB PDB with the following data
cleaning procedure. Only X-ray structures were kept, i.e. the structures from non-X-ray assays, or
ModelArchive3 and the AlphaFold 2 predicted structures were removed. The training data cleaning
process also included the removal of structures belonging to any of the following categories: 1)
have only non-standard residues; 2) have a resolution larger than 9Å; 3) have a single amino acid
accounting for more than 80% of the structure; 4) have more than 4950 residues. In the end, any
structures that could not be parsed by biopython4 were removed.

The data cleaning process involved also removing samples that are similar to the TCR test data
to avoid data leakage. Similar samples to TCR test data are identified using the 70% sequence
similarity clusters. A cluster is considered as “leaking” if it contains any chain from the TCR test data.
Afterwards, all samples from “leaking” clusters are removed from the training set. Such removal
ensures that structures in the training set have a maximum sequence similarity of 70% compared to
any structure in the TCR test data.

We followed the same data processing procedure as in the original FrameDiff, which leads to 32K
monomers for training and the training strategy on clustered data leads to 9K clusters for the 32K
monomers.

B Training strategy

The training on clustered monomers with 9K clusters is evaluated against baseline training on all
32K monomers for both de novo protein design model FrameDiff and inpainting model FrameDiPT.
Figure 2 shows self-consistency RMSD, which is the RMSD between the generated backbone and
ESMFold predictions of the ProteinMPNN generated sequences, for different designed lengths. The
model trained on clustered data shows consistently better results than the baseline model. Table 3
shows median backbone RMSD on CDR3 loop design where better performance is observed with
training on clustered data.

Figure 2: Best sample self-consistency RMSD of
de novo protein design with the baseline model
and the model trained on clustered data. The
latter shows consistently better performance for
all designed lengths.

Table 3: Backbone RMSD comparison between
baseline training and training on clustered data.
A signed Wilcoxon paired two-sided rank statis-
tical test between baseline and clustered training
is performed at significance level p-value < 0.05.
Underline means significantly better.

Baseline Clustered

TCR 2.77 ± 0.47 2.70 ± 0.43
TCR:pMHC-I 2.86 ± 0.74 2.18 ± 0.45
TCR:pMHC-II 3.15 ± 0.46 2.91 ± 0.54

C Evaluation data

Curated sets of high-resolution, annotated structures of TCRs and TCR:pMHC complexes without
any other companion proteins were assembled and fetched from the RCSB. First, the lists of PDB
IDs for the different dataset types were fetched from the Structural T-Cell Receptor Database
(STCRDab) [Leem et al., 2017]. The corresponding structures were downloaded from the RCSB and
only X-ray structures with resolution < 3.5Å were kept. Then, the PDBe REST API was used to map

3https://www.modelarchive.org/
4https://biopython.org/
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the structures’ chains to UniProt IDs, when available. The UniProt metadata was used to label the
chains in each structure (e.g. TCR alpha or beta chain, peptide, MHC alpha or beta chain) based on
keyword and gene name matching. Other proteins or not annotated ones were flagged as such. Only
structures with the expected TCR, peptide, or MHC chains5 were kept; structures containing other
proteins, or unlabelled ones were filtered out.

D Experiment settings

Experiment settings including number of model parameters, training time and training data of different
models are summarised in Table 4. As ProteinGenerator and RFdiffusion are fine-tuned RoseTTAFold
model, the experiment setting for RoseTTAFold is reported. FrameDiPT model has significantly
fewer parameters and is trained with much less data and training time.

Table 4: Experiment setting comparison

Method Params Training Time Training Data
Device Time Size Description

AlphaFoldα 93M 128 TPU 2 weeks 10M PDB+self-distillation
AlphaFoldβ 93M 128 TPU 11 days 40K+350K PDB+self-distillation

ESMFold 3B / / >12M PDB+UniRef50

RoseTTAFold 130M 64 GPU 4 weeks >208K PDB+AlphaFold prediction
ProteinGenerator 130M / / >208K /
RFdiffusion 130M 8 GPU 3 days >208K monomers from PDB

FrameDiPT 17.5M 1 GPU 12 days 32K monomers from PDB

AlphaFoldα: Multimer and AlphaFoldβ : Monomer

E Further results and discussions

E.1 Generating specific conformation

Table 5: Backbone RMSD w.r.t. number of generated samples

Number of samples TCR TCR:pMHC-I TCR:pMHC-II

5 2.70 ± 0.43 2.18 ± 0.45 2.91 ± 0.54

25 2.49 ± 0.32 2.05 ± 0.49 2.60 ± 0.49

E.2 Capturing conformational distributions

Backbone RMSD per residue is also computed to evaluate how our model performs at different
residue positions and we observe different patterns for different diffused regions. Figure 4 visualises
an example (PDB 1KGC) of generated samples for CDR3 N-terminal and C-terminal flanks, which
shows consistent structural properties. Figure 3 shows backbone RMSD per residue of CDR3, N-
terminal and C-terminal flanks of CDR3. The CDR3 loop shows larger RMSDs in the middle of the
loop. For N-terminal flank, the positions close to CDR3 loop usually consist of beta strands for which
small RMSDs are obtained while for the positions further away from CDR3 loop, more potential
conformations are predicted therefore leading to higher RMSD. For the C-terminal flank, the RMSD
is consistently low which is coincident with end of the loop becoming a beta strand. Position 3 is an

5TCR:pMHC class I structures missing MHC beta chains were kept, since the domain is not involved in the
TCR:pMHC interface.
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exception showing a local increase of RMSD, consistent with a kink following the loop at the start of
the beta strand.

(a) CDR3 (b) N-terminal flank (c) C-terminal flank

Figure 3: Backbone RMSD per residue on TCR dataset of (a) CDR3, (b) N-terminal flank and (c)
C-terminal flank. CDR3 loop shows greater RMSD in the middle of the loop while N-terminal flank
shows smaller RMSD at positions close to CDR3 and C-terminal flank shows small RMSD in general
except the third position.

(a) Diffused region on N-terminal flank (b) Diffused region on C-terminal flank

Figure 4: PDB 1KGC with context structure, ground truth alpha, ground truth beta and FrameDiPT
predictions in other colors for (a) diffused region on N-terminal flank and (b) diffused region on
C-terminal flank. Structural properties correspond to backbone RMSD per residue shown in Figure 3
where positions with smaller RMSD are usually beta strands and those with bigger RMSD are usually
loops, especially the 3rd position of C-terminal flank corresponds to a kink in the loop structure.

Table 6: Backbone RMSD and generated sample variance of different CDR loops

CDR loop Metric TCR TCR:pMHC-I TCR:pMHC-II

CDR1 Backbone RMSD 1.22 ± 0.23 1.28 ± 0.26 1.60 ± 0.50
Variance 0.96 ± 0.40 1.11 ± 0.21 1.40 ± 0.35

CDR2 Backbone RMSD 1.07 ± 0.17 1.19 ± 0.33 1.51 ± 0.26
Variance 0.75 ± 0.22 0.85 ± 0.26 0.77 ± 0.30

CDR3 Backbone RMSD 2.53 ± 0.56 2.44 ± 0.45 3.00 ± 0.57
Variance 1.87 ± 0.22 2.06 ± 0.44 2.78 ± 0.68

All CDR loops diffusion Loops are usually flexible structures while different loops could have
different structure flexibility, for example CDR3 loops are the most variable w.r.t. CDR1 and CDR2
loops in TCR chains. We also performed diffusion on all the three CDR loops and compared the
backbone RMSD and sample variance in Table 6. Smaller backbone RMSD and sample variance are
obtained for CDR1 and CDR2 loops.
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E.3 Conformation change upon binding

(a) CDR3α PCA (b) CDR3β PCA

Figure 5: Conformational distributions of 1KGC
(unbound) and 1MI5 (bound)

(a) CDR3α PCA (b) CDR3β PCA

Figure 6: Conformational distributions of 2IAL
(unbound) and 2IAN (bound)

(a) CDR3α PCA (b) CDR3β PCA

Figure 7: Conformational distributions of 2VLM
(unbound) and 1OGA (bound)

(a) CDR3α PCA (b) CDR3β PCA

Figure 8: Conformational distributions of 2Z35
(unbound) and 2PXY (bound)

E.4 Quantifying uncertainty

We analysed the correlation between backbone RMSD and sampling variance (Figure 9a) and between
normalised carbon-alpha B-factors and sampling variance (Figure 9b). Though we performed a
standard normalisation of B-factors over the whole protein structure to remove intrinsic factors, no
evident correlation between B-factors and sampling variance was observed.

(a) (b)

Figure 9: Correlation between a) median backbone RMSD and the variance of generated sample
which is computed as mean inter-sample backbone RMSD; b) normalised B-factors and the sampling
variance on carbon-alpha of each residue. A Pearson correlation > 0.5 was observed between
backbone RMSD and sampling variance while no strong correlation between normalised B-factors
and variance.
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E.5 Comparison to deterministic protein folding models

Table 7: Backbone and full-atom RMSD comparison of TCR CDR3 loop design. A signed Wilcoxon
paired two-sided rank statistical test between FrameDiPT and the best AlphaFold model is performed
at significance level p-value < 0.05. Underline means significantly different from the best AlphaFold
model.

Method RMSD TCR TCR:pMHC-I TCR:pMHC-II

AlphaFoldα Backbone 2.60 ± 0.68 2.46 ± 0.68 2.33 ± 0.65
Full-atom 3.15 ± 0.54 2.97 ± 0.76 2.91 ± 0.65

AlphaFoldβ Backbone 1.75 ± 0.68 1.58 ± 0.51 1.75 ± 1.08
Full-atom 2.20 ± 0.72 2.27 ± 0.75 2.04 ± 1.03

AlphaFoldγ Backbone 2.03 ± 0.68 1.34 ± 0.48 1.37 ± 0.43
Full-atom 2.49 ± 0.66 2.27 ± 0.87 2.10 ± 0.65

ESMFold Backbone 2.58 ± 0.86 2.13 ± 0.42 2.27 ± 0.85
Full-atom 3.24 ± 0.80 2.83 ± 0.66 2.41 ± 0.70

FrameDiPT (25 samples) Backbone 2.49 ± 0.32 2.05 ± 0.49 2.60 ± 0.49
Full-atom 3.45 ± 0.47 2.83 ± 0.65 3.26 ± 0.56

AlphaFoldα: AlphaFold Multimer with searched templates from PDB70.
AlphaFoldβ : AlphaFold Multimer with custom templates by masking CDR3 loops.
AlphaFoldγ : AlphaFold Monomer with custom templates by masking CDR3 loops.
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