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Abstract

Designing new proteins with specific binding capabilities is a challenging task that
has the potential to revolutionize many fields, including medicine and material
science. Here we introduce ProtFill, a novel method for the simultaneous design
of protein structures and sequences. Employing an SE(3) equivariant diffusion
graph neural network, our method excels in both sequence prediction and structure
recovery compared to SOTA models. We incorporate edge feature updates in GVP-
GNN message passing layers to refine our design process. The model’s applicability
for the interface redesign task is showcased for antibodies as well as other proteins.
The code is available at https://github.com/adaptyvbio/ProtFill.

1 Introduction

Proteins play a pivotal role in biological research, serving as the workhorses of the cellular machinery.
Their functionality is intricately tied to their structure, as the arrangement of atoms in 3D space, and
their sequence, as unique order of amino acids. The majority of recent computational protein design
approaches have historically been tailored to translate between those two representations [4, 15].
However, many applications require simultaneous design of both sequence and structure to achieve
desired protein functionality. This modality of protein design, known as co-design, aims to learn
the relationship between sequence and structure and optimize both representations concurrently. In
practice, co-design is often performed through training separate models for sequence and structure
generation [25] [4], which are then stacked. However, recently, several models have been proposed
that integrate co-design into a single architecture. These approaches are particularly well-suited
for the task of protein inpainting, which involves filling in the missing regions of a known protein.
This can be a useful set-up when trying to redesign the interface of a protein complex or improve
the affinity of antibody to its target antigen. Despite the prevalence of antibody-specific inpainting
research [12, 11, 6], there is a scarcity of frameworks for diverse protein interfaces. We propose
ProtFill, a general-purpose SE(3) equivariant graph neural network (GNN) for protein co-design.
Protfill is based on a modification of GVP-GNN [14] that includes continuously updated residue
pair representations. On an antibody dataset, the architecture outperforms existing alternatives in
sequence design and achieves comparable results in structure prediction. We also merge ProtFill
with a diffusion framework. In relation to other diffusion co-design models, it stands apart from
multi-process approaches like Anand and Achim [1] and demonstrates broader applicability than
models like diffAb [20] and ProteinGenerator [19].

2 Methods

2.1 Task formulation

ProtFill predicts the coordinates of the backbone atoms (C, Cα, N , O) and the amino acid identities
jointly. Due to properties of peptide bonds, structure prediction of the backbone atoms can be closely
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Figure 1: The architecture consists of a single encoder that creates a structure embedding and two
decoders that generate structure and sequence. The encoder consists of three GVPe (GVP with edge
updates) layers and the decoder is structured the same, with an optional addition of three linear graph
GVPe layers at the end.

approximated with six degrees of freedom and divided into two tasks: predicting the coordinates
of the Cα atom and the orientation of the C-Cα-N triangle. Overall, the co-design network has to
return three different outputs for each masked amino acid: a set of three 3D rotation angles in a local
coordinate system, a Cα translation vector relative to the model input positions, and a probability
distribution over amino acid identities.

2.2 Network architecture

The model consists of one shared encoder and two decoders (one for sequence and one for structure
outputs). Both the encoder and the decoders consist of three stacked message passing layers. The
encoder generates a structure embedding which is concatenated with a simple sequence embedding
(the output of a single embedding layer) and passed to the decoders. The network output is recursively
fed into the same modules a total of three times, utilizing the idea of recycling [15].

Optionally the network can be used with linear update layers. They are message passing layers with
the same architecture that operate on a linear graph, added at the end of the model. The edges in the
linear graph are generated according to the primary structure of the protein, where each aminoacid is
only connected to itself and to its direct neighbors in the sequence. The number of these layers is
a hyperparameter that is set to zero for all experiments except for the model trained with diffusion
and the co-design experiments on the diverse protein dataset with standard noising (see Section 2.4
for noising schemes). In those experiments the number of linear layers is three. See a schematic
representation of the architecture at Figure 1.

Message passing The message passing layers used in this work are a modification over vector-
gated GVP [13]. The main difference compared to the original architecture is the addition of edge
feature updates. This is implemented by passing the shared hidden state to two copies of the original
processing stream at every layer. The output of the first stream is aggregated over the neighborhoods,
updating the node features, as in Jing et al. [14], while the output of the other stream is used directly
to update the edge features (see Figure 2 and Algorithm 1). We refer to this new architecture as GVPe
(GVP with edge updates). The rest of the processing is updated accordingly. See Appendix A for
details.

Input features The edge features are an encoding of the distance between the two amino acids
along the chain, radial basis function embeddings of all distances between N , C and Cα atoms, and
a vector in the direction of Cα −Cα. The node features are vectors in the directions towards adjacent
amino acids and a vector in the direction of Cα − Cβ where Cβ is imputed as in Dauparas et al. [4].
Note that since those features are translation invariant and the model is trained to predict translations
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Figure 2: A scheme of the modified GVP message passing layer with edge updates (GVPe).

Algorithm 1 Geometric Vector Perceptron with edge update
Require: Scalar and vector features (s, V ) ∈ Rn × Rν×3

Ensure: Scalar and vector edge and node features (se, Ve) ∈ Rm × Rµ×3, (sn, Vn) ∈ Rk × Rκ×3

Set h = max(ν, µ, κ)
GVPe:
Vh ←WhV with Vh ∈ Rh×3

Vµ ←WµVh with Vµ ∈ Rµ×3

Vκ ←WκVh with Vκ ∈ Rκ×3

sh ← ∥Vh∥2 (row-wise) with sh ∈ Rh

sh+n ← concat(sh, s) with sh+n ∈ Rh+n

sm ←Wmsh+n + bm with sm ∈ Rm

sk ←Wnsh+n + bn with sk ∈ Rn

se ← σ(sm) with se ∈ Rm

sn ← σ(sk) with se ∈ Rk

Ve ← σ+(Wgesm + bge)⊙ Vµ (row-wise multiplication) with Ve ∈ Rµ×3

Vn ← σ+(Wgnsk + bgn)⊙ Vκ (row-wise multiplication) with Vn ∈ Rκ×3

return (se, Ve), (sn, Vn)

relative to the input coordinates, the architecture is equivariant to translations, despite the fact that
GVP layers alone are not. A full proof is presented in Appendix A.1.

2.3 Data

We use two datasets generated with the ProteinFlow python library [17]: one contains antibodies
and is split based on CDR (complementarity determining region) sequence similarity and the other
is a diverse protein dataset split based on similarity of entire chain sequences. Both are publicly
available, see Appendix B for the parameters and download instructions. The test set for the antibody
dataset follows the logic in Luo et al. [20] and consists of all complexes containing certain antigens
and antibodies whose CDR H3 sequences are similar to those of antibodies that bind to the specific
set of antigens. Despite some data leakage on CDRs H1 and H2, it represents a realistic scenario
of designing an antibody for a new target, as CDR H3 is the most important region for antibody
specificity. We have also tested the models on a subset where all selected CDRs are sufficiently
different from the training set, those results are presented in Appendix E. For the experiments done
on the antibody dataset, the masked regions are CDRs. The identity of the CDR is masked one at a
time during training. For the diverse protein dataset we mask residues on the complex interface. The
detailed algorithm can be found in Appendix C.
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Figure 3: A visualization of structure recovery on random test set samples (from initialization to
model prediction). The antibody sample (PDB ID: 2DD8) is on the left and the diverse protein sample
(PDB ID: 3UWQ) is on the right. The solid red region denotes the redesigned coordinates and the
transparent red is the ground truth structure.

2.4 Initialization

The model requires an initialization for the masked data. For amino acid identities, it is simply
replaced with a mask token, and ground truth orientations are replaced with random rotation matrices
(sampled from USO(3)). For the Cα coordinates there are two options. The standard approach used,
for instance, in Luo et al. [20] is replacing the masked coordinates with positions sampled from a
Gaussian distribution. We apply this scheme for all experiments, unless specified otherwise. The
Gaussian is centered at the mean of the unmasked residues that are the closest along the chain to
the hidden region and has a standard deviation of 0.1 Å for non-diffusion experiments on antibodies
and 1 Å for others. We also suggest an alternative noising method for the diverse protein dataset. In
practice, it is reasonable to assume that when a binding surface is redesigned the amino acids should
not move too far away from their original position, which means the ground truth information does
not have to be destroyed completely. To model this, we also conduct experiments where instead of
replacing the ground truth coordinates with a Gaussian distribution we add Gaussian noise (standard
deviation 5 Å) to the data. This is referred to as alternative noising in the text.

2.5 Training

We use the predicted orientations to reconstruct the coordinates of all backbone atoms and then apply
a mean squared error (MSE) loss on all atoms [25]. The final loss function is a sum of the MSE loss
and cross-entropy on amino acid identity predictions. The models were trained for a fixed number of
epochs and evaluated based on one random prediction per protein at the last epoch. All results on the
antibody dataset are aggregated over five random seeds. More details can be found in Appendix F.

2.6 Diffusion

To train the model within a diffusion framework, we define noising and denoising schemes for the
three data modalities. For translations, we follow the scheme proposed in Ho, Jain, and Abbeel [7]
with the x0 parameterization for noising and denoising the translation vectors. The orientations are
diffused according to Leach et al. [18] and amino acid identities according to Austin et al. [2]. One
difference introduced to the original formulations is not adding noise at every step at inference time,
as in Mathis et al. [21], in order to account for the deterministic nature of inpainting in a small region.
See the algorithms and other details in Appendix D. We refer to the model trained with diffusion as
ProtFillDiff.

3 Results

3.1 Ablation

In this section, ablation experiments are conducted to assess the impact of two significant enhance-
ments made to the baseline GVP-GNN structure: edge updates and recycling. The outcomes,
presented in Table 1, confirm that both alterations notably enhance the model’s performance, thereby
justifying their integration.
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Table 1: Sequence recovery rates and Cα RMSD (Å) on the antibody dataset for the model with and
without recycling (Re) and edge updates (EU) on different CDRs. Bold text indicates the highest
performing model.

Re EU H1 H2 H3
+ + 0.71 (0.01)/1.19 (0.02) 0.57 (0.01)/1.10 (0.05) 0.30 (0.01)/2.93 (0.09)
- + 0.69(0.01)/2.15(0.19) 0.51(0.01)/2.00(0.21) 0.27(0.01)/3.74(0.09)
+ - 0.59(0.02)/1.83(0.09) 0.41(0.02)/1.76(0.07) 0.27(0.01)/3.23(0.10)
- - 0.56(0.03)/2.65(0.09) 0.36(0.01)/2.40(0.14) 0.27(0.01)/3.89(0.83)

Table 2: Sequence recovery rates and Cα RMSD (Å) on the antibody dataset for our models and
existing alternatives. Bold and underlined text indicates the highest performing models.

Model H1 H2 H3
ProtFill 0.71 (0.01)/1.19 (0.02) 0.57 (0.01)/1.10 (0.05) 0.30(0.01)/2.93(0.09)

ProtFillDiff 0.63(0.01)/1.38(0.07) 0.51(0.02)/1.21(0.05) 0.39 (0.01)/3.58(0.34)
diffAb 0.50(0.02)/2.31(0.14) 0.32(0.01)/2.18(0.14) 0.26(0.01)/4.59(0.25)
MEAN 0.54(0.02)/1.20(0.03) 0.36(0.01)/1.14(0.11) 0.26(0.03)/2.51 (0.11)

3.2 Diverse protein dataset co-design

We investigate the performance of the model in the task of in-painting in a diverse protein dataset
with the two noising schemes outlined in Section 2.4. With the standard (harder) noising the results
on the test set are 27% sequence recovery rate and 2.22 Å Cα RMSD and with the alternative (easier)
noising they are 33% and 1.11 Å. For visual representations of the predictions, refer to Figure 3.

3.3 Diffusion

Adding diffusion does not seem to impact the performance of the model. Overall, compared to existing
alternatives, our models perform significantly better on sequence prediction and are comparable on
structure prediction (see Table 2). The MEAN [16] and diffAb [20] models were re-trained on the
same dataset following the same procedure as our models (trained for a fixed number of epochs on
mixed CDRs and evaluated at a random prediction from the last checkpoint).

4 Discussion

This study introduces a unified model for designing protein structure and sequence simultaneously,
within the framework of protein inpainting, with potential applications of interface design and
binding optimization. Using SE(3) equivariant graph neural networks with an updated version of
GVP-GNN message passing layers results in superior sequence prediction and competitive structure
recovery, demonstrating the potential of co-design for inpainting on diverse proteins. Incorporating
the model into a diffusion framework, consistent with recent advances in protein design, reveals a
promising avenue for further exploration. Ablation studies highlight the efficacy of edge feature
updates and recycling in enhancing structure prediction accuracy. The results show promise for
designing interfaces for protein-protein interactions, but further experimental validation is needed
to confirm the utility of the method. Future work could explore combining the diffusion framework
with various conditioning approaches and integrating variability of the length of the inpainted region.
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A Edge updates

Originally, GVP layers only update the node features, while the edge features remain constant.
Following the example of ProteinMPNN [4], we wanted to explore the effect of updating the edge
features as well.

In order to achieve that, within the message passing algorithm we generate node and edge features
separately from the joint hidden state. See Algorithm 1 for details. In addition to the main modification
in the message passing algorithm, updating the edges requires changes in the rest of the processing
stream. GVPe performs graph propagation steps as follows.

s(i→j) = concat
(
s(i)n , s(j)n , s(i→j)

e

)
, (1)

V (i→j) = concat
(
V (i)
n , V (j)

n , V (i→j)
e

)
, (2)

(s′e, V
′
e ), (s

′′
n, V

′′
n ) = GVPe ((s, V )) , (3)

s′(i)n =
1

K

∑
k∈N (i)

s′′(k→i)
n , (4)

V ′(i)
n =

1

K

∑
k∈N (i)

V ′′(k→i)
n , (5)

s(i)n = LayerNorm
(
GELU

(
Wsn

[
concat

(
s(i)n ,Dropout

(
s′(i)n

)]]
+ bn

))
, (6)

s(i→j)
e = LayerNorm

(
GELU

(
Wse

[
concat

(
s(i→j)
n ,Dropout

(
s′(i→j)
e

)]]
+ be

))
,

(7)

V (i)
n = γnWvn

[
concat

(
V (i)
n ,Dropout

(
V ′(i)
n

)]]
, (8)

V (i→j)
e = γeWve

[
concat

(
V (i→j)
e ,Dropout

(
V ′(i→j)
e

)]]
. (9)

Other minor differences to the network introduced in Jing et al. [14] are replacing sum with concate-
nation and an additional linear layer at equations 6-9 and skipping vector normalization.

A.1 Equivariance

The original GVP layers are equivariant to rotations but not to translations. Since we do not introduce
any new operations and simply create another copy of the same data stream, GVPe layers maintain
the same qualities. Our network consists of stacked GVPe layers, so in order to prove that our update
operation is equivariant to translations and rotations (SE(3) equivariant) we need to show that it is
equivariant to translations.

The model is trained to predict translations relative to the input data and uses input features that are
invariant to translations. Therefore, it can be represented as

x′ = f(x, h) = x+ ProtFill (feat (x, h)) , (10)

where ProtFill is the network, f is the entire update operation and feat is the feature extraction
operation, x is the coordinate array and h is the scalar feature array defined in space Rn. We know
that

feat (x, h) = feat(x+ t, h) ∀t ∈ R3 ∀x ∈ R3 ∀h ∈ Rn. (11)
Therefore,

ProtFill (feat (x, h)) = ProtFill (feat (x+ t, h)) ≜ y(x, h). (12)
This means that

f(x+ t, h) = x+ t+ ProtFill (feat (x+ t, h)) = x+ t+ y(x, h)

= x+ ProtFill (feat (x, h)) + t = f(x, h) + t ∀t ∈ R3 ∀x ∈ R3 ∀h ∈ Rn. (13)

Therefore, the update operation is equivariant to translations and thus SE(3) equivariant.
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Table 3: Parameters of the datasets used.

Diverse protein Antibody
PDB snapshot 20230102 live 26.06.23
Minimum resolution, Å 3.5 3.5
Minimum length, aminoacids 30 30
Maximum length, aminoacids 2’000 2’000
MMseqs threshold 0.3 0.4
Training set size, clusters 19’471 4’752
Validation set size, clusters 1’017 147
Test set size, clusters 977 550/32
Missing threshold (ends/middle) 0.3/0.1 0.5/0.2
Source PDB SAbDab
Remove redundancies yes no

B Data

In this paper, we used two datasets generated by ProteinFlow [17]. The diverse protein dataset
includes all single chains and protein-protein interactions defined in the Protein Data Bank (PDB) [3]
as biological units. This includes all antibody-antigen interactions, heteromers, monomers, as well as
synthetic protein interactions. On the other hand, the antibody dataset only contains entries related
to antibodies and nanobodies, defined within the SabDab database [5]. The filtering and processing
parameters are listed in Table 3.

The antibody dataset has two test subsets. One is generated with the standard ProteinFlow pipeline
and contains 32 clusters that do not belong to any of the interaction graph connected components
used in training. The performance of the model on this data should be close to the lower boundary of
completely new data. The results for this test set are presented in Appendix E. The second test set is
created in accordance with Luo et al. [20]. It consists of all the complexes that include any of a list of
antigens (identified in SAbDab as ’sars-cov-2 receptor binding domain’, ’hiv-1 envelope glycoprotein
gp160’, ’mers s’, ’influenza a virus’, ’cd27 antigen’, and other chains that are 70% or more similar to
those) and others that share sequence similarity (greater or equal to 30%) to CDR-H3 of any of the
antibodies binding to these antigens. This represents a realistic real-world scenario of re-designing a
protein for a new therapeutic target but contains some data leakage. This subset contains 550 clusters.
The results on this test set are presented in Section 3.2. The data is publicly available and can be
accessed with ProteinFlow commands. It is then additionally filtered to only include entries where
the total length of the chains does not exceed 2000 residues.

proteinflow download --tag 20230102_stable # diverse protein

proteinflow download --tag 20230626_sabdab --skip-splitting # antibody
proteinflow split --tag 20230626_sabdab --test_split 0.01 --valid_split
0.03 --exclude_clusters --exclude_based_on_cdr H3 -e 5xku-A -e 7chf-R -e
5tlj-X -e 5w9n-D -e 7che-R -e 5tlk-Y -e 5tlk-X -e 5w9h-G -e 7bwj-E -e
5tl5-A -e 7d6i-A -e 7chb-R -e 5w9h-D -e 5w9n-A -e 5w9h-A --min_seq_id 0.4

Additionally, all the input data is patched (cut) around the masked region in a manner similar to Luo
et al. [20]. The patching is based on the anchor points coordinates, or the Cα coordinates of the
unnoised amino acids that are the closest along the chain to the noised area. We select a number
of residues that are spatially the closest to the set of the anchor points and discard the rest. For the
diverse protein dataset, we select the closest residues, regargless of the chain they belong to. For
the antibody, we select a union of 128 closest residues in all chains and 128 closest residues in the
antigen.

B.1 Sampling

In order to avoid biasing the model towards more common proteins many works [10, 9] iterate over
sequence identity clusters instead of over individual sequences at training and validation and use a
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single representative from each cluster. We also follow the strategy of iterating over the MMSeqs2
clusters. However, instead of using a single representative for each cluster we sample a random one
at each pass through the data, as in [4].

C Masking

In this paper some experiments are done on the antibody dataset and some on the diverse protein
dataset. The two datasets require different masking algorithms.

C.1 Diverse protein

For the diverse protein protein dataset, we select parts of the sampled chain to be re-designed. In
particular, one residue from the chain is chosen at random, followed by the addition of N spatially
closest residues. Those residues are the masked region that the model needs to re-design. We set N
to vary from 15 to 50 but never more than half of the chain length. In addition, we force the masked
region to be close to an estimated binding site in multi-chain complexes 50% of the time during
training and 100% of the time during inference. That means selecting the random center residue from
the subset of amino acids that are within 10 angstroms from a different chain.

C.2 Antibody

For the experiments done on the antibody dataset, the masked regions are CDRs. CDRs are masked
one at a time and the identity of the CDR is not known to the model. The unmasked CDRs are passed
as input to the model.

D Diffusion

Since the model works with three data modalities (Cα coordinates, N -C-Cα orientation angles and
amino acid identity distributions), defining the diffusion process means defining training and sampling
algorithms for each of those modalities.

D.1 Variance schedule

For all the data modalities we use the cosine variance schedule, defined by the following equations.

ᾱt = cos

((π
2

) t/T + 0.01

1 + 0.01

)2

, (14)

βt =
ᾱt+1

ᾱt
, (15)

αt = 1− βt, (16)

σt =
1− ᾱt−1

1− ᾱt
βt. (17)

Here T is the total number of diffusion steps, we set it to 50. In practice, we clamp βt = min(0.99, βt)
and then recompute ᾱt =

∏
k≤t(1 − βt) and the other values in order to prevent the output from

blowing up at inference time.

D.2 Coordinates

For the Cα coordinates, we use the standard diffusion formulation from [7] with the x0 parameteriza-
tion (see algorithms 2-3).

Note that the sampling algorithm here deviates from Ho, Jain, and Abbeel [7]. We have found
that the best results for the inpainting task are achieved with no added noise during sampling, as in
Mathis et al. [21]. Therefore we replace the xt−1 = µ̃t (gθ (xt))+ σtz, z ∼ N (0, I) update formula
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Algorithm 2 Training Cα

repeat
x0 ∼ q(x0)
t ∼ Uniform({1, . . . , T})
ϵ ∼ N (0, I)
Take gradient descent step on∇θγt||gθ(xt, t)− x0||2

until converged

Algorithm 3 Sampling Cα

xT ∼ N (0, I)
for t = T, . . . , 1 do

xt−1 =

(√
ᾱt−1βt

1−ᾱt
gθ(xt, t) +

√
αt(1−ᾱt−1)

1−ᾱt
xt

)
end for
return x0

with xt−1 = µ̃t (gθ (xt)), where µ̃t (gθ (xt)) is an estimation of the mean of xt−1. Analogous
modifications are introduced to the sampling algorithms for orientation and sequence as well.

The γt parameter in the loss function can be set to max
(

αt

1−αt
, 1
)

, as in [22], to account for different
noise levels. However, we have found that this does not impact the results, so in all experiments we
set it to 1.

Normalization For the diffusion process to stay SE(3) equivariant, the data needs to be centered
and normalized [8]. It is centered at the mean of the anchor points. The standard deviation of the
ground truth data is 5.2 Å but we have found that setting the prior standard deviation to 1 Å leads to
the best performance.

D.3 Orientation

For the diffusion of the orientation, we follow the algorithms suggested by Leach et al. [18] (4-5).

Algorithm 4 Training orientation
repeat
t ∼ Uniform({1, ..., T})
x0 ∼ q(x0)
R ∼ IGSO(3)(I,

√
1− ᾱt)

S(v) = log(R)√
1−ᾱt

xscale = exp (
√
ᾱt log x0)

Take gradient descent step on: ∇θ∥v − gθ(Rxscale, t)∥2
until converge

Here µ̃t has the meaning of an estimation for xt−1 but is computed on the SO(3) space.

µ̃t(xt, x̃0) = λ

(√
ᾱt−1βt

1− ᾱt
, x̃0

)
λ

(√
αt−1(1− ᾱt−1)

1− ᾱt
, xt

)
, (18)

λ(γ, x) = exp(γ log(x)). (19)

The exp and log operations are redefined here to map between the Lie algebra so(3) and SO(3). In
this space,

logR =
θ

2 sin θ
(R⊤ −R), (20)
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Algorithm 5 Sampling orientation
xT ∼ USO(3)

for t = T, . . . , 1 do
v = gθ(xt, t)

a1 = exp
(√

1
ᾱt

log(xt)
)

a2 = exp
(
S
(√

1
1−ᾱt

v
))

x̃0 = a1a2
−1

xt−1 = µ̃t(xt, x̃0)
end for

where θ satisfies 1 + 2 cos θ = tr(R). Additionally, given the vector v = (x, y, z), the skew-
symmetric matrix S(v) is defined as:

S(v) =

(
0 z −y
−z 0 x
y −x 0

)
. (21)

D.4 Amino acid sequence

For diffusing the amino acid sequence, we follow the framework suggested in Austin et al. [2] and
Vignac et al. [24] (algorithms 6-7).

Algorithm 6 Training sequence
repeat
x0 ∼ q(x0)
t ∼ Uniform({1, . . . , T})
ϵ ∼ N (0, I)
xt ∼ Cat

(
xt; p = x0Q̄t

)
Take gradient descent step on∇θ cross-entropy(gθ(xt, t), x0)

until converged

Algorithm 7 Sampling sequence
xT ∼ N (0, I)
for t = T, . . . , 1 do
x̃0 ∼ gθ(xt, t)

xt−1 = argmax
(

xtQ
⊤
t x̃0⊙Q̄t−1

x̃0Q̄tx⊤
t

)
end for
return x0

Here Qt are state transition matrices defined by the variance schedule. Specifically, in this work we
use the model of absorbing state. It is defined by the following matrix:

[Qt]ij =


1 if i = j = m,

αt if i = j ̸= m,

1− αt if j = m, and i ̸= m,

(22)

where m is the index of the absorbing masked state. The αt parameter follows the same variance
schedule as for Cα positions and orientations (section ??). The Q̄t matrices are cumulative products,
with Q̄t = Q1Q2...Qt.
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Table 4: Sequence recovery rates and Cα RMSD (Å) on the ’hard’ antibody test set for the model
with and without recycling (Re) and edge updates (EU) on different CDRs. Bold text indicates the
highest performing model.

Re EU H1 H2 H3
+ + 0.32(0.03)/1.90 (0.10) 0.25(0.05)/0.95 (0.03) 0.20(0.02)/2.61 (0.09)
- + 0.34 (0.02)/2.56(0.18) 0.27 (0.02)/1.89(0.21) 0.27 (0.01)/3.74(0.10)
+ - 0.28(0.04)/2.42(0.04) 0.23(0.03)/1.48(0.10) 0.23(0.01)/3.05(0.15)
- - 0.27(0.03)/3.06(0.11) 0.25(0.01)/2.30(0.25) 0.23(0.03)/3.9(0.4)

Table 5: Sequence recovery rates and Cα RMSD (Å) on the ’hard’ antibody test set for ProtFill and
existing alternatives. Bold and underlined text indicates the highest performing models.

Model H1 H2 H3
ProtFill 0.32 (0.03)/1.90 (0.10) 0.25(0.05)/0.95 (0.03) 0.20(0.02)/2.61(0.09)

ProtFillDiff 0.31(0.02)/2.18(0.12) 0.27 (0.02)/1.00(0.05) 0.29 (0.02)/2.56(0.19)
diffAb 0.27(0.03)/3.17(0.20) 0.26(0.03)/2.07(0.22) 0.19(0.03)/4.23(0.14)
MEAN 0.23(0.02)/1.95(0.06) 0.23(0.02)/1.07(0.10) 0.17(0.01)/2.50 (0.16)

E Lower boundary of performance

Here in Tables 4 and 5 we present the results of the experiments on the hard test set (described in
Appendix B). They represent an approximation of the lower boundary of the model performance on
completely new data.

F Training details

All models were trained for a fixed number of epochs, determined based on the flattening of metrics
on the validation subset. For the ProtFill and ProtFillDiff models it is 250 epochs if recycling is
used and 100 if it is not. For diffAb [20] it is 200’000 steps, as in the original configuration files.
For MEAN [16] is it 100 epochs, since at the original 20 epochs the validation metrics were still
improving. The original configuration files are used for all the other parameters. All models are
trained on all CDRs mixed and evaluated at the last epoch, with no selection for the generated samples.
The learning rate for our models is determined by the Noam optimizer [23].

The training time on the antibody dataset is approximately 23 hours for ProtFill and 29 for ProtFillDiff
on one NVIDIA A10G Tensor Core GPU. On the larger diverse dataset ProtFill training took 118
hours. On the antibody dataset, each model was trained with five random seeds and the results were
averaged.

12


	Introduction
	Methods
	Task formulation
	Network architecture
	Data
	Initialization
	Training
	Diffusion

	Results
	Ablation
	Diverse protein dataset co-design
	Diffusion

	Discussion
	Bibliography
	Edge updates
	Equivariance

	Data
	Sampling

	Masking
	Diverse protein
	Antibody

	Diffusion
	Variance schedule
	Coordinates
	Orientation
	Amino acid sequence

	Lower boundary of performance
	Training details


