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Abstract

Interactions between proteins form the basis for many biological processes, and
understanding their relationships is an area of active research. Computational
approaches offer a way to facilitate this understanding without the burden of ex-
pensive and time-consuming experiments. Here, we introduce LATENTDOCK,
a generative model for protein-protein docking. Our method leverages a diffu-
sion model operating within a geometrically-structured latent space, derived from
an encoder producing roto-translational invariant representations of protein com-
plexes. Critically, it is able to perform flexible docking, capturing both backbone
and side-chain conformational changes. Furthermore, our model can condition
on binding sites, leading to significant performance gains. Empirical evaluations
show the efficacy of our approach over relevant baselines, even outperforming
models that do not account for flexibility.

1 Introduction

Protein complexes serve as vital components for various cellular functions, with protein-protein in-
teractions playing a pivotal role in understanding these processes. The application of machine learn-
ing methods in this context has proven to be both highly effective and computationally efficient.
However, it is imperative to recognize the inherent flexibility associated with protein complexes
during their interactions, characterized by two critical aspects: (i) the absence of a fixed or singu-
lar position for the complex, and (ii) the propensity for conformational changes in proteins upon
docking.

Recently proposed machine learning-based methods often face challenges in effectively addressing
both aspects concurrently. For instance, while current regression-based methods (Evans et al., 2021;
McPartlon & Xu, 2023) enable flexible docking, they operate deterministically, failing to produce
alternative solutions when binding sites are hard to discern. In essence, these approaches offer
no way to reconcile incorrect predictions. On the other hand, the recent diffusion-based method
DIFFDOCK-PP (Ketata et al., 2023) naturally produces a variety of poses, but requires treating
individual chains in a complex as rigid bodies.

We propose LATENTDOCK, a method designed to address both aspects simultaneously. Our ap-
proach is based on a diffusion model operating on a geometrically-structured latent space. LA-
TENTDOCK performs protein-protein docking at a full-atom resolution, enabling flexible backbone
and side chain conformations. In contrast to deterministic methods, LATENTDOCK leverages diffu-
sion models to offer the advantage of producing multiple potential complex structures. In empirical
evaluations, LATENTDOCK demonstrates state-of-the-art performance in protein-protein docking. It
notably outperforms DiffDock-PP by a significant margin and shows similar performance to Dock-
GPT.
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Figure 1: LATENTDOCK overview. LATENTDOCK extracts sequence and roto-translational invari-
ant features from each individual chain, and uses a conditional latent diffusion model (+ decoder) to
produce the final protein complex conformation.

2 Related Work

Protein docking has been a longstanding challenge in structural biology. Traditional physics-based
models treat this as a search problem, evaluating the energy of each conformation in a massive set
of potential candidates (Chen et al., 2003; De Vries et al., 2010; Yan et al., 2020).

Multiple machine learning methods have been introduced to lighten the computational costs of tra-
ditional protein-protein docking methods. Regression-based methods produce competitive results
(Ganea et al., 2021; McPartlon & Xu, 2023), but only propose a single conformation for the final
complex. Further, the regression methods inherently converge to the mean, which may be problem-
atic when the true complex is difficult to discern, or multiple valid poses are possible (Corso et al.,
2022).

Recently, diffusion models have been applied to the protein-protein docking task to address this
limitation (Ketata et al., 2023). However, existing approaches are subject to certain limitations,
as they either only handle docking of two proteins, and/or treat them as rigid bodies, which is
inconsistent with the flexible nature of protein interactions.

3 Latent Diffusion for Protein-Protein Docking

This section introduces LATENTDOCK (fig. 1), a generative model for flexible protein-protein dock-
ing. It consists of a latent diffusion model (Rombach et al., 2022; Vahdat et al., 2021) operating
on the geometrically structured latent space of a pre-trained autoencoder. The training of LATENT-
DOCK follows a two-stage approach (Rombach et al., 2022). First, we train an autoencoder tailored
for protein complexes (described in section 3.2), using roto-translational invariant features (sec-
tion 3.1). Second, with the autoencoder frozen, we train a diffusion model that operates in this latent
space (section 3.3). Theoretical considerations concerning properties of the learned distribution are
discussed in appendix C.

3.1 Roto-translational Invariant Features for Protein Complexes

Given a protein complex, we extract roto-translational invariant features to coarsely characterize
the sequences and structures of its individual chains. These features are then used to train the au-
toencoder and the latent diffusion. We follow the features used by DockGPT (McPartlon & Xu,
2023), which are split into three types: residue-level (including amino acid type, sequence position,
and backbone angles), intra-chain-level (information for pairs of residues i, j in the same chain,
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including their distance, relative orientation, and sequence separation), and inter-chain-pair (infor-
mation for each pair of residues i, j in different chains). To train the autoencoder, we include all
relevant distance and angle information as inter-chain features, but remove this when training the
latent diffusion model for docking.

For each residue i, or residue pairs i, j, all the aforementioned features are one-dimensional arrays.
We provide details on how all these features are generated in appendix B. Given a protein complex
with L residues, residue-level features are combined into an L× cs matrix s, and pair-level features
are combined into an L× L× cp tensor p.

3.2 Autoencoder with Roto-translational Invariant Latent Space

The first component of LATENTDOCK is an autoencoder, consisting of a stochastic encoder (which
maps a protein complex to a roto-translational invariant latent representation) and a decoder (which
reconstructs the input complex structure given its latent representation). As detailed in appendix D,
the autoencoder is trained independently of the diffusion, by minimizing a combination of the recon-
struction loss (for the predicted structure) and the cross-entropy loss (for the predicted sequence).

Encoder Eϕ Given a protein complex, the encoder computes the mean and variance of a Gaussian
distribution over the latent space, which is sampled to produce the latent representation. Each layer
(we use 8 layers) in the encoder is given by

si ← PairBiasAtt(s,pi:), (1)

where s and p are the residue-level and pair features, respectively, and PairBiasAtt is the pair-
biased attention layer from Jumper et al. (2021). The mean and log-scale of the Gaussian distribution
are then obtained as

µi ← Linear(si), log σi ← Linear(si). (2)

Finally, the latent representation z (an L× 16 matrix) is obtained as zi = (z̃i−mean(z̃i))/std(z̃i),
where z̃ ∼ N (µ, σ2). This latent representation jointly captures structural and sequence information
for each residue in the input complex.

Decoder Dψ Given a latent representation z, the decoder is designed to reconstruct the input
protein complex. We use the structure module from AlphaFold2 (Jumper et al., 2021), where each
residue in the reconstructed backbone (represented as the frame formed by the N -Cα-C atoms) is
identified with a rigid transformation Ti consisting of a translation and a rotation. Using q to denote
the L × L × cq tensor obtained by combining two pair features (sequence separation and relative
chain information, see section 3.1), each layer (we use 8 layers) in the decoder is given by

zi ← IPA(z,T:,qi:), zi ← MLP(zi), Ti ← Ti ◦ BackboneUpdate(zi). (3)

The invariant point attention (IPA) and backbone update operations are described in detail in Jumper
et al. (2021). The side chain angles, amino acid type (logits over the 20 natural amino acids), and
confidence score are then predicted as (for each residue i in the backbone)

anglesi = MLP(zi), aai = Linear(zi), confi = Linear(zi). (4)

3.3 Latent Space Diffusion

The second component of LATENTDOCK is a conditional diffusion model operating in the au-
toencoder latent space. This diffusion is trained in a second step, after training and freezing the
autoencoder (Rombach et al., 2022).

As detailed in appendix A, diffusion models define a forward process that gradually diffuses samples
z (in our case latent representations) by running a diffusion process (“noising”). Then, they generate
samples by reversing this process (“denoising”). This requires training a score network sθ(zt, t, c),
where c represents the conditioning information available to the model.

Score network Our score network sθ(zt, t, c) resembles the encoder architecture, with extra up-
dates for the pair features through triangular multiplicative layers (Jumper et al., 2021). Using ut

to denote the L× (16 + cu) matrix obtained by concatenating zt and the residue-level features in c,
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and r to denote the L× L× cr tensor obtained by combining pair-level features in c, each layer in
the score network consists of (we use 12 layers)

uti ← PairBiasAtt∗(ut, ri:, tenc), rij ← rij +OutSum(uti,u
t
j), r← r+TriangMult(r),

(5)
where tenc denotes the sinusoidal encoding of t (Vaswani et al., 2017), and PairBiasAtt∗ is a variant
of the pair-biased attention layer (Jumper et al., 2021) that uses tenc to compute attention weights.
The final score is obtained through a linear layer scorei = Linear(uti).

4 Empirical Evaluation

We briefly introduce the datasets and metrics used for each task, then present our empirical results.
Full details, and an explanation of data collection can be found in appendices E and F. Extended
results are provided in appendix G. In all tables, we use bold to denote the best performing method,
and underline the second-best.

Protein-protein docking. Our dataset contains all available chains in the Protein Data Bank (PDB,
March 2023, 199k proteins). Splits are generated by performing FoldSeek all-vs-all structural align-
ments of protein binding sites (Berman et al., 2003; van Kempen et al., 2023). This novel split is
introduced to address significant potential data leakage found in the DIPS splits. Full details and
evidence of leakage are provided in appendix E. Our test set is selected from cluster representatives
among the top 10% highest resolution, which contain at least one high quality representative PPI.
We randomly chose a subset of 150 dimers, 100 heterodimers and 50 homodimers. We remark that
all methods in the comparison are retrained on the same splits so as to limit potential bias. Retraining
details are discussed in appendix F.

We evaluate protein-protein docking methods by measuring differences between predicted and
ground truth structures in terms of root mean square deviation (RMSD), RMSD for interface
residues (I-RMSD), and RMSD for ligand residues (L-RMSD). We report 25th and 50th percentiles,
and the proportion of predictions with I-RMSD ≤3Å and L-RMSD ≤6Å. We also report DockQ,
which is a composite score of I-RMSD, L-RMSD and fraction of recovered native contacts (Basu
& Wallner, 2016). The score (range 0 to 1) can be used to reproduce the Critical Assessment
of PRediction of Interactions (CAPRI) classification of Incorrect (DockQ < 0.23), Acceptable
(0.23 < DockQ < 0.49), Medium (0.49 ≤ DockQ < 0.8) and High (DockQ ≥ 0.8) quality
predictions (Vajda et al., 2002).

4.1 Autoencoder Evaluation

We begin our empirical evaluation by studying the autoencoder’s accuracy, as it may limit LATENT-
DOCK’s performance on downstream tasks. We do this by measuring its capacity to reconstruct
input complexes using the metrics described above. Samples from LATENTDOCK’s encoder are
decoded with an average full-atom Complex RMSD of 1.3± 0.3Å, average I-RMSD is 1.3± 0.3Å,
and L-RMSD is 2.1 ± 0.5Å. With these RMSD statistics, the average DockQ score of predicted
complexes is 0.75± 0.05Å, which is at the upper threshold of medium quality. Although recovered
structures are of relatively high quality, in section 4.2, we show that LATENTDOCK is capable of
generating structures at the lower bound of the autoencoder’s recovery range. This suggests that
improvements to the autoencoder could directly translate to performance gains on design tasks.

4.2 Protein-Protein docking

We compare LATENTDOCK to three machine learning approaches for protein-protein docking, the
regression-based methods EQUIDOCK (Ganea et al., 2021) and DOCKGPT (McPartlon & Xu,
2023), and the diffusion-based method DIFFDOCK-PP (Ketata et al., 2023). We re-trained each
of these methods on the dataset described above. Training details for baselines are provided in
appendix F.

Table 1 reports the results achieved by all methods on the 150 dimers in the test set. When reporting
results for generative methods, LATENTDOCK and DIFFDOCK-PP, we sample 20 structures per tar-
get and report “oracle” statistics, by selecting the prediction with the lowest RMSD from the ground
truth. Although this biases performance in favor of diffusion models, it provides clear and simple
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I-RMSD(Å)↓ L-RMSD(Å)↓ DockQ↑

25th 50th %≤ 3Å↑ 25th 50th %≤ 6Å↑ ≥accep. ≥med. ≥high

EQUIDOCK 14.5 18.14 0.0% 29.3 35.0 0.0% 0.0% 0.0% 0.0%
DOCKGPT 0.76 2.13 55.3% 1.86 5.96 50.1% 63.3% 52.0% 31.3%
DIFFDOCK-PP (20)† 2.63 5.01 31.3% 6.1 13.2 24.6% 44.6% 24.0% 4.6%
LATENTDOCK (20)† 1.45 1.92 64.7% 2.61 3.82 60.7% 70.0% 56.7% 1.3%

LATENTDOCK + 1C (20) † 1.31 1.50 94.0% 2.11 2.73 92.0% 97.3% 90.7% 3.3%

Table 1: Results on 150 protein dimers. Results for four ML-based docking methods are shown for
the test set. Here, we use 25th and 50th to denote 25th and 50th percentile values. Each method was
re-trained and evaluated on the same splits. For diffusion models, the number of sampled poses is
shown in parentheses. In an effort to fairly compare our method with DIFFDOCK-PP, we report only
oracle statistics, denoted with †, which refers to the setting where we can perfectly select the best
pose out of the sampled ones. We distinguish our performance on blind docking (LATENTDOCK)
and our performance on site-conditioned docking given one Cα-Cα contact (LATENTDOCK + 1C)

criteria that is easy to apply across both methods. (Regression based methods are deterministic,
producing a single structure per target.) As an ablation study, we also measure performance for a
varying number of sampled structures (5, 10, 20), with results shown in table G.1.

Table 1 shows that LATENTDOCK achieves competitive lower-quartile I-RMSD and L-RMSD with
DOCKGPT, and significantly outperforms DIFFDOCK-PP and EQUIDOCK on all metrics. In terms
of DockQ score, LATENTDOCK finds the largest fraction of medium or better quality poses, but
falls short of DOCKGPT in terms of high-quality predictions. This is not surprising given that the
autoencoder has an average DockQ of 0.75 – marginally below the high quality threshold. We expect
improvements to the autoencoder to translate to improvements in LATENTDOCK’s performance.

We also evaluate LATENTDOCK’s and DIFFDOCK-PP’s performance when generating a different
number of samples per target. Results are shown in table G.1. We observe that LATENTDOCK
tends to converge on low-RMSD solutions with significantly less samples than DIFFDOCK-PP. In
fact, LATENTDOCK with 5 samples per target significantly outperforms DIFFDOCK-PP with 20
samples across all metrics. Considering the best pose across five samples, LATENTDOCK achieves
median oracle I-RMSD of 2.37 Å and median oracle L-RMSD of 5.53 Å. Given the same number
of samples, DIFFDOCK-PP’s median I-RMSD and L-RMSD is 8.67 Å and L-RMSD is 19.78 Å.

We also assess LATENTDOCK’s ability to incorporate binding site information in the form of pair-
wise Cα contacts (included as the contact information inter-chain-pair feature). In line with the
results in McPartlon & Xu (2023), we observe that providing even a single inter-chain contact sig-
nificantly improves docking performance (fig. G.1). In fact, with a single contact, LATENTDOCK
achieves an oracle (out of 20 samples), 90% of LATENTDOCK’s predictions achieve a medium or
high DockQ score. We remark that the 25-th percentile I-RMSD is roughly equal to the error rate of
the autoencoder, showing again that LATENTDOCK’s is performing at the limit imposed by the au-
toencoder, and that improvements made to the autoencoder could directly translate to improvements
in LATENTDOCK’s performance.

5 Conclusion

We present LATENTDOCK, a latent diffusion model for general protein-protein docking. Unlike
existing diffusion-based methods, LATENTDOCK offers a methodology for incorporating full-atom
conformational flexibility, and for simultaneously docking more than two chains. LATENTDOCK
also offers a straight-forward way to sample multiple conformations, outperforming regression-
based methods like DOCKGPT in terms of DockQ hit-rate.
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Augustin Žı́dek, Russ Bates, Sam Blackwell, Jason Yim, et al. Protein complex prediction with
alphafold-multimer. biorxiv, pp. 2021–10, 2021.

Octavian-Eugen Ganea, Xinyuan Huang, Charlotte Bunne, Yatao Bian, Regina Barzilay, Tommi
Jaakkola, and Andreas Krause. Independent se (3)-equivariant models for end-to-end rigid protein
docking. arXiv preprint arXiv:2111.07786, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score match-
ing. Journal of Machine Learning Research, 6(4), 2005.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Mohamed Amine Ketata, Cedrik Laue, Ruslan Mammadov, Hannes Stärk, Menghua Wu, Gabriele
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A Diffusion Models

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) represent a
powerful generative modeling technique. Given a target distribution pdata(z), they define a for-
ward process that gradually transforms this distribution into a tractable reference. For instance, the
variance preserving formulation from Song et al. (2020) defines this process using an SDE,

dzt = − 1
2β(t) ztdt+

√
β(t)dw, where t ∈ [0, 1] and z0 ∼ pdata(z). (6)

Essentially, this process takes a dataset of samples from pdata(z) and progressively transforms them
into random noise. Critically, it can be simulated exactly for any time t: Given z0 ∼ pdata we have

zt ∼ pt(zt | z0) = N
(
zt

∣∣∣ z0 e− 1
2

∫ t
0
β(s)ds, I − I e−

∫ t
0
β(s)ds

)
. (7)

For an appropriate choice for β(t) (Song et al., 2020), this shows that samples z1 (obtained by
running eq. (6) up to time t = 1) approximately satisfy z1 ∼ N (0, I). Therefore, new samples from
pdata can be obtained by simulating the time-reversal (Anderson, 1982) of eq. (6), given by

dzt = −β(t)2

(
zt + 2∇ log pt(zt)

)
dt+

√
β(t)dw̄, z1 ∼ N (0, I), (8)

from t = 1 to t = 0. Unfortunately, the “score” ∇ log pt(zt) is often intractable. Diffusion models
address this training a score network sθ(zt, t) to approximate it, minimizing the denoising score
matching objective (Hyvärinen & Dayan, 2005; Vincent, 2011)

L(θ) = Et,z0,zt|z0
[
w(t) ∥sθ(zt, t)−∇zt log pt(zt | z0)∥

2
]
. (9)

Finally, new samples from pdata(z) can be obtained (approximately) by simulating the reverse pro-
cess from eq. (8) using sθ∗(zt, t) ≈ ∇ log pt(zt).

Conditional diffusion models are a natural extension of the formulation above, in which a diffusion
model is trained to approximate conditional distributions pdata(z |c), where c is the conditioning
variable. In this case, the dataset consists on tuples (z, c), the score network is given by sθ(zt, t, c),
and the reverse process produces samples from pdata(z | c) (for any given c).

B Roto-translational Invariant Features

Residue-level features (Eaa(i), Epos(i), and Eangle(θi)) include amino acid type, sequence posi-
tion, and backbone angles, respectively.

Eaa(i) encodes the type of residue i (as a one-hot encoding of the 20 natural amino acids in the
autoencoder, or as the residue ESM embedding (Lin et al., 2023) in the diffusion). Epos(i) en-
codes the ith residue relative sequence position as a one-hot vector using ten equal-width bins.
Eangle(θi) encodes the backbones torsional angles θi ∈ {ϕi, ψi} as a one-hot encoding by splitting
θ ∈ [−180◦, 180◦] into 18 equal-width bins.

Intra-chain pair features (Edist(i, j), Eangle(θij), and Esep(i, j)) include distance, relative orienta-
tion, and sequence separation, respectively.

Edist(i, j) bins the distance between the i-th residueCα atom and the j-th residue backbone atom a ∈
{N,Cα, C, Cβ} into six equal-width groups between 2Å and 16Å. Eangle(θij) encodes the angles
θij ∈ {ϕij , ψij , ωij} of pairwise residue orientations (Yang et al., 2020). Esep(i, j) produces a one-
hot encoding of relative sequence separation between residues i and j into 32 classes (McPartlon
et al., 2022). The pairwise features for each chain are stacked to form a block-diagonal input matrix
with an additional learned parameter filling the missing off-diagonal entries.

Inter-chain pair features

Econtact(i, j) is a binary flag indicating whether the distance between the Cα atoms of residues i
and j is less than 10Å. Echain(i, j) is a three-class one-hot encoding indicating whether the index
of the chain containing residue i is greater than, equal, or less than the index of the chain containing
residue j. (The distance and angle features are generated as explained above for the intra-chain-pair
features.)
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C LATENTDOCK analysis

After training the autoencoder, LATENTDOCK’s performs protein-protein docking by (i) extracting
roto-translational invariant features from the input chains; (ii) running the latent diffusion condi-
tioned on these features; (iii) feeding the resulting latent sample z through the decoder. This process
defines a distribution over protein complex structures. This section briefly studies this distribution’s
properties.
Proposition 1. Let x denote a protein complex structure, and p(x | c) denote the distribution de-
fined by LATENTDOCK, where c denote the conditioning features for all individual proteins in the
complex (sequence and individual structures). If the decoder initializes backbone frames with a
global rotation chosen uniformly at random, then p(x | c1, ..., cN ) = p(Rx | c1, ..., cN ) for any
three-dimensional rotation R.

We prove proposition 1 in appendix C.1. The proposition states that the distribution defined by
LATENTDOCK over the complex structure, denoted by p(x | c), is invariant w.r.t. rotations. This is a
property of the true data distribution and it has been observed that methods that enforce symmetries
of the true data distribution often yield better generalization (Jumper et al., 2021; Xu et al., 2022).)

Another desirable property satisfied by LATENTDOCK is its invariance w.r.t. rigid transformations
of the individual chains. This is desirable, as the distribution over full complex structure should not
be affected by rigid transformations of the chains provided as input.

C.1 Proof of proposition 1

Proof. Without loss of generality, we assume that both the input and output structures have mean 0.
This follows from the fact that IPA is translation equivariant, and subtracting the structure’s center
of mass results in an equivalent update to the output.

The proposition is a consequence of the architecture used for LATENTDOCK’s decoder. The updates
from the invariant point attention layer (IPA) are invariant to global rigid transformations of the
frames, while the backbone update is equivariant to such transformations. As a result, for a fixed
latent representation z, initializing all frames with the same random rotation and running the decoder
is equivalent to initializing the frames with the identity rotation and applying the random rotation
on the decoder’s output. Since this rotation is chosen uniformly at random, we have p(x | z) =
p(Rx | z) for any R. This is the key property in the derivation below.

Letting z denote the sample produced by the latent diffusion, and pdiff(z | c1, ..., cN ) its distribution,
we have

p(Rx | c1, ..., cN ) =

∫
p(Rxz | c1, ..., cN )dz (10)

=

∫
p(Rx | z, c1, ..., cN ) pdiff(z | c1, ..., cN )dz (11)

=

∫
p(Rx | z) pdiff(z | c1, ..., cN )dz (12)

=

∫
p(x | z) pdiff(z | c1, ..., cN )dz (13)

= p(x | c1, ..., cN ), (14)

where eq. (12) uses the fact that, given z, (x, s) is independent of c1, ..., cN (i.e. c1, ..., cN is only
used to generate z by running the reverse diffusion; given z, the decoder does not use c1, ..., cN in
any way.)

D Autoencoder training details

The loss used to train the autoencoder is given by

Lae(ϕ, ψ) = CrossEntropy(Ŝ, S) + FAPE(X̂,Xtrue)+

10−3 ·KL(N (µ, σ2) ∥N (0, I)) + plDDT(X̂Cα, XCα
true), (15)
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whereN (µ, σ2) denotes the distribution in the latent space produced by the encoder, X̂a is the full-
atom three-dimensional structure reconstructed by the decoder and indexed by atom type a, and Ŝ is
the reconstructed sequence. The final term plDDT is taken from (Jumper et al. (2021), Supplemental
Algorithm 29). The FAPE loss (Jumper et al., 2021) measures the quality of the produced structure
by aligning predicted per-residue predicted and ground truth rigid frames. To account for limited
or unknown knowledge of binding interfaces in a protein complex, we mask the contact features
Econtact(i, j) when producing the pair representation used as input for the encoder with probability
1/2. Therefore, half of the samples encountered during training do not contain inter-chain contact
information. When these features are not masked, we subsample the number of contacts included as
Ncontact ∼ Geometric(1/3).

E Dataset

Most recent protein-protein docking methods have been evaluated on the Docking Benchmark 5
(DB5) (Vreven et al., 2015), and trained with complexes from the from Protein Data Bank (PDB)
(Berman et al., 2003), such that no protein had more than 30% sequence homology to any protein
in the DB5 as proposed by DIPS Townshend et al. (2019). This approach has some limitations.
For instance, the size of DB5 is rather small when compared to DIPS, which means the structural
diversity of the test set may not be representative, and thus sequence similarity is not always a
good proxy to differentiate structurally similar proteins. Even more concerning, however, when
performing interface clustering between train, validation and test set of the frequently used DIPS
splits Ganea et al. (2021); Ketata et al. (2023), we found that a large majority of the test dataset had
structural overlap with the training data set, as evidenced by fig. E.1.

Therefore, to avoid overreporting performance, we train LATENTDOCK with splits generated by a
structural interface clustering using FoldSeek all-vs-all structural alignments on all available chains
in the PDB (March 2023, 199k proteins), focusing on respective protein binding sites (Berman et al.,
2003; van Kempen et al., 2023), and retrain all existing methods on these splits for fair comparison.
Foldseek stores local alignment positions and normalizes the alignment scores as TM-score, which
is used to filter out alignments with lower structural similarity (< 0.60 TM-score). Binding site
residues were identified based on a criterion of an 6Å Cα distance threshold between chains. A pair
of chains was classified as interacting if there were a minimum of 6 binding residues, and at least
50% were encompassed by the Foldseek alignment. Subsequently, a graph representation encoding
interface similarity of the interacting chain pairs, where TM-scores served as the weights for the
edges, was used to perform community clustering to delineate interface clusters.

The test set consists of the cluster representative with the highest resolution for 10% of the clusters,
which contained at least one high quality representative protein-protein interaction (1973 proteins).
All representative PPIs in the test set have a minimum resolution of 4.5A, a minimum of 5 atom
types, a dimeric state, an interface without any missing residues (gaps), either chain with a maximum
of 550 residues and minimum of 25 residues in length, and are solved by X-ray crystallography. The
validation set consists of 190 proteins with the same restrictions, except that they may contain gaps.
The training data consists of the remaining clusters without any quality-based filtering.

F Data Collection

We retrained each method using the same splits, describe in appendix E. All methods were retrained
using the exact parameters described in the corresponding manuscripts. Additional instructions
for training and inference were gathered through correspondence with the authors of DOCKGPT
and DIFFDOCK-PP. The implementation of DOCKGPT was modified slightly to use 1Å width
bins for pairwise distance features (original paper used 2Å bin-width). This was done to improve
performance on rigid docking.

G Extended Results

We show some additional results for protein docking in table G.1 and fig. G.1.
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Figure E.1: Leakage between training, validation and test splits in the DIPS benchmark set
(Townshend et al., 2019). All-vs-all pairwise structural alignments of respective binding sites per-
formed with Foldseek (van Kempen et al., 2023). (A) TSNE plot of pairwise TM-alignment scores
for all chains in DIPS, showing mixed clusters of train (red), validation (blue), and test (purple). (B)
Bar plot showing the number of Foldseek clusters against members of DIPS (bars from left to right:
only validation, only test, both training and validation, both training and test, or all).

I-RMSD↓ L-RMSD↓

25 50 %≤ 3Å↑ 25 50 %≤ 6Å↑

Diffdock-PP (5)† 4.88 8.67 15.3% 11.57 19.78 12.6%
Diffdock-PP (10)† 3.87 6.58 20.0% 9.17 16.49 15.3%
DIFFDOCK-PP (20)† 2.63 5.01 31.3% 6.16 13.20 24.6%
LATENTDOCK (5)† 1.65 2.37 53.3% 3.41 5.53 50.7%
LATENTDOCK (10)† 1.54 2.05 58.0% 2.72 4.36 54.7%
LATENTDOCK (20)† 1.45 1.92 64.7% 2.61 3.82 60.7%

Table G.1: Results for DIFFDOCK-PP and LATENTDOCK with varying number of samples
For diffusion models, the number of sampled poses is shown in parentheses. In an effort to fairly
compare our method with Diffdock-PP, we report only oracle statistics, denoted with †, which refers
to the setting where we can perfectly select the best pose out of the sampled ones.

11



Figure G.1: Protein-Protein Docking with LATENTDOCK for three complexes with PDB iden-
tifier: 3CNQ, 3E1Z, 3RGF from left to right. Top row shows LATENTDOCK Oracle docking pre-
dictions (40 sampled poses) with contact information (one simulated inter-link). Bottom row shows
LATENTDOCK Oracle docking predictions (40 sampled poses) without additional contact informa-
tion (blind). The respective ground truth structures are displayed in gray.
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