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Abstract

Machine learning approaches to Structure-Based Drug Design (SBDD) have proven
quite fertile over the last few years. In particular, diffusion-based approaches to
SBDD have shown great promise. We present a technique which expands on this
diffusion approach in two crucial ways. First, we address the size disparity between
the drug molecule and the target/receptor, which makes learning more challenging
and inference slower. We do so through the notion of a Virtual Receptor, which
is a compressed version of the receptor; it is learned so as to preserve key aspects
of the structural information of the original receptor, while respecting the relevant
group equivariance. Second, we incorporate a protein language embedding used
originally in the context of protein folding. We experimentally demonstrate the
contributions of both the virtual receptors and the protein embeddings: in practice,
they lead to both better performance, as well as significantly faster computations.

1 Introduction

Background In the realm of structural biology, a persistent challenge has revolved around the
rational design of small molecules, particularly in the context of drug development. Specifically, the
field of Structure-Based Drug Design (SBDD) is concerned with leveraging the three-dimensional
structure of proteins to identify or craft new drug candidates capable of binding to the target protein,
thereby inhibiting its activity. With the advent of precise protein folding models, such as AlphaFold
[Jumper et al., 2021] and RosettaFold [Baek et al., 2021], accurate 3D protein structure has become
widely available. This latter fact presents significant opportunities for advancing the field of SBDD,
paving the way for the development of innovative algorithms designed to harness these 3D protein
structures. Precise and efficient SBDD algorithms hold immense promise, promising to expedite and
economize the process of drug development in the years ahead.

Prior Work Various ML approaches to SBDD have recently been developed. The pioneering
work of Ragoza et al. [2022] employs a conditional Variational Autoencoder (VAE) on a discretized
3D atomic density grid. Following sampling, this grid structure undergoes a transformation into
molecular structures through an atom fitting algorithm. A subsequent class of works including [Drotár
et al., 2021] and [Peng et al., 2022] have adopted an autoregressive methodology. Here, the generation
of molecular structures unfolds as a sequential process, with the probability distribution of each atom
being learned in relation to the preceding atoms. Consequently, molecules are sampled step by step,
with each step adding a new segment to the molecule, all within the confines of the binding site. Luo
et al. [2021] introduce a model that captures the likelihood of a particular chemical element occupying
a specific point in 3D space. Liu et al. [2022] propose the GraphBP framework, eliminating the need
for spatial discretization. Instead, they generate atom types and relative locations while preserving
equivariance. Other notable approaches include those based on recurrent neural networks [Zhang and
Chen, 2022] and equivariant normalizing flows [Rozenberg and Freedman, 2023].

SBDD via Diffusion Diffusion models have become the leading generative approach in various
domains, including images [Saharia et al., 2022], video [Ho et al., 2022], and audio [Kong et al., 2020].
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Recent advancements have witnessed the integration of diffusion models into the realm of structural
biology. Example applications include the creation of novel molecules based on fragments [Levy
and Rector-Brooks, 2023] and the de novo generation of entirely new proteins [Watson et al., 2022,
Gruver et al., 2023]. Crucially to the current work, they have also been used in SBDD [Schneuing
et al., 2022], producing some of the most promising results to date.

Contributions In this work, we expand on the diffusion approach to SBDD in two critical ways. (1)
Virtual Receptors: A key issue in designing SBDD algorithms is the disparity in size between the
drug/ligand and the target/receptor, as the former can often be several orders of magnitude smaller
than the latter. There are two consequences of this disparity: learning can be challenging, as the
model has a hard time focusing on the ligand; and the algorithm can be quite slow. To deal with these
issues, we define the notion of a virtual receptor: a learned encoding model compresses the receptor
graph to a much smaller graph, but which still retains key aspects of the structural information of
the original receptor. We design the encoding model to respect the relevant group equivariance. (2)
Protein Language Embeddings: A language model for protein sequences called ESM [Lin et al.,
2023] utilizes billions of protein sequences to learn a powerful representation for these sequences.
In the original work, this representation was used for predicting protein folding; here we use this
representation as a useful embedding to provide high quality information on the amino acids. We
experimentally demonstrate the contributions of both the virtual receptors and the protein embeddings:
in practice, they lead to both better performance, as well as significantly faster computations.

2 Methods

2.1 Background: Diffusion Framework for Target-Aware Molecular Sampling

Molecular Notation A molecule has a given number of atoms, here denoted n. Each atom is
specified by two items: (1) its coordinates in 3D, denoted by xi ∈ R3; (2) its features, which
will include the atom type, denoted by hi ∈ Rd. Note that in general the features will contain
categorical and ordinal values. We will denote the coordinates and features of the entire molecule by
X = [x1, . . . , xn] ∈ Rn×3 and H = [h1, . . . , hn] ∈ Rn×d, respectively. These may be flattened and
concatenated into a single vector describing the molecule, z = CONCAT(FLATTEN(X), FLATTEN(H)).

Diffusion Models A diffusion model involves two processes: a forward noising process, which
takes the data and turns it into Gaussian noise; and a reverse denoising process, which takes Gaussian
noise and turns it back into data. The forward process is specified by

q(zt|zdata) = N (zt |αtzdata, (1− α2
t )I) (1)

where t = 1, . . . , T , and αt follows a set schedule from α0 ≈ 1 to αT ≈ 0 [Kingma et al., 2021].
Note that the process specified in Equation (1) is a variance preserving process [Song et al., 2020].

The reverse process is learned. It is known that

q(zt−1|zdata, zt) = N (zt−1 |utzt + vtzdata, wtI) (2)

where ut, vt, wt are known functions of αt and αt−1. This equation is interesting, but not useful
practically as zdata is unknown; thus, the diffusion model learns zdata as a function of zt. In practice,
rather than learning zdata, one learns the noise from Equation (1); if ε̂t is the estimated noise, then
the data can be recovered as

ẑdata =
1

αt
zt −

√
1− α2

t

αt
ε̂t (3)

The goal of learning is therefore to approximate the function εθ where ε̂t = εθ(zt, t); training is
achieved using an L2 loss between the estimated noise and the ground truth noise. Inference can
then be performed by repeatedly: (a) using zt to compute ε̂t = εθ(zt, t); (b) computing ẑdata using
Equation (3); and (c) sampling zt−1 from Equation (2) using ẑdata in place of zdata.

Equivariant Graph Neural Networks (EGNNs) Our goal is now to learn the noise function
εθ(zt, t). In order to produce a final distribution which is invariant to both rigid transformations and
permutations, we must design εθ to be equivariant to each of these transformations [Hoogeboom et al.,
2022]. This can be achieved by using an Equivariant Graph Neural Network, or EGNN [Satorras
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et al., 2021]. This is a message-passing GNN whose sth layer is specified as follows:

ms
ij = φe

(
hsi , h

s
j , ‖xsi − xsj‖2, t

)
ms
i =

N∑
j=1

φa(ms
ij)m

s
ij

xs+1
i = xsi +

∑
j 6=i

(xsi − xsj)
‖xsi − xsj‖+ 1

φx(ms
ij) hs+1

i = φh(hsi ,m
s
i ) (4)

SBDD via Conditional Diffusion Models Until now, we have described an unconditional generative
model over molecules, i.e. p(z). What we would like, however, is a conditional model of the form
p(z`|zr), where z` and zr are the vectors representing the ligand and receptor, respectively. This is
easily achieved by replacing the noise estimator with a function which also depends on the receptor,
i.e. ε̂t = εθ(z

`
t , z

r, t). This can be implemented via an EGNN over the combined graph of both the
ligand and the receptor. To allow the network to distinguish between ligand and receptor atoms, one
may append a length-2 one-hot vector to the initial feature vectors hi.

2.2 Virtual Receptor Atoms

Motivation As we have just seen, SBDD via diffusion can be achieved by learning the function
εθ(z

`
t , z

r, t). A key issue in learning this function stems from the disparity in sizes between the
ligand and the receptor: the latter is generally several orders of magnitude larger than the former.
This leads to two problematic consequences. First, if the ligand and receptor are combined into a
joint graph which is then used in the EGNN in Equation (4), the ligand can be “drowned out” by the
much larger receptor, making learning challenging. (Note that this can be true even if the receptor’s
nodes are given by the Cα atoms instead of all of the atoms.) Second, inference and training are made
considerably slower due to the presence of the large receptor. To deal with this issue, we introduce
the notion of the virtual receptor: a smaller molecule which retains the properties of the receptor.

Approach A given virtual receptor atom will be written as a convex sum of the true atoms

x̃ri (t) =

nr∑
j=1

Aij(X
r, Hr, t)xrj i = 1, . . . , ñr (5)

where a tilde will be used to denote virtual quantities, and Aij() is learnable. Thus, the virtual
receptor atoms live within the convex hull of the true atoms. Note that we only generate ñr such
virtual atoms, where we take ñr � nr. In particular, we suppose that ñr = O(n`), where n` is the
number of ligand atoms. A similar equation holds for the features

h̃ri (t) =

nr∑
j=1

Aij(X
r, Hr, t)ξh(hrj) (6)

where ξh can be an arbitrary function.

Properties of Aij To preserve the equivariance of the EGNN, we’ll need for Equation (5) to be
equivariant with respect to both rigid transformations and permutations. It is straightforward to see
that E(3)-equivariance will hold if:

1. Aij(·, Hr, t) is an E(3)-invariant function of the set of receptor atoms’ positions Xr; and

2.
∑M
j=1Aij(X

r, Hr, t) = 1 for all i (hence our requirement for the convex sum).

Permutation-equivariance will hold if Aij(·, ·, t) is a permutation-invariant function of the set of
receptor atoms’ positions Xr and features Hr.

Implementation of Aij The following architecture for Aij respects the above properties:

qrjk = ξq
(
‖xrj − xrk‖, hj , hk

)
bj , b̄j = SPLIT

(
ξb

(
1

nr

nr∑
k=1

qrjk

))
b̄av =

1

nr

nr∑
j=1

b̄j

Â:j = ξa
(
CONCAT(bj , b̄

av, ξk(hj), ζ(t))
)

Aij =
eÂij∑nr

j′=1 e
Âij′

(7)
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where Â:j is a vector of length ñr; the functions ξq, ξb, ξa, ξk, as well as ξh from Equation (6), are
all multilayer perceptrons; the function ζ(t) is an encoding of the time scalar, such as a sinusoidal
encoding [Vaswani et al., 2017]; and SPLIT() splits the vector into two pieces.

Initialization In order to initialize the virtual receptor network in Equation (7), we use an autoen-
coding strategy. Specifically, we treat Equation (7) as an encoder; and the decoder is provided by
switching the roles of the virtual and true atoms in Equation (7), i.e.

x̆ri (t) =

ñr∑
j=1

Ăij(X̃
r, H̃r, t)x̃rj i = 1, . . . , nr (8)

where the architecture for Ăij is the same as in Equation (7), but with different parameters. The loss
between the original receptor atoms xri and their reconstructions x̆ri is a bipartite matching loss, i.e.

L(Xr, X̆r) = min
π∈Snr

nr∑
i=1

‖xri − x̆rπ(i)‖
2 (9)

where π is a permutation. The rationale for using this loss is that we should only expect the decoder
to return the same set of atoms; however, the order within the set may be modified. We note that the
optimization in Equation (9) may be solved with the Hungarian algorithm [Kuhn, 1955].

We make two further comments. First, we use t = 0 in both Equations (5) and (8) when training
the autoencoder, as time is not relevant here (it is a diffusion-based variable). Second, we do not
include reconstruction of the features h as part of the initialization; we found that reconstruction of
the positions gave a sufficiently good initialization.

2.3 Use of Protein Language Embeddings

The use of masked language model embeddings has had a profound impact across diverse domains.
Specifically, the ESM (Evolutionary Scale Modeling) embedding [Lin et al., 2023] has emerged as
a promising embedding for the protein domain, as it has demonstrated its capacity to encapsulate
highly informative features for function prediction. In the original paper [Lin et al., 2023], it was
used for protein structure prediction. Since then, it has found numerous other applications. Perhaps
most similar in spirit the use in this paper is the use for de novo prediction of an entire complex of a
protein and ligand (i.e. in this scenario the protein is not given but predicted) [Nakata et al., 2023].
Also worth mentioning is the use of the related AlphaFold network [Jumper et al., 2021] for SBDD
[Chen et al., 2023]; however, note that in this paper only the protein sequence – not its structure – is
given, and AlphaFold’s use in this context is effectively about providing that structure.

In this paper, we leverage the ESM embedding for the purpose of injecting valuable insights about
the overall protein structure. This augments our understanding of each amino acid’s information in
the context of its close neighborhood of amino acids and 3D structure. Specifically, we use the ESM
embedding from the last layer of its encoder model as the new feature vector for the receptor node
corresponding to a given amino acid (see Section 2.4). This adds key information about the protein
residues’ chemical and structural features that are affected by their proximal residues.

2.4 Implementation Details

Receptors are described by using only Cα atoms of each residue; in practice, we take a subset of the
100 closest Cα atoms to the center of mass of the binding site. We used 30 virtual receptor atoms, in
order to be similar to the mean number of ligand atoms, which is 19.0 with a standard deviation of
6.8. In order to enable fast convergence for the autoencoder, we initialize the set of virtual receptor
atoms with Farthest Point Sampling. Specifically, we begin with the atom closest to the center; and
then for each subsequent iteration, we find the atom which is furthest from the entire set thus far
constructed. After this initialization, the autoencoder is allowed to train in standard fashion. Details
of the denoiser architecture are included in the Appendix.

3 Experiments

Data We use the CrossDocked dataset [Francoeur et al., 2020], which contains 22.5 million poses of
ligands docked into multiple similar binding pockets across the Protein Database (PDB). In particular,
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Table 1: Comparison of metrics for all methods. Best result is shown in bold, second best in
underline. Note that inference time is measured in seconds per 100 molecules generated; and train
time is measured in minutes per epoch (all methods were trained for 1,000 epochs).

Model QED
(↑)

logP
(↑)

Lipinski
(↑)

SA (↑) Novelty
(↑)

Vina
(↓)

Vina - top
10% (↓)

Inference
Time (↓)

Train
Time (↓)

Diffusion + VR + ESM 0.465 2.34 4.84 0.78 0.98 -6.3 -7.2 48.7 4.4
Diffusion + VR 0.380 1.32 4.21 0.79 0.94 -4.1 -5.6 10.6 2.9
Diffusion - Basline 0.390 1.72 4.43 0.72 0.73 -4.5 -7.0 186.2 21.0
GraphBP 0.413 0.61 4.64 0.59 0.88 -4.3 -6.2 10.2 N/A
CENF 0.463 1.46 4.83 0.63 0.85 -4.5 -5.7 160 N/A

Table 2: Ablation study. ESM-X indicates the ESM model with X parameters. Best result is shown in
bold, second best in underline. Inference time is measured in seconds per 100 molecules generated.

Model QED
(↑)

logP
(↑)

Lipinski
(↑)

SA (↑) Novelty
(↑)

Vina
(↓)

Vina - top
10% (↓)

Inference
Time (↓)

Diffusion VR ESM-650M 0.47 2.34 4.84 0.78 0.98 -6.3 -7.2 48.7
Diffusion VR ESM-150M 0.43 1.82 4.54 0.71 0.94 -5.6 -7.8 24.1
Diffusion VR ESM-35M 0.38 1.54 5.12 0.71 0.92 -5.2 -7.1 18.8
Diffusion VR No ESM 0.38 1.32 4.21 0.79 0.94 -4.1 -5.6 10.6

these docked receptor-ligand pairs all have binding pose RMSD lower than 2 angstroms. We use the
authors’ proposed split into training and validation sets. Based on considerations of training duration,
we retain only those data points: (a) whose ligand has 30 atoms or fewer with atom types in {C,
N, O, F}; (b) which have potentially valid ligand-protein binding properties, i.e. whose ligands do
not contain duplicate vertices and whose predicted Vina scores [Trott and Olson, 2010] are within
distribution. The refined datasets are of size 132,863 (train) and 63,929 (validation).

Evaluation Methodology We compare our method to three competing techniques: a baseline
diffusion method for SBDD [Schneuing et al., 2022]; GraphBP, an autoregressive method [Liu et al.,
2022]; and a model based on conditional equivariant normalizing flows [Rozenberg and Freedman,
2023], which we denote CENF. The methods are compared using standard performance metrics, in
particular: (i) QED (ii) logP (iii) Lipinski (iv) SA (synthetic accessibility) (v) Novelty (vi) Vina.
These metrics are described in more depth in the Appendix. We also record compute metrics, in
particular: (vii) inference time (viii) train time.

Results The results are shown in Table 1. Note that in terms of the six performance metrics, our
proposed method using both virtual receptors and ESM embeddings finishes top in five metrics; and
second in SA, just barely behind our proposed method using only virtual receptors. In terms of
inference time, the method with virtual receptors and without ESM embeddings is a factor of 17.6
times faster than ordinary diffusion, and is nearly as fast as GraphBP, an autoregressive technique.
The addition of ESM embeddings requires more compute, yet the method is still 3.8 times faster than
ordinary diffusion. A similar trend may be noted for train times.

Ablation Studies We run our model under different settings, with the results shown in Table 2. In
particular, we show the results of using different version of the ESM model for protein language
embeddings; we show results without ESM, and with ESM models of 35M, 150M, and 650M
parameters. In general, the trend is that performance improves as the size of the ESM model
increases; while unsurprisingly, the inference time increases as well.

4 Conclusions

In this study, we have introduced the concept of virtual receptor atoms, a novel method for encoding
a molecular graph structure into a more compact graph while retaining crucial structural information.
By combining this technique with protein language embeddings based on ESM within a Structure-
Based Drug Design diffusion model, we show experimentally that our performance surpasses both
the baseline diffusion model and alternative methodologies rooted in autoregressive models and
normalizing flows. This superior performance is evident across multiple standard metrics related
to drug likeness and binding affinity; and also in terms of the speed of molecule generation. Our
approach demonstrates promising potential in enhancing the capabilities of SBDD diffusion models
for the generation of new drug candidates.
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A Appendix

A.1 Architecture Details

A high level illustration of the scheme is shown in Figure 1.

Figure 1: High level illustration of the proposed algorithm.

The denoiser model consists of 6 standard EGNN layers as shown in Equation (4) and described in
[Satorras et al., 2021], where both the ESM embedding and the atom one hot vector are projected into
the same dimension using a linear layer of dimension 256. The denoiser is trained with the AdamW
optimizer [Loshchilov and Hutter, 2017] with a learning rate of 10−4 and a cosine decay scheduler
for the denoising objective.

A.2 Evaluation Metrics

We here describe each of the evaluation metrics used in Section 3. These are standard metrics for the
field of SBDD.

(i) QED: a measure of drug-likeness with values ∈ [0,1]; a higher QED indicates a greater
likelihood for a molecule to be a successful drug candidate. QED is an aggregate measure
which combines several desirable molecular properties [Bickerton et al., 2012].

(ii) logP: is defined as the octanol-water partition coefficient, which is a measure of lipophilicity
(the ability of a molecule to mix with an oily phase rather than with water). logP values ∈
[-0.4, 5.6] indicate molecules with increased potential to be viable drug candidates [Wildman
and Crippen, 1999, Ghose et al., 1999].

(iii) Lipinski: is shorthand for Lipinski’s Rule of Five [Lipinski et al., 1997, Veber et al., 2002],
which is an empirically derived rule of drug-likeness.

(iv) SA: an acronym for synthetic accessibility [Ertl and Schuffenhauer, 2009]. The SA score,
which takes on values in [0,1], measures how difficult is it to synthesize a given molecule,
with higher values indicating that a molecule is more easily synthesized.

(v) Novelty: measures the fraction of entirely new molecules generated. A molecule is consid-
ered novel if its canonical SMILES string is not in the training set.

(vi) Vina: the Vina score [Trott and Olson, 2010] measures the binding affinity between a small
molecule and their target pocket. It is an empirically derived measure for the binding affinity.
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