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Abstract

Protein language models (pLMs) have appeared in a wide range of in-silico protein
engineering tasks and have shown impressive results. However the ways they
are applied remain mostly standardised. Here, we introduce a set of finetuning
techniques based on Sentence Transformers (STs) integrated with a novel data
augmentation procedure and show how it can offer new state-of-the-art performance.
Despite having initially been developed in classic NLP space, STs hold a natural
appeal in pLM related applications, largely due their use of sequence pairs and
triplets in the process. We demonstrate this conceptual approach in two different
settings that frequently occur in this domain; a residue and also a sequence level
prediction task. Apart from showing how these tools can extract more and higher
quality information from pLMs, we discuss the main differences between their
applications in NLP and in the protein spaces. We conclude by discussing the
related challenges and provide a comprehensive outlook on potential applications.

1 Introduction

Sequence based methods have long adopted techniques from classical natural language processing
(NLP) e.g. [1] used an LSTM based approach to predict structural similarities between proteins,
and [21] was one of the first papers that used transformers on various downstream tasks, including
secondary structure, contact map, fluorescence and stability predictions. In recent years a whole suite
of transformer based models appeared [25, 22, 13, 7, 12, 10, 18, 19, 17], and have shown impressive
performance in numerous in-silico protein engineering tasks. Fine tuning, e.g. [26, 30] or using
frozen representations, e.g. [28], from these protein Language Models (pLMs) are standard ways to
use them in various downstream tasks.
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Here we show how Sentence Transformers [24], sometimes also called Sentence-BERT (S-BERT), a
collection of powerful techniques that have been widely used in information retrieval and semantic
searches in the classical NLP space, can be applied to pLMs as well. STs push the representations
of two semantically similar sequences closer together in the embedding space, and further apart for
dissimilar sequences. Each sequence is embedded by the same encoder via a Siamese network, and
the embeddings are compared with a contrastive learning loss such as cosine distance.

Our contributions:

• As to the best of our knowledge, these techniques have not been used in protein space thus
far, we give an overview of SentenceTransformers that have been applied extensively in
NLP and are behind some of the top embedding models, see [15] for an extensive list of
models and references;

• We demonstrate through two examples how STs can be applied to in-silico protein en-
gineering tasks and how they can achieve state-of-the-art performance. Apart from a
more straightforward sequence level prediction task (solubility), we also show how this
approach can be used in residue level prediction (disorder). Code is made available at
https://github.com/PeptoneLtd/contrastive-finetuning-plms;

• We also discuss challenges, applications and areas in protein space, where these tools can
potentially contribute. Given that in NLP these techniques have been in development since
the end of 2010’s, we are not aiming to cover all potential applications with experimental
evidence, but we do hope to encourage our community to explore these tools.

2 Background

Given that our proposed approach is based on a technique that is - to the best of our knowledge - new
in the pLM space, we provide a brief description of the main tools and concepts related to STs in
Appendix A.1.

Supervised contrastive learning has shown marked improvements over more traditional supervised
methods in classical NLP [16], [8] and computer vision [2] as well. The idea of contrastive learning
has appeared in the protein space in the past, even related to pLMs, see [9]. However, the authors
of [9] used static embeddings from a pLM as inputs to a feed-forward neural network (FNN), which
was optimised on a triplet loss, similar to 2 in Appendix A.1. In other words, only the weights of the
FNN were optimised during training and the backpropagation left the pLM weights unchanged. This
amounts to an approach depicted on the left hand side of Figure 1, where only the prediction head
was trained.

Recently some ideas from S-BERT [24] appeared in [32], where they used the 3 types ([CLS], mean,
max) of pooled embeddings concatenated into one as part of an intriguing explainability study related
to embeddings produced by pLMs. However, the nature of the work in [32] is very different to what
we present here.

We mention another interesting work [27] in the direction of contrastive learning and pLM, where the
authors designed a method called contrastive coembedding to embed proteins and drugs into a shared
latent space. On a high level, this was a building block of a sequence based method that predicts
drug-target interaction.

3 Overview of our Approach

In this section, we present our approach using STs in two different settings; residue and sequence
level prediction tasks. While there are clear differences, which we explain in detail, some of the key
building blocks are the same.

We draw inspiration from an approach in NLP called SETFIT [31] (Sentence Transformer Finetuning).
The key idea is to train a BiEncoder (BE) on pairs of sequences. In all cases we will instantiate the
BE by using one of the pre-trained ESM-2 models [12], which were trained with masked language
modelling objective on UniRef sequence databases. In the training set, we use positive and negative
pairs, i.e. where two sequences are either both from the same or different class. More details on how
these classes are defined will be given below in the task specific sections. Training objective will
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Figure 1: Schematic overview of finetuning pLMs using Sentence Transformers (on the right)
compared to a more traditional approach (on the left), where either the frozen embeddings of a
pre-trained model are used coupled with a prediction head or the pLM is finetuned ‘end-to-end’ using
the prediction head, i.e. the weights of the pLMs are also updated.

mainly be cosine similarity loss,

cos(ua, ub) =
ua · ub

∥ua∥∥ub∥
, (1)

where ua denotes the pooled (e.g. mean) embedding of sequence a, i.e. this is a vector of size dmodel,
in the numerator · is the dot product and ∥ · ∥ stands for the Euclidean norm. Cosine similarity is
compared to the pair label, which is set to 1 if the sequences of the pairs belong to the same class,
or 0 otherwise. During the training the pooled embeddings of sequences will be pushed closer or
further apart, depending on whether they belong to the same class or not. In the second step we use
the fine-tuned BiEncoder to extract the embeddings of the sequences in the training set, which will be
the input of the prediction head. A schematic view of our approach together with a more traditional
one is depicted in Figure 1.

The crucial difference between the original SETFIT and our setting is that in the former approach,
the fine-tuning phase uses a ST that has already been trained on a large number of example pairs,
e.g. sentence-transformers/all-roberta-large-v1 was trained on 1B pairs, for details and
resources see https://huggingface.co/sentence-transformers/all-roberta-large-v1.
This allows for the original SETFIT approach to perform actual few shot learning and achieve great
results. In our case, we will have to use more data from the training set during the fine-tuning step,
because there is no pLM based pre-trained ST available that was trained on large number of protein
pairs.

3.1 Residue level task

Since STs output pooled - typically mean - embeddings, the approach outlined above does not lend
itself naturally to a setting where amino acid or token level prediction is required. However we
can still take advantage of STs by simply fine-tuning a small pLM on sequence level labels and
concatenate this sequence level embedding with each residue level representation. In other words,
for a given sequence we augment each amino acid level representation extracted from a larger pLM
(e.g. esm2_t33_650M_UR50D) by attaching the same sequence level embedding, which is the output
of a ST finetuned on the same training dataset. Figure 2 in Appendix A.3 shows an example how a
finetuned ST alters the embeddings.

3.2 Sequence level task

Using a ST when a sequence level quantity has to be predicted is fairly straightforward and this
is what we already outlined in the beginning of this section. We discuss the details on the choices
regarding the training of the BE and also the prediction head in Appendix A.3 below.
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Table 1: ST-avg benchmark on CheZoD

Regression Classification

Predictor r2 MAE corrSpearm. AU-PRC APS

ST-avg .435±0.012 2.982±0.031 .734±0.003 .920±0.003 .960±0.003
SETH∗ – – .72±0.01 .91±0.01 –

ST-CV .388±0.024 3.090±0.075 .714±0.007 .914±0.002 .958±0.002
ADOPT-esm2-CV .309±0.005 3.273±0.013 .700±0.001 .907±0.001 .954±0.000

4 Evaluation

Below, we present the experimental results. Details on the datasets, model architectures and training
settings are given in Appendix A.2 and A.3.

4.1 Results on disorder predictions

CheZoD benchmark with cross validation To get a better understanding of the behaviour of the
proposed approach we carried out a 10-fold cross validation (CV) on the CheZoD training set, where
in each fold we ran 200 random seeds, and picked the model that had the highest correlation between
predicted and actual z-scores on the left out fold. We tested the 10 top ranked models on the CheZoD
test set, this is referred to as ST-CV in Table 1. As a baseline, we ran a predictor whose prediction
head was set the same as that of ST-CV, but only the residue level representations were used from
esm2_t33_650M_UR50D. Given that this simple approach is very similar to ADOPT [23], we referred
to it as ADOPT-esm2-CV. Results on SETH were taken as reported in [11], hence the asterisk ∗ mark
and the 2 decimal display, see Table 1.

We highlight some key observations from these benchmarks. The ST based approach typically gener-
alises better, sometimes significantly, than the other approaches which rely on frozen embeddings
from pre-trained pLMs, which can include more advanced prediction heads, e.g. SETH that utilises a
two layer CNN. This better generalisation can be seen through different lenses. In comparison of ST
-CV with ADOPT-esm2-CV, the former has significantly higher r2 (0.388 vs. 0.309), and also higher
average correlation (0.714 vs. 0.700). To make a fair assessment between ST -avg and SETH, we can
disregard the clear gap observed in the CheZoD benchmark and focus only on their performances
on CAID, where ST -avg is better in terms of AU-PRC (0.935 vs. 0.930) and f1 (0.832 vs. 0.830),
and almost on par in terms of APS (0.892 vs. 0.893), see Table 4 in Appendix A.4. The difference is
more pronounced when compared to ST -top. It is important to add that these models can typically
be found “in the tail”, i.e. among the top 5 or even higher quantiles of finetuned STs, and identifying
them comes at an increased computational cost. We will further comment in the Discussion section
how this can potentially be reduced.

4.2 Results on solubility prediction

The improvement in AU-PRC (area under the precision-recall curve) between ST-esm2_t30 and
NetSolP-esm2_t33 on the PSI dataset may seem minor, 0.768 vs. 0.757, however, the pLM behind
the former is considerably smaller than that of the latter, see Table 2; esm2_t30 is a 150M parameter
model with embedding size of 640, whereas esm2_t33 has 650M parameters and an embedding size
1280. The improvement ST-esm2_t30 offers is not only more pronounced in terms of accuracy, but
also in APS (average precision score) compared to any of the current state-of-the-art, e.g. ESM-MSA-
P or NetSolP, where ‘P’ at the end indicates that these models used pre-trained embeddings and only
the prediction heads were finetuned, see [30]. For a fair comparison, we evaluated the 5-fold runs
of the ST -based models and NetSolP approaches on an independent validation set taken from [30].
Among those, ST-esm2_t30 retains its marginal lead and shows better generalisation results, see
Table 3 in Appendix A.3.2. Figure 3 shows a visual comparison of the two approaches in terms of
accuracy and model sizes, see Appendix A.3.2.
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Table 2: NetSol benchmark on the PSI dataset - solubility prediction

Num. of
params (m)

Metrics

Predictor AU-PRC APS recall accuracy

DeepSol S2 - .67 ±0.04 .81 ±0.05 – .54 ±0.02
ESM-MSA-P - .75 ±0.03 .76 ±0.02 – .71 ±0.03
NetSolP - .73 ±0.02 .74 ±0.03 – .70 ±0.02

ST-esm2_t12 35 .745 ±0.038 .843 ±0.034 .711 ±0.033 .711 ±0.033
ST-esm2_t30 150 .768 ±0.039 .857 ±0.033 .738 ±0.039 .738 ±0.039
ST-esm2_t33 650 .771 ±0.028 .864 ±0.026 .733 ±0.020 .733 ±0.020
NetSolP-esm2_t12 35 .734 ±0.037 .838 ±0.033 .699 ±0.029 .699 ±0.029
NetSolP-esm2_t33 650 .757 ±0.027 .849 ±0.027 .694 ±0.043 .694 ±0.043

5 Discussion

We presented a pLM finetuning approach based on Sentence Transformers integrated in a novel data
augmentation procedure and showed through two representative examples how these versatile tools
achieve state-of-the-art performance. To remain transparent around the challenges regarding the
application of this approach poses, and to outline potential future research directions, we collected
the following points.

Random seed That the performance of finetuning STs, and in general BERT like models, depends
so much on random seeds, is a known issue in classic NLP, see e.g. [29]. Ultimately this can also be
viewed as a subset selection problem. Nonetheless, seed optimization methods that can offer partial
solutions exist. One such example is to monitor the ST’s performance on a separate development set
during the training, and apply early stopping in such a way that only the best of, say, 5 models gets
trained all the way to the end. The authors of [29] reported strong correlation between performances
of the fully trained model and its version taken from the early phase of the training. This could
potentially work in the protein domain when only the embeddings from a trained ST are used as inputs
to a prediction head, e.g. solubility prediction. However, when those are combined or concatenated
with other inputs, this approach will likely break down.

Pre-training pLM with contrastive learning at scale The SETFIT approach we presented above
can be viewed as a contrastive pre-training with limited data, and part of the reason for the performance
gains seem marginal is because we do not use STs that were pre-trained large scale with contrastive
objectives. In classic NLP now it is a standard practice to first pre-train a language model (LM) with
(masked) language modelling objective and follow it in a second stage with a contrastive pre-training,
see [16]. While this may be more challenging in the protein domain, we hypothesize that this can
still be achievable through investing in careful data collection and data set design. Even some of the
latest research papers apply the same standard “single stage” pre-training approach, see e.g. [6].

pLM and ST size We showed that there is plenty of value to be extracted from smaller pLMs.
However, one of the most commonly used mid-sized esm models, esm2_t33_650M_UR50D currently
would require either a larger 80GB GPU or a sharded ST, as it runs into out of memory issues on a
single NVIDIA DGX A100 40GB GPU. Currently we are working on releasing an implementation
of ST, which would allow this kind of training, i.e. on limited resources.

Decoder-only models and ST There are already some promising work along sentence transformers
applied to GPT-style models, see e.g. [14]. It would be interesting to test whether some of those tools
can be lifted to the protein domain as well.

Search tasks There are many use cases of S-BERT models in semantic search and various retrieval
tasks in classic NLP. Those types of search tasks are also known in the protein domain. Hence, it will
be interesting to see, how these tools could also help in those situations and not just in prediction
tasks demonstrated here.
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A Appendix

A.1 A brief overview of Sentence Transformers

Sentence Transformers offer two main tools, BiEncoders (BE) and Cross-Encoders (CE). BEs, or
S-BERTs , use a pooling operation, typically [CLS], mean or max, on the embeddings extracted by
a BERT model. In case of an input sequence pair, a and b, their pooled embeddings ua and ub are
compared using e.g. cosine similarity, as per equation 1, which is optimised using a mean-squared
error loss. Apart from this, the authors of [24] introduced and experimented with two other objective
functions. We briefly mention the triplet objective function, as that can be equally meaningful for
pLMs, albeit we are not using it in this paper. In this instance, the input is a sequence triplet, a, called
an anchor, p, a positive and n, a negative sequence, with their corresponding embeddings ua, up, un,
and the following objective function is used:

max(∥ua − up∥ − ∥ua − un∥+ ϵ, 0), (2)

where ∥ · ∥ is some distance metric, typically Euclidean, and ϵ can also be fine tuned, but originally
set to a default value, e.g. 1. The idea behind this objective is to bring the embedding of the positive
sequence closer to the embedding of an anchor, and at the same time push the embedding of the
negative sequence further away from it. In a pLM setting one could take solubility with a binary
sequence label and choose an anchor sequence of 1. In this case, the positive sequence could be
another sequence that is from the same class, and a negative that is labelled 0.

Cross-Encoders, on the other hand, take an input sequence pair concatenated and return a similarity
score between 0 and 1; a value closer to 1 indicates higher similarity. The main difference between
CEs and BEs is that while BEs can output sequence embeddings, CEs can not and they only score
sequence pairs. This in turn also affects their respective applications.

Giving a comprehensive review of these tools is out of the scope of this paper, we refer to [24] as a
starting point and in general https://www.sbert.net/ is a great source.

A.2 Datasets

A.2.1 Disorder prediction

Disorder prediction has been in the forefront of computational biology for decades. The Critical
Assessment of protein Intrinsic Disorder (CAID) prediction portal currently has around 30 predictors
benchmarked on the CAID2 dataset that contains 348 proteins. We used the Disorder-PDB reference
set, see [5, 3], as an independent validation set. Residues of each protein have to be classified as
ordered or disordered, and some residues are excluded from the performance measurements. In total
130, 877 residues require predictions, which make up 45.6% of all residues of the 348 sequences.

Many predictors, e.g. SETH [11] and ADOPT [23] have been developed on the CheZoD dataset [4]
that contain z-scores, which are based on experimental Nuclear Magnetic Resonance (NMR) chemical
shifts. SETH in particular is one of the few state-of-the-art methods in the CAID benchmark that have
submitted valid predictions for all 348 sequences.

We retrieved the CheZoD training and test datasets from ADOPT [23], as their training dataset is
slightly more restrictive than that of SETH, and contains only 1159 sequences.

The CheZoD test set contains 117 sequences. Both predictors, SETH and ADOPT use this and in the
latter case, sequence similarities between test and train sequences were no more than 20%, see [23].

A.2.2 Solubility prediction

NetSolP [30] is a transformer based, current state-of-the-art solubility predictor. In [30], the authors
have tested many pLMs, including ProtT5 [7], and esm-12, esm-1b and esm-msa from the first
generation of esm models [25, 22, 13]. Moreover two types of training strategies were tested: One
strategy, when the weights of the transformer were also finetuned, i.e. ‘end-to-end’, and another one,
when only the weights of the (linear) prediction head were optimised and the underlying weights of
the pLM were kept frozen.
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The PSI dataset was one of few sets used in [30] in a 5-fold cross validation. It contains 12, 216
protein sequences, of which ∼ 66% are soluble; for more details see Section 2.3 in [30]. The task is
a binary classification to predict solubility.

As a separate validation, we tested our approach on the Price dataset for solubility, described in
Section 2.4 in [30]. This set contains 1323 sequences and does not share more than 25% pairwise
sequence identity with the entire PSI dataset, see Section 3.1 in [30].

A.3 ST based models - training details

Accompanying sample code containing data and some example scripts is available at https://
github.com/PeptoneLtd/contrastive-finetuning-plms.

A.3.1 Disorder predictor

To specify the details of our approach described on a high level in the overview section, we propose
to use a residue level representation from esm2_t33_650M_UR50D [12] loading from huggingface
with 8bit precision. To augment the residue level embeddings, we retrieve sequence level embed-
dings from a fine-tuned ST. For this, we are using the smallest pre-trained esm2_t6_8M_UR50D to
instantiate a BiEncoder with a default mean pooling using the SentenceTransformer package,
see [24].

We bucket the sequences in the training set into 4 classes and use them as labels of the samples
used in the fine-tuning process. We created these labels based on mean and standard deviation of
z-scores, which are calculated for each sequence. Based on the median standard deviation of z-scores
we first split the set into two and further partition each group into two based on the median value
of mean z-scores of that given group. While this may seem an arbitrary choice, the reason for this
was to capture an additional level of granularity beyond the mean disorder, while also ensuring that
the training set contains equally sized classes. The classes can be naturally interpreted as Highly
disordered, Partially disordered, Structurally Flexible and Structured proteins. We experimented
with using only two classes based on z-scores, however we found that the 4 way split worked better.
Similarly, adding more granularity by creating more classes did not yield better results. This is likely
because of the relatively limited amount of sequence level data.

Based on a random seed, we sampled 256 sequences from each class and randomly created positive
and negative pairs, where the former (latter) meant sequences have the same (different) class labels.
We iterated this sampling process 5 times to get a training set per seed. Positive pairs were labelled
with 1 and negative pairs with 0. For optimisation, we used cosine similarity loss, see equation 1. We
used 4 epochs, a batch size of 24 and 10% of the total training iterations were used as warm up steps.
These training hyperparameters were chosen based on simplified grid search with repeated 30 seeds.

Prediction head for regression To keep the setting simple, we reverted to using an ELASTICNET
from scikit-learn [20] with parameters α = 1 ·10−4, max_iter = 5 ·105 and tol = 5 ·10−5. One
could additionally optimise the prediction head by finding better hyperparameters or other models,
however we decided to omit this and kept this routine fixed in this work.

Prediction head for classification Given that the CAID dataset uses binary labels, we fitted a
classification head on the CheZoD training dataset, where residues with z-score less (or greater)
than 8 were labeled with 1 (or 0) and considered disordered (or ordered). Similarly as above,
we decided to use a simple SGDClassifier from scikit-learn [20] with the parameters α = 1 ·
10−4, max_iter = 5 ·105, tol = 5 ·10−5, penalty = elasticnet, loss = log_loss
and random_state = 72.

Experimental details In the first experiment, we used the entire CheZoD training set with no
separate validation set to fit our model and tested it on the CheZoD test set. We ran 200 random seeds,
each resulting in a model, and we ranked the models based on Spearmann correlations on the test
set. We averaged the top 5 models and labelled it as ST-avg. One end-to-end run included creating
the training set for the BE, model fitting, retrieving the embeddings for the test set and fitting two
prediction heads (one regression and one classification). Nevertheless, the computational workload
was still relatively low as it took on average around 5 minutes on a single NVIDIA DGX A100 40GB
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Figure 2: Embeddings of the sequences in the CheZoD training set extracted from a plain pre-trained
esm2_t6_8M_UR50D (on the left) and from a finetuned BiEncoder (on the right) that was initialised
by the same esm model. The four colours represent the disorder classes described in the Experiments
section. We see that the embeddings from the BE are more aligned and clustered according to the
classes. We used t-SNE from scikit-learn [20] to generate the 2d representations.

GPU. Note that we cached the residue level embeddings from esm2_t33_650M_UR50D. We observed
that after 100 seed runs typically 2− 3 instances were above 0.73 correlation already.

A.3.2 Solubility predictor

STs can be applied more straightforwardly. We experiment with three different settings,
one where a BiEncoder is initialised with esm2_t12_35M_UR50D (‘esm2_t12’), a second one
with esm2_t30_150M_UR50D (‘esm2_t30’), and the third one with esm2_t33_650M_UR50D
(‘esm2_t33’). All settings use mean pooling. Similarly as before, given a random seed, we
sample Ntraining = 512 sequences from each - soluble and insoluble - class. We iterate
through each protein in this set and select randomly a positive (i.e. sequences of the same class)
and a negative pair (different class). We repeat this iteration Nseq-pairs = 5 times. We run
each model training for num_epoch = 3 epochs with 10% of total iterations as warm up steps
and optimise cosine similarity loss. Batch sizes are set to 16 for the smaller esm2_t12, to 6
for esm2_t30, and to 6 for the largest esm2_t33. As for the other hyperparameters, choices
were made based on a simplified grid search with repeated 30 seeds. In all cases, the default
learning rate of 2 · 10−5 was used. Note that using the standard Sentence Transformer pack-
age (https://github.com/UKPLab/sentence-transformers), we could fit the largest model
(‘esm2_t33’) only on NVIDIA DGX A100 80GB GPUs.

Classification head Once the embeddings from the finetuned STs are retrieved, we fit a simple
SGDClassifier using scikit-learn [20] and we keep the same parameters as before for the disor-
der classification, i.e. α = 1 · 10−4, max_iter = 5 · 105, tol = 5 · 10−5, penalty =
elasticnet, loss = log_loss, and random_state = 72. As we wanted to keep this routine
simple and focus on the concept of our approach, we omitted any additional hyperparameter or model
search in this stage.

Experimental details We tested our proposed approach with three finetuned STs initialised with
esm2_t12, esm2_t30, and esm2_t33. In all cases, we ran a random search with 100 seeds per
fold. These random numbers were generated for each fold, but kept the same across model sizes
to get a clearer insight as to how model size might affect performance. Apart from benchmarking
against 3 models from NetSol [30], the current state-of-the-art, we also evaluated two baseline
models, referenced as NetSolP-esm2_t12 and NetSolP-esm2_t33, that relied on frozen mean
representations extracted from esm2_t12_35M_UR50D and esm2_t33_650M_UR50D, respectively,
coupled with a simple prediction head, which we kept the same as for the finetuned ST models.
Note that results on the three predictors from NetSol were taken as reported in [30] and hence only
displayed to 2 decimals, see Table 2.
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Table 3: Validation results on the Price dataset - solubility prediction

Num. of
params (m)

Metrics

Predictor AU-PRC APS recall accuracy

ST-esm2_t12 35 .699 ±0.011 .800 ±0.007 .678 ±0.008 .678 ±0.008
ST-esm2_t30 150 .752 ±0.013 .835 ±0.010 .708 ±0.013 .708 ±0.013
ST-esm2_t33 650 .758 ±0.010 .837 ±0.007 .709 ±0.012 .709 ±0.012
NetSolP-esm2_t12 35 .733 ±0.004 .824 ±0.004 .688 ±0.012 .688 ±0.012
NetSolP-esm2_t33 650 .750 ±0.007 .835 ±0.006 .690 ±0.020 .690 ±0.020

Figure 3: Comparison of model sizes and accuracy on the solubility datasets, PSI (on the left)
and the Validation set (on the right). ST based models (blue dots) typically outperform NetSol
counterparts (red dots), which are standard pLM based models. Note that the ST -t30 model (150
million parameters) performs and generalises better than the 4.3× larger standard model Net-t33
(650 million parameters). However, the smallest ST -t12 model (35 million parameters) does not
generalise as well as the similarly sized standard model Net-t12.

A.4 CAID benchmark on disorder prediction

In order to properly validate ST-avg, we benchmarked it on the CAID2 dataset. Only the top 7
predictors were taken, see Table 4. Although ST based models (ST-top being the best of the 5
models) performed among the best ones, certainly the best among those with 100% coverage; marked
by ∗, a decisive comparison remains difficult mainly because not all predictors submitted valid
predictions for all 348 sequences in the CAID2 dataset. The Coverage column of Table 4 reports the
percentage of sequences for which valid predictions were found. Despite we managed to reproduce
the performance metrics that were reported on the CAID website, these were calculated only on
those sequences for which valid predictions were submitted. To provide a fairer comparison, we
also evaluated the ST-top only on those sequences for which the other candidate predictor had valid
predictions. These metrics are displayed in the rightmost column in Table 4.
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Table 4: CAID2 benchmark - disorder prediction

Metrics Coverage ST-top

Predictor AU-PRC APS f1 (in %) (AU/APS/f1)

SPOT-Disorder2 .949 .928 .860 81.6 .942/.914/.855
SETH-0∗ .930 .893 .830 100 .938/.899/.841
SETH-1∗ .911 .853 .795 100 .938/.899/.841
flDPnn2 .894 .809 .739 99.4 .938/.899/.840
DisoPred .919 .859 .784 95.1 .938/.896/.838
AlphaFold-rsa .944 .916 .849 85.9 .935/.897/.839
metapredict∗ .932 .877 .819 100 .938/.899/.841

ST-avg∗ .935 ±0.002 .892 ±0.004 .832 ±0.004 100
ST-top∗ .938 .899 .841 100
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