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Abstract

Deep generative models for structure-based drug design (SBDD), where molecule
generation is conditioned on a 3D protein pocket, have received considerable inter-
est in recent years. These methods offer the promise of higher-quality molecule
generation by explicitly modelling the 3D interaction between a potential drug
and a protein receptor. However, previous work has primarily focused on the
quality of the generated molecules themselves, with limited evaluation of the 3D
poses that these methods produce, with most work simply discarding the generated
pose and only reporting a “corrected” pose after redocking with traditional meth-
ods. Little is known about whether generated molecules satisfy known physical
constraints for binding and the extent to which redocking alters the generated
interactions. We introduce POSECHECK, an extensive analysis of multiple state-
of-the-art methods and find that generated molecules have significantly more
physical violations and fewer key interactions compared to baselines, calling into
question the implicit assumption that providing rich 3D structure information im-
proves molecule complementarity. We make recommendations for future research
tackling identified failure modes and hope our benchmark will serve as a spring-
board for future SBDD generative modelling work to have a real-world impact.
Our evaluation suite is easy to use in future 3D SBDD work and is available at
www.github.com/cch1999/posecheck.

1 Introduction

Structure-based drug design (SBDD) leverages knowledge of the 3D structure of a target protein to
design highly potent and specific drug compounds [1, 2, 3]. Recent advancements in machine learning,
particularly deep generative models [4, 5] and geometric deep learning [6], have led to an explosion
of methods combining both to perform SBDD using 3D generative modelling [7, 8, 9, 10, 11].

Assessing the quality of molecules generated by these methodologies is not straightforward, with
most metrics focusing on the 2D graph of the generated molecule themselves (e.g. QED [12]) and
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Figure 1: Overview of the POSECHECK pipeline.

many works using high mean docking score to claim state-of-the-art performance. For effective
SBDD, we argue that it’s equally important to assess the quality of the generated binding poses and
their capacity to satisfy known biophysical prerequisites for binding. This perspective is essential
if these methods are to serve as practical alternatives to traditional virtual screening approaches in
SBDD. We hypothesise that multiple failure modes, undetected by currently applied metrics, are
pervasive within these methods.

We introduce POSECHECK, a set of new biophysical benchmarks for SBDD models. Utilizing
this new framework, we evaluate a selection of high-performing machine learning SBDD methods,
revealing two key findings: (1) generated molecules and poses often contain nonphysical features
such as steric clashes, hydrogen placement issues, and high strain energies, and (2) redocking masks
many of these failure modes. Based on these evaluations, we propose targeted recommendations to
rectify the identified shortcomings. Our work thus provides a roadmap for addressing critical issues
in SBDD generative modelling, informing future research efforts.

2 Methods
We propose a suite of benchmarks to evaluate the quality of generated poses from 3D SBDD models.

Interaction fingerprinting Interaction fingerprinting is a computational method utilized in SBDD to
represent and analyze the interactions between a ligand and its target protein. This approach encodes
specific molecular interactions, such as hydrogen bonding and hydrophobic contacts, in a compact
and easily comparable format – typically as a bit vector, known as a interaction fingerprint [13, 14],
allowing for easy comparaison between complexes.

Steric clashes A steric clash is when two atoms come into closer proximity than the sum of
their atomic radii [15], which is highly unfavourable [16]. Such a clash often points towards the
current conformation of the ligand within the protein being less than optimal, suggesting possible
inadequacies in the pose design or a fundamental incompatibility in the overall molecular topology.

Strain-energy Strain energy refers to the internal energy stored within a ligand as a result of
conformational changes upon binding. These changes can cause strain within the molecules, which
can affect the overall binding affinity and stability of the protein-ligand complex [17].

Docking Finally, we measure the level of agreement between docking software and the molecules
produced by the learned distribution in the generative model. Although this is the most coarse-grained

TargetDiff
Target: 1H0I
RMSD: 2.0 Å

Pocket2Mol
Target: 3TYM
RMSD: 6.47 Å

Figure 2: Left: RSMD between the generated and SMINA minimized poses for CrossDocked and all
generative methods (note FLAG upper whister value is not shown to preserve a meaningful scale).
Right: Examples of large conformational rearrangements in the ligand upon redocking. None of the
methods is able to generate poses in as low energy a state as the training data
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Figure 3: Interactions between protein and ligands as seen in generated poses (orange) and re-docked
poses (green) for (a) hydrogen bond acceptors and (b) hydrogen bond donors. Generative models
have significant difficulty making hydrogen bond interactions compared to the CrossDocked
baseline (shaded boxes). (c-d) Example of CrossDocked pose and generated pose, respectively.

approach we employ, and docking programs come with their inherent limitations, they contain useful
proxies for comparison. We use SMINA [18] for all our experiments.

Experimental Setup In our study, we evaluate the quality of poses from seven recent methods:
LiGAN [19], 3DSBDD [20], Pocket2Mol [7], TargetDiff [9], DiffSBDD [8], DecompDiff [11] and
FLAG [10]. All models were trained on the CrossDocked2020 [21] dataset using the dataset splits
computed in Peng et al. [7]. Further details on the CrossDocked test set, benchmarking and models
implementation are given in Appendix B.

3 Results
3.1 Agreement with docking scoring functions
We first measure whether generated poses/binding modes from 3D SBDD models correspond to
low energy states by computing the Root Mean Squared Deviation (RMSD) between the generated
pose and the SMINA-minimized pose [18] in Figure 2. A larger RMSD would suggest that less
information about the binding mode is preserved on minimization and there is less agreement with
the scoring function. In short, we observe that none of the generative methods is able to generate
poses in as low energy a state as the training data.

We first consider CrossDocked as a baseline, which has a mean minimization RMSD of 0.59 Å.
Given that all the generative models were trained on these poses, we would expect to observe similar
performance. However, we find that all methods (except FLAG) have a mean score between 0.94
and 1.28 Å, suggesting that the generated binding poses are very far from low-energy states. We
observe little correlation between method types here except for the two similar AR models, 3DSBDD
and Pocket2Mol, which obtain mean RMSDs of 0.99 and 1.02 Å respectively. FLAG is the most
egregious example with on average 3.64 Å RMSD during minimization and a maximum value of
10.72 Å, an extreme value for local minimisation.

These findings raise concerns for several reasons. They expose the minimal concordance between
the binding models learned by these methods and the established SMINA methodology [22], despite
it being the source of training data. More critically, they underline the lack of accurate evaluations
of generative models’ capability to produce realistic binding poses; instead, these models tend to
generate drug-like molecules with vague binding modes, later rectified through docking. Further
discussion is provided in Appendix C.1.

3.2 Protein-ligand interaction analysis
We investigated the capacity of 3D SBDD generative models to create molecules with hydrogen
bonding networking similar to those seen in the training datasets (Figure 3). Our findings reveal that
none of the tested methods meets or surpass the baseline. In the baseline dataset CrossDocked, the
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Figure 4: Left: number of steric clashes for the CrossDocked reference dataset as well as for the
molecules generated by each model, both before and after re-docking. Right: examples of a generated
pose (magenta) and the same pose after re-docking (green). Diffusion and auto-regressive models
exhibit more steric clashes compared to the baseline

most frequent number of hydrogen bonds (HBs) was 1 for both acceptors and donors. The average
numbers were 2.23 for acceptors and 1.66 for donors. In stark contrast, we found that for nearly
all generated molecular structures from all models (with the exception of LiGAN’s HB acceptors),
the most common number of HB acceptors and donors was zero. We note that the creation of a HB
requires a very specific geometry [23, 24], indicating these methods struggle to learn meaningful
biophysics. Further details are elaborated in Appendix C.2.

3.3 Clash scores

Figure 4 presents the results of the steric clash analysis. In summary, the latest methods, particularly
those employing diffusion models and auto-regressive fragment placement, exhibit poor performance
in terms of steric clashes compared to the baseline, with a significant number of outliers. Although
re-docking mitigates clashes to some extent, it does not always resolve the most severe cases,
suggesting significant issues with the methods in terms of their ability to reason able protein-ligand
complementarity. Notably, 3DSBDD and LiGAN show low clash scores, with the former positioning
atoms within a predefined voxel grid [20] and the latter applying a clash loss [19]. DecompDiff also
applies a steric clash loss (but does not directly measure clashes in the corresponding publication)
[11] and performs best out of all the diffusion-based approaches. Further discussion is provided in
Appendix C.3.

Interestingly, DiffSBDD and TargetDiff, both diffusion-based approaches [9, 8], exhibit subpar
performance in their number of clashes. They aim to learn atom position distributions without explicit
constraints on final placements. While DiffSBDD starts with a performance deficit, its enhanced clash
mitigation during redocking elevates its results to match the baseline, highlighting methodological
distinctions between it and TargetDiff. Notably, 3DSBDD and LiGAN show low clash scores, with
the former positioning atoms within a predefined voxel grid [20] and the latter applying a clash
loss [19]. DecompDiff also applies a steric clash loss (but does not directly measure clashes in
the corresponding publication) [11] and performs best out of all the diffusion-based approaches.
Generated molecules for FLAG were most egregious here; we speculate this is a result of first
choosing a fragment from a fragment vocabulary using a softmax function and then forcing the
placement of the fragment [10], regardless of whether it fits sterically.

3.4 Strain energy

To conclude our study, we provide an analysis of the strain energy [17] of the generated poses. Force
field relaxation of the generated pose before docking is a common post-processing step of many
generative SBDD pipelines, masking potential issues with the precise geometries of the generated
molecules. Futhermore, high strain energy would be indicative that molecules are unlikely to bind.

In Figure 5a, we present the cumulative density function (CDF) of strain energy for all molecules
generated by various models, using the CrossDocked dataset as a comparative baseline. Note that the
x-axis is logarithmic. The data shows that most generative methods fall short of the CrossDocked’s
median strain energy of 3.96 kcal/mol, with FLAG and Pocket2Mol being the significant exceptions.
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Figure 5: (a) CDF of strain energies for all molecules. (b) CDF of strain energy for all molecules that
3 or more rotatable bonds. All of the generated molecules with 3 or more rotable bonds are more
strained than the baseline. (c) Example of TargetDiff generated molecule with strain substantially
higher than in the CrossDocked test set (target 4AAW).

Upon examining the impact of rotatable bonds on strain energy, two key findings emerged: Firstly,
molecules from generative models with a high count of rotatable bonds exhibit notably higher strain
(refer to Appendix Figure 6). Secondly, the more successful methods in Figure 5a tend to produce
molecules with fewer or no rotatable bonds, as detailed in Appendix Figure 7.

When focusing solely on molecules with three or more rotatable bonds, none of the methods surpassed
the baseline performance (see Figure 5b). This discrepancy becomes more pronounced when assessing
molecules with higher conformational complexity. Further details and extended results on this topic
are available in Appendix C.4.

4 Recommendations for future work

Exploring reduced-noise sampling strategies Interestingly, both diffusion-based works (DiffSBDD
and TargetDiff) performed similarly in terms of strain energy. We hypothesize this may be due to the
injection of random noise into the coordinate features at all but the last step of stochastic sampling
[25], making it challenging to construct precise bond angles. We recommend considering more
sophisticated noising strategies that have been successful in protein design [26, 27].

Heavily penalise steric clashes during training All evaluated methods frequently create steric
clashes, resulting in physically unrealizable samples. We suggest that mitigating steric clashes is
key for the next generation of SBDD models. This could be done via extra loss terms, for example,
by including a distogram loss as in AlphaFold2 [28] or the steric clash loss in LiGAN [19] and
DecompDiff [11] (note that later method does note explicitly measure clashes).

Consider representing hydrogens Virtually all work in ML for structural biology chooses to not
explicitly represent hydrogen atoms [28, 7, 20, 27, 8, 9], under the assumption that they can be
implicitly learned and reasoned over with deep neural networks. However, our analysis of hydrogen
bond networks within generated molecules found that generative methods struggle to handle the
precise geometries required to make a hydrogen bond [29] (even when redocked).

5 Conclusion

In conclusion, this work presents a comprehensive exploration of the limitations of structure-based
drug design (SBDD) with deep generative models. In particular, we find that these methods have
previously little understood failure modes about the quality of the 3D poses that these models
produce jointly with the molecular topology. We advocate for the need to consider both the quality
of the generated molecules and the quality of the binding poses in these models, calling for an
expanded evaluation of SBDD and make a number of methodological recommendations. We provide
POSECHECK as a solid evaluation suite and we hope that it stimulates further development towards
more efficient drug discovery processes.
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A Background and Related Work

Deep Generative Models for 3D Structure-based Drug Design Many works have recently tried
to recast the SBDD problem as learning the 3D conditional probability of generating molecules given
a receptor, allowing users to sample new molecules completely de novo inside a pocket. Common
methods utilize Variational AutoEncoders (VAEs) [5], Generative Adversarial Networks (GANs) [30],
Autoregressive (AR) models and recently Denoising Diffusion Probabilistic Models (DDPMs) [4].
LiGAN [19] uses a 3D convolutional neural network combined with a VAE model and GAN-style
training. 3DSBDD [20] introduced an autoregressive (AR) model that iteratively samples from an
atom probability field (parameterised by a Graph Neural Network) to construct a whole molecule,
with an auxiliary network deciding when to terminate generation. Pocket2Mol [7] extended this
work with a more efficient sampling algorithm and better encoder. DiffSBDD [9], DiffBP [31] and
TargetDiff [9] are all conditional DDPMs conditioned on the 3D target structure. DecompDiff [11] is
another diffusion model that decomposes the ligand into fragments for which it considers separate
priors for the diffusion process. FLAG [10] chooses a fragment from a motif vocabulary based on
the protein structure and composes it with other motifs into a final ligand in an iterative fashion.
GraphBP [32] utilises an autoregressive flow model to formulate the ligand design as a sequential
generation task.

Related work Guan et al. [9] perform limited analysis of small chemical sub-features, such as
agreement to experimental atom-atom distances and the correctness of aromatic rings within the
generated molecule. Baillif et al. [33] emphasize the necessity of 3D benchmarks for 3D generative
models. However, both of these works study the molecules in isolation rather than the protein-ligand
context. Both DecompDiff [11] and DiffBP [31] take steric clashes into account via their loss
functions, but do not include steric clashes as a metric in their evaluation. TargetDiff [9] includes an
analysis of Vina Scores but does not report any standard deviations on these. However, these standard
deviations are critical in evaluating the performance of these models as we demonstrate in this paper.

The concurrent work PoseBusters [34] also focuses on benchmarking the biophysical plausibility of
protein-ligand poses but focuses on evaluating docking tools instead of molecular generation models.
They also find generalisation to new sequences to be poor.

B Extended Implementation

B.1 CrossDocked Test Set

The CrossDocked dataset is a standard dataset used in the field of generative modelling for structure-
based drug design [21]; since the models benchmarked here were trained on this dataset, it is the
benchmarking dataset of choice. It was originally created by clustering PDB structures by "pocket
similarity’ via Pocketome [35], i.e. grouping structures with similar ligand binding sites together.
To expand the dataset beyond this initial data, all ligands with a molecular weight < 1000 Da that
were associated with a given pocked were docked into each receptor assigned to that pocket via
the docking tool smina [18]. This cross-docking process results in the basis dataset CrossDocked
2020 [21], which contains 2,922 pockets, 18,450 complexes and 13,839 ligands, together comprising
around 22.5 million poses (i.e. protein-ligand structures).

Most generative models are however not trained on this raw dataset, but on a filtered version of
it, following the procedure of the Pocket2Mol model [7]. As a quality control, data points whose
binding pose RMSD is greater than 1 were filtered out. This leads to a filtered dataset with 184,057
data points. The mmseq2 program [36] was used to cluster data at 30% identity, and training and test
sets were created by randomly drawing 100,000 protein-ligand pairs for training and 100 proteins
from the remaining clusters for testing.

The 100 proteins comprising the test set are on average around 320 residues long, with the biggest
protein having a length of 752 residues. The 100 test samples consist of 28 hydrolases, 22 oxidore-
ductases, 11 kinases, 16 other transferases, 6 transcription factors, 4 lyases, 2 ligases, 1 GCPR, 2
membrane proteins, 2 isomerases, 1 viral protein, 1 transport protein, 1 signalling protein and 3 in
other categories.
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B.2 Benchmarking Methods Implementation

Protein-ligand interaction analysis Proteins are first protonated using Reduce [37] and interactions
are then calculated using the ProLIF library [13].

Steric clashes We stipulate a clash to occur when the pairwise distance between a protein and
ligand atom falls below the sum of their van der Waals radii, allowing a clash tolerance of 0.5 Å.
Proteins are protonated using Reduce [37] and molecules are protonated using RDKit2.

Strain energy Whilst there is always a trade-off between enthalpy and entropy, generally speaking,
lower strain energy results in more favourable binding interactions and potentially more effective
therapeutics. We calculate the strain energy, Estrain = Egenerated −Eminimum as the difference between
the estimated energy minimum and the energy of the generated pose (without pocket). Note, evaluating
the generated poses with the force-field directly will cause the energy terms to explode, due to the
slight imperfections in bond distances and angles in the generated molecules. Hence, we first perform
at most 200 steps of relaxation using a force-feild with a maximum allowed displacement in atom
positions of 0.1 Å. This fixes minor issues with the bond angles and distances, preventing the
energy terms from exploding, whilst staying faithful to the global binding mode of the generated
conformer. An estimate of the global energy minimum is calculated by initializing 50 conformers
using ETKDGv3 and then minimizing using up to 200 steps of force-field minimization (taking
inspiration from [34]). We then calculate the energy of all these poses and take the minimum as our
final value. Both conformer minimization and energy evaluation are computed using the Universal
Force Field (UFF) [38] using RDKit.

Docking We perform all pose scoring, minimization and redocking using SMINA [18]. Next,
we can compute the Root Mean Squared Deviation (RMSD) between the generated pose and the
docking-predicted one across all generated molecules, thereby obtaining a distribution of RMSD
values.

B.3 Experimental Setup

In our study, we evaluate the quality of poses from seven recent methods: LiGAN [19], 3DSBDD
[20], Pocket2Mol [7], TargetDiff [9], DiffSBDD [8], DecompDiff [11] and FLAG [10]. All models
were trained on the CrossDocked2020 [21] dataset using the dataset splits computed in Peng et al. [7],
which used a train/test split of 30% sequence identity to give a test set of 100 target protein-ligand
complexes which we use for evaluation. For each model, we sampled 100 molecules per target. We
give a more detailed overview of the CrossDocked dataset and its limitations in Appendix B.1.

During inference, the model is given a reduced PDB file containing only the atoms for a single pocket
within the test set, so there is no element of blind docking during generation or subsequent redock-
ing3.Docking protocols were done using the SMINA settings decribed in the original CrossDocked
paper [21].

B.4 Procedure of Model Reproduction

For generated poses, we sourced molecules from Schneuing et al. [8] for DiffSBDD, and Guan et al.
[9] for CrossDocked, TargetDiff, Pocket2Mol, 3DSBDD and LiGAN (where they provide generated
poses but we additionally perform our own redocking).

For FLAG [10], no weights were provided so we retrained the model as described in Zhang et al.
[10] using the code and config file available at github.com/zaixizhang/FLAG. When sampling,
we found that generation was attempted 100 times per target and then any molecules with fewer than
8 atoms were discarded. This ended up encompassing the majority of molecules, resulting in small
test sizes, so we implemented a while loop to sample 100 molecules whilst keeping faithful to the
filtering used in the codebase. Having modified the code to work on GPU, sampling 100 targets took
about 1-2 minutes per target on a single A100 GPU.

2www.rdkit.org
3Note illustrative figures may show full proteins.
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For DecompDiff [11], we use the official implementation with the published weights available at
github.com/bytedance/DecompDiff. We sampled 100 samples for each of the 100 targets using
the sample_diffusion_drift.py script in ref_prior mode. With the provided code, sampling
100 targets took about 20-30 minutes per target on a single A100 GPU.

C Extended Results

C.1 Agreement with docking scoring functions

Results To discern whether the generated poses/binding modes produced by these models corre-
spond to overall low energy states with few physical violations, our preliminary analysis involves
determining the extent to which minimized poses preserve information from the initially generated
binding mode. Therefore, we proceed to compute the RMSD between the model-generated pose and
SMINA-minimized pose [18], with a lower RMSD value denoting a higher degree of agreement.4

The distributions of SMINA-minimization RMSDs of various methods are illustrated in Figure 2.
We first consider CrossDocked as a baseline, which has a mean minimization RMSD of 0.59 Å.
Given that all the generative models were trained on these poses, we would expect to observe similar
performance. However, we find that all methods (except FLAG) have a mean score between 0.94
and 1.28 Å, suggesting that the generated binding poses are very far from low-energy states. We
observe little correlation between method types here except for the two similar autoregressive models,
3DSBDD and Pocket2Mol, which obtain mean RMSDs of 0.99 and 1.02 Årespectively. FLAG is the
most egregious example with on average 3.64 ÅRMSD during minimization and a maximum value
of 10.72 Å, an extreme value for local minimisation.

Table 1: Vina score values of generated poses, energy minimized poses and redocked poses. We
additionally provide the change in Vina score during minimization and redocking respectively.

Method Vina Generated (↓) Vina Minimized (↓) Vina Redocked (↓) ∆Affinity Minimization (↑) ∆Affinity Redocking (↑)
(kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

CrossDocked −5.50± 2.86 −6.24± 2.52 −6.86± 2.37 −0.74± 1.24 −1.37± 1.43

TargetDiff −5.36± 3.79 −6.72± 2.83 −7.35± 2.51 −1.35± 1.99 −1.99± 2.59
3DSBDD −5.04± 2.58 −5.85± 2.42 −6.29± 2.22 −0.80± 0.76 −1.25± 1.0
Pocket2Mol −4.55± 3.18 −6.38± 2.92 −6.96± 2.72 −1.83± 1.66 −2.40± 2.01
DecompDiff −4.25± 3.16 −5.91± 2.14 −6.56± 2.03 −1.66± 2.39 −2.31± 2.69
LiGAN −6.03± 2.83 −6.78± 2.71 −7.36± 2.56 −0.75± 0.78 −1.34± 1.09
DiffSBDD −1.94± 10.31 −5.85± 3.19 −7.00± 2.01 −3.91± 8.62 −5.07± 9.92
FLAG 94.20± 89.46 4.89± 19.36 −5.69± 4.19 −89.31± 78.45 −99.89± 88.94

We also provide the raw affinities from our docking experiments in Table 1, both when evaluating the
generated pose using the SMINA/Vina score function directly (Vina Generated), after local energy
minimization (Vina Minimize) and redocking the molecule entirely (Vina Redock). Additionally, we
provide the change in Vina scores during minimization and redocking. We first draw our attention
to the scores for the redocked poses: these metrics are commonly reported and often used as a
justification for state-of-the-art performance. On the surface, the results look promising, with most
methods matching or exceeding the performance of the baseline dataset (although with no statistical
significance). However, a worrying picture emerges when we measure the generated poses directly,
with none of the models (except LiGAN) outperforming the baseline dataset. The mean scores for
CrossDocked are -5.50 kcal/mol, whereas the generative models (except LiGAN and FLAG) have
mean scores between -1.94 and -5.36 kcal/mol. FLAG again performs poorly with the Vina scores for
generated poses exploding to +94.20 kcal/mol, suggesting the generated poses are highly implausible.

We next consider the role energy minimization and redocking have on these final scores by considering
the change in affinity during the two processes respectively. The result of this analysis highlights
that minimization/redocking is critical to getting acceptable scores out of these methods, calling into
question the reliability of the generated poses. CrossDocked has a ∆affinity minimization score of
-0.74 kcal/mol, whereas the generative models (excluding LiGAN and FLAG) have scores between
-0.75 and -3.91 kcal/mol. FLAG has a score of -89.31 kcal/mol (unsurprising given the generated
poses). We see a similar picture for the impact of redocking, where the majority of methods see

4To provide perspective, it’s worth noting that a carbon-carbon bond generally measures 1.54 Å in length.
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substantially greater increases in their scores during the procedure. In conclusion, we show that only
reporting the mean Vina score of redocked poses hides critical failure modes found in many models. 5

Discussion These findings raise concerns for several reasons. They expose the minimal concordance
between the binding models learned by these methods and the established SMINA methodology
[22], despite it being the source of training data. More critically, they underline the lack of accurate
evaluations of generative models’ capability to produce realistic binding poses; instead, these models
tend to generate drug-like molecules with vague binding modes, later rectified through docking.

We also calculated the RMSD between the generated and highest affinity redocked pose but were not
able to discern any reasonable signal-to-noise over the baseline dataset. We hypothesise that this may
be due to the fact that Francoeur et al. [21] provided up to 20 poses for every ligand, resulting in 22.5
million complexes, and the processing done in Peng et al. [7] is not clear on which poses they chose,
meaning these models may not have been trained on the lowest affinity poses.

C.2 Protein-ligand interaction analysis

Evaluation Below describe the classes of interaction that we evaluate. Hydrogen bonds (HBs) are
a type of interaction that occurs between a hydrogen atom that is bonded to a highly electronegative
atom, such as nitrogen, oxygen, or fluorine [23]. They are key to many protein-ligand interactions
[24] and require very specific geometries to be formed [29]. The directionality of HBs confers unique
identities upon the participating atoms: hydrogen atoms attached to electronegative elements are
deemed ‘donors’, whilst the atom accepting the HB is termed an ‘acceptor’. Van der Waals contacts
(vdWs) are interactions that occur between atoms that are not bonded to each other. These forces can
be attractive or repulsive and are typically quite weak [39]. However, they can be significant when
many atoms are involved, as is typical in protein-ligand binding [40]. Hydrophobic interactions
are non-covalent interactions that occur between non-polar molecules or parts of molecules in a
water-based environment. They are driven by the tendency of water molecules to form hydrogen
bonds with each other, which leads to the exclusion of non-polar substances. This exclusion principle
prompts these non-polar regions to orient away from the aqueous environment and towards each other
[41], thereby facilitating the association between protein and ligand molecules [42].

Results Distributions of hydrogen bonding interactions are shown in Figure 3. We consider whether
our generative models can design molecules with adequate hydrogen bonding and find that no method
can match or exceed the baseline. In the reference set, CrossDocked, the modal number of HBs for
both acceptors and donors is 1, with means of 2.23 and 1.66 for acceptors and donors respectively.
Strikingly, we find that in all generated poses for all models (except LiGAN HB acceptors) the most
common number of HB acceptors and donors is 0, with means varying between 0.36-1.73 for HB
acceptors and 0.26-0.85 for HB donors. We find an average difference of 0.50 and 0.81 HBs between
the best-performing models and the baseline for acceptors and donors respectively. Results for Van
der Waals contacts and hydrophobic interactions are closer to the dataset baseline (see Appendix
Figure 8), possibly as these are easier to form.

Discussion Conventional wisdom would suggest that many minor imperfections in the generated
pose would be simply fixed by redocking the molecule (e.g. moving an oxygen atom slightly to
complete a hydrogen bond.) We find this is in fact rarely the case, with redocking sometimes being
significantly deleterious (see examples of LiGAN in Figure 3), suggesting that there are either
limitations in the docking function used or, more likely, the generated interaction was physically
implausible to begin with.

C.3 Clash scores

Results Figure 4 presents the results of the steric clash analysis. In summary, the latest methods,
particularly those employing diffusion models and fragment libaries, exhibit poor performance in
terms of steric clashes compared to the baseline, with a significant number of outliers. Although
redocking mitigates clashes to some extent, it does not always resolve the most severe cases.

5Given the acceptable redocked scores of FLAG we do not believe we have made an error in training.

12



The CrossDocked test set has a low number of clashes with few extreme examples, with a mean
of 4.59, upper quantile of 6 and maximum value of 17. In terms of generated poses, the older
methods perform best, with 3DSBDD and LiGAN having means of 3.79 and 3.40 clashes respectively.
Pocket2Mol, an extension of 3DSBDD, performs worse with a mean clash score of 5.62 and upper
quantile of 8 clashes. Finally, the diffusion-based approaches perform poorly with mean clash scores
of 15.33, 9.03 and 7.13 for DiffSBDD, TargetDiff and DecompDiff respectively. The tail end of their
distributions is also high, with the methods having upper quantiles of 18, 11 and 9 clashes respectively,
with TargetDiff having the worst case of 264 steric clashes. FLAG has the worst generated clash
scores by far, with mean and median clash scores of 110.96 and 91 respectively. Redocking the
molecules generally fixed many clashes and improved scores, especially for FLAG, where the mean
clash score improves from 110.96 to 5.55. The mean clash score for Pocket2Mol improves from 5.62
to 2.98, TargetDiff from 9.08 to 5.79 and DiffSBDD from 15.34 to 3.61.

Discussion Interestingly, DiffSBDD and TargetDiff, which are considered state-of-the-art based
on mean docking score evaluations [9, 8], exhibit subpar performance in their number of clashes.
They aim to learn atom position distributions without explicit constraints on final placements. While
DiffSBDD starts with a performance deficit, its enhanced clash mitigation during redocking elevates
its results to match the baseline, highlighting methodological distinctions between it and TargetDiff.
Notably, 3DSBDD and LiGAN show low clash scores, with the former positioning atoms within a
predefined voxel grid [20] and the latter applying a clash loss [19]. DecompDiff also applies a steric
clash loss (but does not directly measure clashes in the corresponding publication) [11] and performs
best out of all the diffusion-based approaches. Generated molecules for FLAG were most egregious
here; we speculate this is a result of first choosing a fragment from a fragment vocabulary using a
softmax function and then forcing the placement of the fragment [10], regardless of whether it fits
sterically.

Our findings affirm the assumption that redocking alleviates many minor clashes, akin to the force-
field relaxation step in AlphaFold2 [28]. We initially speculated that molecules with clashes exceeding
100 had been mistakenly generated inside the protein pocket. Yet, we often discovered fragments
within highly constrained nooks, especially worsened with the addition of hydrogen atoms.

Limitations An important consideration to bear in mind is that proteins are not entirely rigid
receptors. They can often experience limited conformational rearrangements to accommodate
molecules of varying shapes and sizes [43]. Consequently, conducting generation and redocking in a
rigid receptor environment may not yield accurate scores for potentially plausible molecules.

Note all these results are with a generous clash tolerance of 0.5 Å (roughly half the vdW radii of a
hydrogen atom), in order to be able to resolve differences between methods.

C.4 Strain energy

The additional analysis of the impact of rotatable bonds on strain and the frequency of rotatable bonds
are shown in Figure 6 and Figure 7 respectively.

D Additional Figures

D.1 Interactions analysis

We include the comparisons between generative method against baselines for both Van der Waals
contacts and hydrophobic interactions, both for generated redocked poses in Figure 8.
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Figure 6: Boxplots of strain energies of generated molecules per number of rotatable bonds for all
methods. Box color shows median strain value.
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Figure 7: Histograms showing distributions of rotatable bonds for all molecules generated by a
particular method. In each plot, the underlying distribution from CrossDocked is also shown.
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Figure 8: Extended analysis of the interaction profiles of the generated molecules for the different
methods. While the focus in the main text was on hydrogen bonds, the results in this figure include
Van der Waals Contacts and hydrophobic interactions, reported for both the generated as well as the
redocked pose.
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