
SO(3)-Equivariant Representation Learning in 2D
Images

Darnell Granberry
Simons Machine Learning Center

New York Structural Biology Center
New York, NY 10027

dgranberry@nysbc.org

Alireza Nasiri
Simons Machine Learning Center

New York Structural Biology Center
New York, NY 10027
anasiri@nysbc.org

Jiayi Shou
Simons Machine Learning Center

New York Structural Biology Center
New York, NY 10027
jshou@nysbc.org

Alex J. Noble
Simons Machine Learning Center

New York Structural Biology Center
New York, NY 10027
anoble@nysbc.org

Tristan Bepler
Simons Machine Learning Center

New York Structural Biology Center
New York, NY 10027
tbepler@nysbc.org

Abstract

Imaging physical objects that are free to rotate and translate in 3D is challenging.
While an object’s pose and location do not change its nature, varying them presents
problems for current vision models. Equivariant models account for these nuisance
transformations, but current architectures only model either 2D transformations of
2D signals or 3D transformations of 3D signals. Here, we propose a novel convolu-
tional layer consisting of 2D projections of 3D filters that models 3D equivariances
of 2D signals—critical for capturing the full space of spatial transformations of
objects in imaging domains such as cryo-EM. We additionally present methods for
aggregating our rotation-specific outputs. We demonstrate improvement on several
tasks, including particle picking and pose estimation.

1 Introduction

Rotation and translation introduce challenges to many computer vision tasks including face and
eye tracking [Liu, 2022], galactic imaging [Lintott et al., 2008], and cryogenic electron microscopy
(cryo-EM) [Cheng et al., 2015, Sigworth, 2015]. In each case, the perceived object is free to move
in three dimensions before being projected onto a 2D image plane. The object’s identity remains
the same and thus the information content of the image should be somewhat conserved. We aim to
capture this symmetry with models incorporating more expressive 3D equivariances that still act on
images alone.

Related Work Recent works have developed numerous techniques to achieve equivariance to
transformations such as 2D rotation and scaling [Nasiri and Bepler, 2022, Marcos et al., 2017,
Cohen and Welling, 2016]. Similarly, a wide variety of methods have been introduced to incorporate
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equivariance to rotations in three dimensions [Thomas et al., 2018, Worrall and Brostow, 2018,
Kondor et al., 2018]. However, none of these function directly in the 2D image domain.

2 Methods

Figure 1: Particle picking model architecture, consisting of group convolutional modules to extract
rotation-specific features, modules to propagate information between the corresponding rotations,
and an aggregation module to synthesize the final rotation-specific feature maps into overall particle
probabilities.

2.1 SO(3)-Equivariant Convolutional Layers

We begin by describing the cryo-EM image formation process. Each particle’s volume V first adopts
some orientation ϕ corresponding to a rotation R ∈ SO(3) and a translation t ∈ R3. The volume’s
density is then projected along the Z-axis (according to our convention) via summation by PZ into
the 2D image plane. This projection removes information specific to Z-positions, so in typical
formulations t ∈ R2. The image is finally subject to modulation by the microscope contrast transfer
function C and the addition of noise W . Thus, the final observed 2D image becomes

I = (C ◦ PZ)(R(V ) + t) +W (1)

. To make our model equivariant to these rotation and projection operations, we generate convolutional
filters by applying the same operations to 3D model weights. For each channel, a 3D weight is
initialized. We then sample rotations from SO(3), as described below, and apply them to the weight.
Given these newly-rotated 3D arrays, we then project them by taking their means (which was
more stable than summation) along the Z-axis. This produces 2D images of the weight in various
orientations, which we use as filters in traditional 2D convolution. The 2D convolutions are grouped
to ensure that filters and feature maps remain matched according to their orientations. This results
in filters and layers that are equivariant to rotation and projection, in addition to possessing the
translational equivariance of traditional CNNs. Our architecture, by virtue of the linear projection
PZ , is invariant to Z-axis translation. We can vary this property, and others, by varying our choice of
projection P , as we discuss below. We provide a schematic of a typical particle picking model in
Figure 1, of our layer’s mechanics in Figure 2, and an illustration of particle and the corresponding
filter projections in Figure 3.

Figure 2: SO(3)-rotation-and- projection-equivariant convolutional module. Each module first rotates
R copies of a 3D weight to unique orientations in SO(3). Each 3D weight is then projected into a 2D
plane, which is finally convolved with the 2D input image or feature maps.

2.2 Rotation Sampling

In order to generate a finite number of projections about the group SO(3), we need to first discretize
it. We begin by finding points on the sphere–defined by two angles–with which to align the Z-axis
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Figure 3: Left: an example protein (PBD 7QTQ) and its projections at various angles. Right: a
example 3D filter that our model might store, with it’s corresponding projections. In our module’s
forward pass, the particle projections will be convolved with the filter projections matching their
orientations.

and then rotate by a third angle about these newly-aligned Z’-axes. We do so using a modification of
the Hopf fibration [Yershova et al., 2010]. For simplicity, our models generate the first two angles
using the Fibonacci sphere, a simple and relatively accurate sampling method [González, 2010]. We
use the chosen angles to create 3D affine flow field grids, on which we sample the weights we are
rotating, as used by Jaderberg et al. [2015].

2.3 Rotation Aggregation

For tasks that don’t need rotation-specific features, we synthesize our feature vector into a single,
invariant output. The first method we consider for this is max-pooling over rotations, corresponding
to taking the score of the most likely rotation. Our second method–a novel approach–combines
the probabilities associated with each orientation. Let Y be a Bernoulli random variable indicating
whether an object is present in the given image, and let {yi, i ∈ [1, R]} be Bernoulli random variables
indicating whether an object is present with rotation i. Thus:

P (Y = 1) = 1− P (Y = 0) = 1−
R∏
i=1

P (yi = 0) (2)

We deem this the "at least one" (AL1) aggregation. To maintain numerical stability, we compute
the above in the log domain. We also add to each output logit a (negative) bias of log(2

1
R − 1) to

counteract the increasing false-positive rate associated with increasing R [Benjamini and Hochberg,
1995].

3 Experiments

3.1 Image Classification

We evaluate our architectures on a variety of cryo-EM datasets, the common image dataset CIFAR-10
[Krizhevsky, 2009], Galaxy Zoo 2–a subset of the Galaxy Zoo/Sloan Digital Sky Survey dataset
[Willett et al., 2013]. We compare a variety of models with a range of equivariances: a linear model,
a CNN, a ResNet, an SO(2)-equivariant model (in-plane rotations only), and our SO(3)-equivariant
models. Comparing various levels of equivariance allows us to observe the performance gains
associated with explicitly modeling each type of symmetry.Equivariant models are tested with our
AL1 aggregation. We also evaluate a model using a single SO(3)-equivariant layer on the cryo-EM
datasets in an attempt to generate rough 3D models of the underlying particles.
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Our cryo-EM datasets consisted of EMPIAR-10025 [Campbell et al., 2015], EMPIAR-10028 [Wong
et al., 2014], and EMPIAR-11076 [Ehrenbolger et al., 2020]. We used Topaz [Bepler et al., 2019] to
downsample all micrographs to 8 Å/pixel and extract 200,000 45x45 crops with 10% positive labels,
mimicking the sparsity of cryo-EM labels. Galaxy Zoo 2 (GZ2) images were 424x424 pixels, so they
were center-cropped to 180 pixels (minimally clipping the galaxies pictured), resized to 45 pixels.
CIFAR-10 images are 32x32 pixels, so they were simply normalized, as were the other datasets.
The cryo-EM datasets were split into 70% training, 15% validation, and 15% testing. The CIFAR
and GZ2 datasets already contain train/test splits, so the training images were split to yield similar
validation sets.

All classification models were trained to convergence on one 80GB NVIDIA A100 GPU for a
maximum of 200 epochs using a batch size of 512. Early stopping was used with a patience of 5
epochs. We reduced the learning rate upon validation loss plateaus with patience of three epochs, the
Adam optimizer [Kingma and Ba, 2014], and an initial learning rate of 10−3. Binary classification
models were evaluated on the area under the precision-recall curve and trained using binary cross-
entropy loss, while multi-class classification models used categorical cross-entropy.

3.2 Pose Estimation

Here, we train models to predict an object’s orientation from its 2D projection. Our model uses
equivariant layers to output weights over r discretized 3D-rotations and offsets ϕ associated with
each one of these rotations. In each ri, the filters are rotated by angle θi, so to get the angles for each
ri dimension we use θi + ϕi. We train these models by minimizing

−logP (θpred|r) = −Σi(logP (θpred|ri) + logPi) (3)

The first part of this loss function is calculated based on the quaternion distance between the predicted
angles for rk and θk, where k is the ground-truth rotation dimension. For calculating the second part
of this loss function which is logPi, we use cross-entropy loss. We identify the class assignments for
both the ground-truth of samples using argmini(1− qθi)

2, where q is the ground-truth rotations in
quaternions. We use this class assignment along with the weights over r, which is outputted by the
model to calculate the logPi.

We train our models on the projections of the (arbitrarily chosen) volume from [Imada et al., 1998].
For this volume, we have generated two datasets: one is based on the uniform sampling of the
projection angles over SO(3), and the other one is based on the preferred orientation, where the
projection angles are sampled from a Gaussian distribution with a standard deviation of 0.1 around a
randomly sampled angle (the preferred orientation). Each training dataset has 10,000 samples, and
we use a separate dataset of 1000 samples for testing.

We compare models using convolutional layers, SO(2)-equivariant layers, and multiple variants of
our SO(3) model. In each, we compare the arc distance between the predicted and ground-truth
quaternion components. We further evaluate how well each model can generalize to angles not
seen in the training distribution, inspired by the important preferred orientation problem in cryo-EM
[Cheng et al., 2015]. We are using the same number of filters in all these models. They are trained
with the Adam optimizer, learning rate of 10−3 which is decayed by 0.9 after 10 iterations with no
improvement in the loss, and batch size of 100 samples. We train all our models for 100 iterations
and save the one with the best performance over the validation set.

4 Results

4.1 Image Classification

Our results in Tables 1 and 2 demonstrate that our models perform similarly or better than those with-
out SO(3) equivariance, all while using fewer parameters. Models consisting of a single equivariant
filter (2D or 3D), which are analogous to the linear baseline, do not perform as well as that baseline.
This is likely due to the corners of the square/cubic weights being clipped during rotation, which
results in the associated parameters being used less frequently and, therefore, less effectively. We
could compensate for this by padding the filters before rotation then cropping the result to the desired
size, which vastly increases the computational resources required to train.
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Table 1: Binary cross-entropy loss, area under the precision-recall curve, and accuracy for various
models on our cyro-EM datasets. Due to the imbalanced nature of our datasets, AUPR is our primary
measure of model performance. Equivariant models generally outperform non-equivariant models.
Our model does so using fewer parameters.

Dataset Method Parameters Loss↓ AUPR↑ Accuracy↑

10025

Linear 2026 0.196 0.7982 0.9519
Convolutional 74054 0.4301 0.8698 0.9529
ResNet 73598 0.4218 0.8701 0.9549
SO(2)-AL1 74137 0.0804 0.8765 0.9674
SO(3)-AL1 1-filter 91126 0.6281 0.7851 0.733
SO(3)-AL1 63369 0.0828 0.8817 0.9676

10028

Linear 2026 0.1929 0.8127 0.9546
Convolutional 74054 0.4269 0.8656 0.9473
Resnet 73598 0.4307 0.8608 0.9519
SO(2)-AL1 74137 0.0882 0.8734 0.9644
SO(3)-AL1 1-filter 91126 0.6226 0.8181 0.719
SO(3)-AL1 63369 0.0899 0.8732 0.9641

11076

Linear 2026 0.1514 0.8014 0.9558
Convolutional 74054 0.4357 0.8693 0.9516
ResNet 73598 0.4178 0.8693 0.956
SO(2)-AL1 74137 0.0783 0.8812 0.9673
SO(3)-AL1 1-filter 91126 0.6281 0.7861 0.732
SO(3)-AL1 63369 0.0836 0.8814 0.9676

Table 2: Classification statistics for generic image classification. Here, we use the cross-entropy
loss as our primary indicator of performance. Equivariant models again outperform non-equivariant
models. Our model does so using fewer parameters.

Dataset Method Parameters Loss↓ Accuracy↑

CIFAR-10

Linear 32680 1.9376 0.3388
Convolutional 51104 1.3517 0.5568
ResNet 89240 1.4501 0.5195
SO(2)-AL1 51178 1.3276 0.5526
SO(3)-AL1 48842 1.2816 0.5573

Galaxy Zoo 2

Linear 48608 1.3288 0.4771
Convolutional 560176 0.7583 0.7666
ResNet 639216 0.7863 0.7575
SO(2)-AL1 802568 0.622 0.7764
SO(3)-AL1 691784 0.6412 0.7691
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4.2 Pose Estimation

Our results in Table 3 show that our 3D group convolutional models outperform the other methods
in correctly predicting rotation angles of projections. Furthermore, our models display greater
generalizability; after being trained on narrowly-distributed data, they perform better than the others
in predicting rotations of data sampled from outside of the training distribution.

Table 3: Test losses for various models on cryo-EM particle pose estimation. Evaluation scenarios
are labeled with their training distribution/testing distribution pairs, each either uniform or adopting a
preferred orientation (a randomly-centered Gaussian distribution). Our model performs best in all
tasks. In particular, we show significant improvement over 2D and non-equivariant models when the
underlying volume can adopt any orientation (the most general task) and when the training views are
constrained (displaying enhanced generalizability).

Method R Parameters Unif/Unif Pref/Pref Pref/Unif
Conv2D – 2.74M 0.508 0.018 1.939
SO(2) 9 2.75M 0.231 0.029 1.926
SO(3)-Unimodal 256 2.80M 0.288 0.015 1.776
SO(3) 256 2.74M 0.14 0.103 1.156

5 Discussion

The models we present here demonstrate similar or better performance, greater generalizability, and
improved parameter efficiency than non- and SO(2)-equivariant models in image classification and
cryo-EM pose estimation. Additionally, our models generalize significantly better from data adopting
preferred orientations. In generic image classification, it is unclear why our models’ are more efficient
than others. Though such images lack a single projected volume, their subjects still undergo rotation
and projection; therefore, we hypothesize that modeling these operations provides some weaker
inductive bias than for the comparatively restricted cryo-EM environment.

In the future, we will continue to examine our relationship between the discrete cover’s density and
performance, data efficiency, and deeper models with richer features. We also aim to explore the
structure of our models’ SO(3)-equivariant feature space, and applications like projection alignment.
As we’ve demonstrated the usefulness of including richer symmetries, there are numerous areas for
future work to explore. One area is formulating more complex projection operators that include
properties like perspective and occlusion. Another area is adapting this approach to lower- or
higher-dimensional signals. For example, architectures that model 4D transformations in 3D signals.
Due to the curse of dimensionality, higher-dimensional applications will likely require even more
sophisticated sampling and aggregation methods.
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