
Sampling Protein Language Models for Functional
Protein Design

Jeremie Theddy Darmawan∗

Department of Bioinformatics
School of Life Sciences

Indonesia International Institute for Life Sciences

Yarin Gal
OATML Group

Department of Computer Science
University of Oxford

Pascal Notin
OATML Group

Department of Computer Science
University of Oxford

Abstract

Protein language models have emerged as powerful ways to learn complex repre-
sentations of proteins, thereby improving their performance on several downstream
tasks, from structure prediction to fitness prediction, property prediction, homology
detection, and more. By learning a distribution over protein sequences, they are
also very promising tools for designing novel and functional proteins, with broad
applications in healthcare, new material, or sustainability. Given the vastness
of the corresponding sample space, efficient exploration methods are critical to
the success of protein engineering efforts. However, the methodologies for ade-
quately sampling these models to achieve core protein design objectives remain
underexplored and have predominantly leaned on techniques developed for Natural
Language Processing. In this work, we first develop a holistic in silico protein
design evaluation framework, to comprehensively compare different sampling
methods. After performing a thorough review of sampling methods for language
models, we introduce several sampling strategies tailored to protein design. Lastly,
we compare the various strategies on our in silico benchmark, investigating the
effects of key hyperparameters and highlighting practical guidance on the relative
strengths of different methods.

1 Introduction

Proteins are complex macromolecules achieving a wide diversity of functions and spanning an
expansive sequence space. Despite recent progress in sequencing technologies, the known proteome
only represents a small fraction of this space. Protein engineering bears the promise of efficiently
exploring the design space to generate novel protein sequences, either by iteratively mutating func-
tional sequences of interest [2, 46, 45] or by generating novel sequences from scratch, extrapolating
from existing templates and biochemical constraints [19, 7]. Protein language models (PLMs) have
emerged as powerful tools to learn complex distributions over protein sequences, leading to supe-
rior performance on a broad range of downstream tasks, such as structure prediction [22], fitness
prediction [24, 27], mutation effects prediction [5], homology detection [12], or viral evolution [15].
As generative models of protein sequences, PLMs are also ideally suited to sample novel functional
proteins that have never been observed before and, as such, are very promising tools to support protein

∗Correspondence to jeremie.darmawan@student.i3l.ac.id, pascal.notin@cs.ox.ac.uk

Machine Learning for Structural Biology Workshop, NeurIPS 2023.

engineering workflows. Given the massive size of the corresponding sample space, together with the
diversity of protein design objectives, the success of PLM-driven protein engineering efforts relies
not only on ever-improving models but also on efficient methods to sample from these models. While
the field has witnessed the emergence of several PLMs for protein design [1, 10, 13, 26, 23], efficient
sampling methods have been understudied to date. Prior works have so far primarily leveraged
sampling strategies initially developed for Natural Language Processing tasks (§ A), with limited
insights into the impact of various strategies on the properties of the generated sequences, and without
taking advantage of the unique characteristics of protein sequences relative to natural language are
ignored by theses sampling schemes. In this work, we sought to develop and explore different
methods for sampling from PLMs, systematically analyzing the characteristics of the generated
sequences based on the chosen sampling strategy or core underlying hyperparameters. To that end,
we first devise a robust in silico evaluation framework to benchmark different protein design methods.
While our focus is on PLMs in general, we place a greater emphasis on autoregressive PLMs, given
their ability to support a broader range of sampling methods (§ 2.1). We also place ourselves in the
zero-shot design setting, such that we do not have access to experimental labels to train supervised
fitness regressors which would then guide the sampling process.

Our contributions are as follows:

• We develop 3 efficient sampling strategies tailored to protein design objectives: High-
Probability and Quantitative-Function Filter, and a Monte Carlo Tree Search (MCTS)
scheme (§ 2).

• We devise a holistic framework for the in sillico evaluation of protein engineering methods,
spanning core objectives such as functional relevance, sequence diversity, and fitness (§ 3).

• We conduct an in-depth comparison of the various PLM sampling methods, analyze the
effect of key sampling hyperparameters on performance and discuss the relative strengths of
the different methods depending on design objectives (§ 4).

• We open-source our codebase to provide convenient access to our in silico evaluation
framework as well as all sampling methods in a unified interface at https://github.com
/i3LBI19-OATML/sampling-proteins.

2 Method

2.1 Taxonomy for PLM sampling methods

Strategies for sampling Protein Language Models can be broadly categorized into two groups:
Iterative Redesign Sampling (IRS) and AutoRegressive Sampling (ARS), as depicted in Figure 1.

Autoregressive sampling (ARS) generation: Based on an initial prompt of a few amino acid tokens,
ARS methods iteratively construct a novel sequence by adding one token at a time, until the desired
sequence length is reached or an "end of sentence" token is sampled. Further details are provided
in Appendix B.1. Any of the sampling methods mentioned in § A.1 can be applied to this method.
Pseudo-code for the autoregressive pipeline is available in Algorithm S2.

Iterative redesign sampling (IRS) generation: IRS mimics the process of directed evolution [2]. It
starts with an initial template sequence from the family of interest (e.g., wild-type sequence) and then
iteratively samples one or multiple mutations, until the desired number of mutation rounds (or other
metric) has been reached. Sampling is performed at the end of each evolution cycle (i.e. step that
introduces mutations to the sequence) through any of the methods mentioned in § A.1. Further details
are available in Appendix B.2. An illustration of the code for the single-mutant IRS is provided in
Figure S1 while a detailed algorithm pseudocode is available in Algorithm S1.

2.2 Single-Mutant Protein Generation

Single-mutant IRS methods evaluate at each round all possible single amino acid substitutions of the
working sequence, score them with the PLM, and sample a mutant with one of the methods described
in A1, such as random, greedy, top-k, top-p, typical, or mirostat sampling. Single-mutant ARS
methods add a single token per iteration, where the sampling process can also be supported by any
of the methods described in § A.1. This single mutation method has the least computational cost to

2

https://github.com/i3LBI19-OATML/sampling-proteins
https://github.com/i3LBI19-OATML/sampling-proteins

Figure 1: Taxonomy of protein language sampling methods. We discriminate between two
strategies for sampling PLMs: autoregressive sampling and iterative redesign sampling.

operate compared to multiple mutations. While they are very simple in practice and computationally
effective, single-mutant approaches may ignore potentially critical epistatic interactions between
multiple mutated positions.

2.3 Multiple-Mutant Protein Generation

Instead of applying a single mutant at each iteration, multiple-mutant strategies apply several mutants
simultaneously to better capture epistatic effects [41, 20, 38]. However, this comes at the cost of a
significantly larger computational budget given the combinatorial growth of possible mutant sets that
can be considered. To that end, we develop three different strategies to make the search of optimal
mutant sets tractable, which we describe below and illustrate in Figure S1 and Algorithm S3. Even
with these strategies, final sampling with the NLP-based sampling methods would still be required at
the end of each cycle. In addition, MCTS and beam search are implemented and used as comparisons
for both IRS and ARS in single- and multi-mutant approaches.

High-Probability Filter (HPF): We first score all possible single amino acid substitutions with
the PLM and then filter them to keep only the top 100 single mutants with the highest predicted
fitness. This reduces the time required and ensures only high-impact mutants are explored. We
then construct the multiple mutants by only considering combinations involving these 100 mutants,
thereby significantly reducing the number of theoretically possible combinations. We then randomly
sample N of the resulting multi-mutant set, score them with the PLM and sample the final mutant to
apply with the top-k sampling scheme.

Quantitative-Function Filter (QFF): We first generate all possible double-mutant (or more) pairs,
then sample 100 of them at random. The resulting pairs are then assessed with a separate fitness
prediction model (here ProteinBERT [4]). The best N mutants based on these scores are then selected,
and scored with the PLM and we sample the final multi-mutant to apply with top-k sampling.

Monte Carlo Tree Search (MCTS): The Upper Confidence bounds applied to Trees (UCT) equation
is used to strike the right exploration-exploitation trade-off, with the PLM used to predict node reward
values. At each iteration, the node with the highest reward (ie., the most visited) is selected. The
scheme can be applied in both ARS and IRS settings. Further details are provided in Appendix D.8.
This search algorithm can be implemented in both ARS and IRS, in which the number of search
rounds done in each evolution cycle is predetermined. Protein design with MCTS and PLMs can be
done following Algorithm S1 and Algorithm S3 by replacing the second while loop.

3

Figure 2: Our holistic in silico evaluation framework for functional protein design revolves
around three core performance criteria: relevance, quality, and diversity. For each criterion, two
complementary metrics enable a thorough comparison of the relative benefits of the various protein
language model sampling methods.

3 Holistic in silico evaluation framework for protein design

There are 3 high-level criteria that are critical to designing functional proteins. First, we want the
generated protein sequences to be relevant for the design objective, i.e., carry out the function of
interest. Since function is primarily encoded via the tertiary structure of the protein, the metrics we
devised to assess functional relevance are structure-based. Second, the generated protein sequences
ought to properly execute the specified function, i.e., have high fitness [20]. To that end, we leveraged
a diverse set of highly-performing zero-shot fitness predictors, such as EVmutation [17] (alignment-
based Potts model), ESM-1v [24] (alignment-free protein language model), and ESM-MSA [32]
(language model across alignment inputs). These models were chosen since their respective inductive
biases are different from the autoregressive protein language models with which we generate novel
sequences, and they form a representative set of the different types of fitness prediction models [27].
Lastly, the generated sequences should be diverse, i.e., differ from the template wild-type sequence
or known natural sequences. We assess the diversity with respect to wild-type references based
on the Frétchet distance between ESM-1v representations of the generated sequence and through
sequence dissimilarity (i.e. inverse of sequence identity). We refer to these three design objectives as
Relevance, Quality, and Diversity respectively, and crafted two separate metrics for each category
(Fig. 2). We define each of the models involved as evaluation metrics in Appendix C

4 Experiments

In the evaluation of the methods introduced in § 2, we seek to address the following questions: (1)
What are the relative strengths of ARS strategies over IRS strategies? (2) What are the benefits of
multiple-mutant strategies (HPF and QFF) over single-mutant strategies in IRS? (3) What are the
effects of different sampling hyperparameters on generated proteins?

Generation and Evaluation Protocol: We used Tranception to guide our process and generate 100
sequences for each sampling method and hyperparameter combination. [27]. Evolution cycles for
IRS was 10 while the desired length for ARS equals the length of the wild-type. We used the metrics
in our in silico framework discussed in § 3 to evaluate the properties of the proteins. Reference
sequences correspond to naturally occurring sequences.

Protein Data: We used Aequorea victoria (avGFP) protein throughout our experiments. IRS used
the full-length while ARS only the first-100 residues. Further details are in Appendix D.1. DMS
data is needed for QFF model fine-tuning, obtainable from the ProteinGym benchmarks [27]. We
compared sequences generated by Biswas et al. [4] as an additional baseline for IRS.

Sampling Methods: Methods experimented include Random, Greedy, Top-k, Top-p, Mirostat, and
Typical sampling as well as Beam Search and MCTS. Hyperparameters are as follows: Mirostat with
best value of 3.0 [3], Top-p with 0.1 to 1.0, Typical with 0.1 to 0.95, and Top-k with k of 2, 3, 5, 10,
15, 20, 30, 40, and 50. Beam search and MCTS with value of 1 and 2.

4

4.1 Effects of broad sampling approaches

We report the effects of both ARS and IRS protein generation with respect to all the categories within
the evaluation framework. The results of each metric are presented in Table S1. Proteins that are
generated with the IRS method are more similar to the template sequence and hence, several metrics
that are based on similarity (i.e. TM-score) are higher and metrics based on distance (i.e. Sequence
Dissimilarity (SD) and FED) are lower than ARS-generated proteins. Being unconstrained by the
template sequence, the ARS approach has more flexibility in generating more diverse proteins and
simultaneously has the potential to lead to higher maximum fitness levels. However, ARS approach
has the risk of generating proteins that stray too far from the desired protein family. As ARS methods
produce sequences that are farther away in sequence space relative to the template sequence, they
produce diverse sequences that are less fit on average

4.2 Benefits of multiple-mutant strategies

Scoring multiple mutants with IRS is computationally costly due to numerous possible mutations.
Filtering mutants between subsequent scoring and sampling could minimize inference costs through
our proposed strategies, HPF and QFF, with a filter value of 96 mutations. An estimate of the reduced
cost is from ∼60 hours to ∼5 minutes. A comparative summary of results between single-mutant
and double-mutant IRS, including the strategies HPF, QFF, beam search, and MCTS, are shown in
Table 1. We also experimented with single- and double-mutant generation with ARS. Results of
this experiment can be found in Table S3. Hyperparameter for MCTS controls the number of search
rounds and hence in ARS, it is classified as both single- and double-mutant, while in IRS it is only
classified as double-mutant.

Metric Relevance Quality Diversity
TM-score ↑ pLDDT ↑ Overall Fitness ↑ Max. Fitness ↑ SD ↑ FED ↑

Single-Mutant Greedy sampling 0.48 36.7 -0.35 -0.35 0.04 0.22
Beam Search (1) 0.48 36.4 -0.35 -0.35 0.04 0.22

Double-Mutant

HPF 0.34 33.0 -1.81 -0.88 0.08 0.17
QFF 0.33 32.1 -1.71 -0.95 0.08 0.09
Beam Search (2) 0.39 34.5 -1.90 -1.90 0.08 0.15
MCTS 0.59 44.1 0.84 0.84 0.01 0.16

Table 1: Comparison between single-mutant and double-mutant IRS protein generation with Tran-
ception PLM. Only the best sampling methods are included, where HPF is greedy and QFF is top-k.
Detailed results for single, double-HPF, and double-QFF IRS are available in Table S7, Table S8, and
Table S9. Bold denotes best scores for that metric.

In the IRS approach, there are certain key observations to be highlighted. Of the various multi-mutant
IRS strategies, only the MCTS-based scheme leads to compelling improvements in the sequence
generation, with sequences that are more functionally relevant (eg., TM-Score and pLDDT), higher
quality (higher fitness), at the cost of slightly reduced diversity. MCTS is able to produce better
relevance and quality metrics than other methods however, the proteins do compromise its diversity.
On the other hand with ARS approach, there is a slight improvement in all metrics when double-
mutants are used instead of single-mutants. Here there is no apparent performance trade-off between
relevance, quality, and diversity. Further improvement of results may be obtained via fine-tuning to
target protein families as done in Biswas et al. [4] (Table S2).

4.3 Effects of different sampling hyperparameters

We were able to identify that IRS generation with MCTS search produces the best proteins in terms
of relevance and quality. MCTS mechanism that only selects the highest node reward might be
responsible for the lack of diversity. We take a look into the effect of different hyperparameters from
this combination in Table S4. It is noticeable that sampling hyperparameters does not impact the
proteins property significantly, but the inference cost more than doubles with 2 search rounds. A
careful inspection of the detailed results tables in Appendix G, would uncover that methods and
hyperparameters with larger sampling pools produce lower fitness proteins with limited diversity.

5

In contrast, smaller sampling pools may lead to very distant proteins (due to overcommitting) with
higher fitness.

5 Conclusion and Future Directions

This study presents a systematic evaluation of ARS and IRS and the impact of different sampling
methods on the fitness, diversity, and functional relevance properties of ML-designed proteins.
Results show there seems to be an inverse relation between fitness and diversity for the generated
proteins unless we explicitly account for diversity in the generation procedure. Fine-tuning to target
protein families may boost the results even further. Methods that strike a balance between the two
and can adapt to both properties based on user input are the next frontier. It is worth investigating the
role of initial residue prompting in ARS and the role of different PLMs in IRS. We look forward to
future works that may augment this study with evaluations across other protein families, PLMs, and
sampling methods or strategies.

References
[1] E. C. Alley, G. Khimulya, S. Biswas, M. AlQuraishi, and G. M. Church. Unified rational protein

engineering with sequence-based deep representation learning. Nature Methods 2019 16:12, 16:
1315–1322, 10 2019. ISSN 1548-7105. doi: 10.1038/s41592-019-0598-1.

[2] F. H. Arnold. Directed evolution: Bringing new chemistry to life. Angewandte Chemie
International Edition, 57:4143–4148, 4 2018. ISSN 1521-3773. doi: 10.1002/ANIE.201708408.

[3] S. Basu, G. S. Ramachandran, N. S. Keskar, and L. R. Varshney. Mirostat: A neural text
decoding algorithm that directly controls perplexity. In International Conference on Learning
Representations, 2021.

[4] S. Biswas, G. Khimulya, E. C. Alley, K. M. Esvelt, and G. M. Church. Low-n protein
engineering with data-efficient deep learning. Nature Methods 2021 18:4, 18:389–396, 4 2021.
ISSN 1548-7105. doi: 10.1038/s41592-021-01100-y.

[5] N. Brandes, D. Ofer, Y. Peleg, N. Rappoport, and M. Linial. Proteinbert: a universal deep-
learning model of protein sequence and function. Bioinformatics, 38:2102–2110, 4 2022. ISSN
1367-4803. doi: 10.1093/BIOINFORMATICS/BTAC020.

[6] R. Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In Computers
and Games, pages 72–83. Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-75538-
8_7.

[7] J. Dauparas, I. Anishchenko, N. Bennett, H. Bai, R. J. Ragotte, L. F. Milles, B. I. M. Wicky,
A. Courbet, R. J. de Haas, N. Bethel, P. J. Y. Leung, T. F. Huddy, S. Pellock, D. Tischer, F. Chan,
B. Koepnick, H. Nguyen, A. Kang, B. Sankaran, A. K. Bera, N. P. King, and D. Baker. Robust
deep learning–based protein sequence design using proteinmpnn. Science, 378(6615):49–56,
2022. doi: 10.1126/science.add2187.

[8] D. Dowson and B. Landau. The fréchet distance between multivariate normal distributions.
Journal of Multivariate Analysis, 12(3):450–455, Sept. 1982. doi: 10.1016/0047-259x(82)900
77-x.

[9] A. Elnaggar, M. Heinzinger, C. Dallago, G. Rehawi, Y. Wang, L. Jones, T. Gibbs, T. Feher,
C. Angerer, M. Steinegger, D. Bhowmik, and B. Rost. Prottrans: Toward understanding the
language of life through self-supervised learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 44:7112–7127, 10 2022. ISSN 19393539. doi: 10.1109/TPAMI.2021.3
095381.

[10] N. Ferruz, S. Schmidt, and B. Höcker. ProtGPT2 is a deep unsupervised language model for
protein design. Nature Communications, 13(1), July 2022. doi: 10.1038/s41467-022-32007-7.

[11] M. Fréchet. Sur la distance de deux lois de probabilité. Annales de l’ISUP, VI(3):183–198,
1957.

6

[12] M. Heinzinger, M. Littmann, I. P. W. Sillitoe, N. Bordin, C. A. Orengo, and B. Rost. Contrastive
learning on protein embeddings enlightens midnight zone. NAR Genomics and Bioinformatics,
4, 2021.

[13] D. Hesslow, N. Zanichelli, P. Notin, I. Poli, and D. Marks. Rita: a study on scaling up generative
protein sequence models. arXiv preprint arXiv:2205.05789, 2022.

[14] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium, 2018.

[15] B. L. Hie, E. D. Zhong, B. Berger, and B. D. Bryson. Learning the language of viral evolution
and escape. Science, 371:284 – 288, 2020.

[16] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural text
degeneration. CEUR Workshop Proceedings, 2540, 4 2019. ISSN 16130073.

[17] T. A. Hopf, J. B. Ingraham, F. J. Poelwijk, C. P. I. Schärfe, M. Springer, C. Sander, and D. S.
Marks. Mutation effects predicted from sequence co-variation. Nature Biotechnology, 35(2):
128–135, Jan. 2017. doi: 10.1038/nbt.3769.

[18] T. A. Hopf, A. G. Green, B. Schubert, S. Mersmann, C. P. I. Schärfe, J. B. Ingraham,
A. Toth-Petroczy, K. Brock, A. J. Riesselman, P. Palmedo, C. Kang, R. Sheridan, E. J.
Draizen, C. Dallago, C. Sander, and D. S. Marks. The EVcouplings python framework
for coevolutionary sequence analysis. Bioinformatics, 35(9):1582–1584, Oct. 2018. doi:
10.1093/bioinformatics/bty862.

[19] P.-S. Huang, S. E. Boyken, and D. Baker. The coming of age of de novo protein design. Nature,
537:320–327, 2016.

[20] S. R. Johnson, X. Fu, S. Viknander, C. Goldin, S. Monaco, A. Zelezniak, and K. K. Yang.
Computational scoring and experimental evaluation of enzymes generated by neural networks.
bioRxiv, page 2023.03.04.531015, 4 2023. doi: 10.1101/2023.03.04.531015.

[21] J. Li, T. Tang, W. X. Zhao, J.-Y. Nie, and J.-R. Wen. Pretrained language models for text
generation: A survey, 2022.

[22] Z. Lin, H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, N. Smetanin, R. Verkuil, O. Kabeli, Y. Shmueli,
A. dos Santos Costa, M. Fazel-Zarandi, T. Sercu, S. Candido, and A. Rives. Evolutionary-
scale prediction of atomic-level protein structure with a language model. Science, 379(6637):
1123–1130, Mar. 2023. doi: 10.1126/science.ade2574.

[23] A. Madani, B. Krause, E. R. Greene, S. Subramanian, B. P. Mohr, J. M. Holton, J. L. Olmos,
C. Xiong, Z. Z. Sun, R. Socher, J. S. Fraser, and N. Naik. Large language models generate
functional protein sequences across diverse families. Nature Biotechnology 2023, pages 1–8, 1
2023. ISSN 1546-1696. doi: 10.1038/s41587-022-01618-2.

[24] J. Meier, R. Rao, R. Verkuil, J. Liu, T. Sercu, and A. Rives. Language models enable zero-shot
prediction of the effects of mutations on protein function. Advances in Neural Information
Processing Systems, 34:29287–29303, 12 2021.

[25] C. Meister, T. Pimentel, G. Wiher, and R. Cotterell. Locally typical sampling. Transactions
of the Association for Computational Linguistics, 11:102–121, 2 2022. ISSN 2307387X. doi:
10.1162/tacl_a_00536.

[26] E. Nijkamp, J. Ruffolo, E. N. Weinstein, N. Naik, and A. Madani. Progen2: Exploring the
boundaries of protein language models, 2022.

[27] P. Notin, M. Dias, J. Frazer, J. M. Hurtado, A. N. Gomez, D. Marks, and Y. Gal. Tranception:
Protein fitness prediction with autoregressive transformers and inference-time retrieval. In
K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, editors, Proceedings
of the 39th International Conference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pages 16990–17017. PMLR, 17–23 Jul 2022.

[28] J. Parker and J. Z. Chen. Neural machine translation with monte-carlo tree search, 2020.

7

[29] D. Peñas-Utrilla and E. Marcos. Identifying well-folded de novo proteins in the new era of
accurate structure prediction. Frontiers in Molecular Biosciences, 9, 2022.

[30] G. Raghava and G. J. Barton. Quantification of the variation in percentage identity for protein
sequence alignments. BMC Bioinformatics, 7(1), Sept. 2006. doi: 10.1186/1471-2105-7-415.

[31] R. Rao, N. Bhattacharya, N. Thomas, Y. Duan, P. Chen, J. Canny, P. Abbeel, and Y. Song.
Evaluating protein transfer learning with tape. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[32] R. M. Rao, J. Liu, R. Verkuil, J. Meier, J. Canny, P. Abbeel, T. Sercu, and A. Rives. Msa
transformer. In M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 8844–
8856. PMLR, 18–24 Jul 2021.

[33] A. Rives, J. Meier, T. Sercu, S. Goyal, Z. Lin, J. Liu, D. Guo, M. Ott, C. L. Zitnick, J. Ma,
and R. Fergus. Biological structure and function emerge from scaling unsupervised learning to
250 million protein sequences. Proceedings of the National Academy of Sciences of the United
States of America, 118:e2016239118, 4 2021. ISSN 10916490. doi: 10.1073/PNAS.201623911
8/SUPPL_FILE/PNAS.2016239118.SAPP.PDF.

[34] K. S. Sarkisyan, D. A. Bolotin, M. V. Meer, D. R. Usmanova, A. S. Mishin, G. V. Sharonov,
D. N. Ivankov, N. G. Bozhanova, M. S. Baranov, O. Soylemez, N. S. Bogatyreva, P. K. Vlasov,
E. S. Egorov, M. D. Logacheva, A. S. Kondrashov, D. M. Chudakov, E. V. Putintseva, I. Z.
Mamedov, D. S. Tawfik, K. A. Lukyanov, and F. A. Kondrashov. Local fitness landscape of the
green fluorescent protein. Nature 2015 533:7603, 533:397–401, 5 2016. ISSN 1476-4687. doi:
10.1038/nature17995.

[35] M. Seitzer. pytorch-fid: FID Score for PyTorch. https://github.com/mseitzer/pytorch-
fid, August 2020. Version 0.3.0.

[36] D. Sgarbossa, U. Lupo, and A.-F. Bitbol. Generative power of a protein language model
trained on multiple sequence alignments. eLife, 12:e79854, feb 2023. ISSN 2050-084X. doi:
10.7554/eLife.79854.

[37] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and
D. Hassabis. Mastering the game of go without human knowledge. Nature, 550(7676):354–359,
Oct. 2017. doi: 10.1038/nature24270.

[38] T. N. Starr and J. W. Thornton. Epistasis in protein evolution. Protein Science, 25(7):1204–1218,
Feb. 2016. doi: 10.1002/pro.2897.

[39] B. E. Suzek, H. Huang, P. McGarvey, R. Mazumder, and C. H. Wu. UniRef: comprehensive
and non-redundant UniProt reference clusters. Bioinformatics, 23(10):1282–1288, Mar. 2007.
doi: 10.1093/bioinformatics/btm098.

[40] R. Y. Tsien. The green fluorescent protein. Annual Review of Biochemistry, 67(1):509–544,
1998. doi: 10.1146/annurev.biochem.67.1.509. PMID: 9759496.

[41] V. Upadhyay, C. Patrick, A. Lucas, and K. M. Mallela. Convergent evolution of multiple
mutations improves the viral fitness of sars-cov-2 variants by balancing positive and negative
selection. Biochemistry, 61:963–980, 6 2022. ISSN 15204995. doi: 10.1021/ACS.BIOCHEM.
2C00132/ASSET/IMAGES/MEDIUM/BI2C00132_0012.GIF.

[42] A. Vaswani, G. Brain, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Łukasz
Kaiser, and I. Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems, 30, 2017.

[43] Y. Wang, H. Tang, L. Huang, L. Pan, L. Yang, H. Yang, F. Mu, and M. Yang. Self-play
reinforcement learning guides protein engineering. Nature Machine Intelligence, July 2023.
doi: 10.1038/s42256-023-00691-9.

8

https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid

[44] L. N. Wasserstein. Markov processes over denumerable products of spaces, describing large
systems of automata. Probl. Peredachi Inf., 5:47–52, 1969.

[45] B. J. Wittmann, K. E. Johnston, Z. Wu, and F. H. Arnold. Advances in machine learning
for directed evolution. Current Opinion in Structural Biology, 69:11–18, Aug. 2021. doi:
10.1016/j.sbi.2021.01.008.

[46] K. K. Yang, Z. Wu, and F. H. Arnold. Machine-learning-guided directed evolution for protein
engineering. Nature Methods, 16(8):687–694, July 2019. doi: 10.1038/s41592-019-0496-6.

[47] Y. Zhang and J. Skolnick. Scoring function for automated assessment of protein structure
template quality. Proteins: Structure, Function, and Bioinformatics, 57(4):702–710, 2004. doi:
https://doi.org/10.1002/prot.20264.

9

Appendix

A Background and related work

A.1 Sampling Language Models

Language models are generative models seeking to approximate a distribution over sequential inputs.
Once trained, we can then sample from these generative models to create new objects that may not
have been part of the initial training data. Since the creation of novel sequential objects may be
driven by various objectives (e.g., creativity, coherence, fluency, factual information), a wide range of
sampling strategies has been developed to promote certain characteristics of generated sequences [21].
The most simple strategy is random sampling, which samples items based on their probabilities
as provided by the softmax of output logits ui (Equation 1), divided by the smoothing temperature
parameter T which controls the flatness of the distribution.

P (xi|x1:i−1) =
exp(ui/T)∑
j exp(uj/T)

(1)

In order to avoid sampling items with extremely low probability under the language model, top-k
sampling selects the subset V (k) of the k elements with highest probabilities, sets the probabilities of
the other items to zero, and renormalizes probabilities for the top-k items as expressed in Equation 2.
Greedy sampling is an extreme version of top-k sampling that only takes the item with the highest
(top-1) probability in the distribution.

P k(x|x1:i−1) =

{
P (x|x1:i−1)/p

′, if x ∈ V (k).

0, otherwise.
(2)

where x1:i−1 corresponds to sequence items previously generated, and p′ =
∑

x∈V (k) P (x|x1:i−1) is
the probability renormalization factor.

In practice, using a fixed-size k may be suboptimal when the flatness of the distribution varies
significantly across generated tokens in the sequence: in some instances, relevant items will be
censored, while in others certain low-likelihood items may be sampled. To address this problem,
top-p sampling [16] (or nucleus sampling) first computes the corresponding cumulative distribution
and censors it as soon as the CDF exceeds p, giving rise to the set V (p) of all non-censored items.
Mathematically, this leads to a censored probability analogous to the one in Equation 2, except for
the renormalization factor p′ =

∑
x∈V (p) P (x|x1:i−1).

Beam search views a sequential sampling process as a search problem in which one explores the
most promising items at each step in a tree-like structure, maintaining a fixed number of possible
solutions at each depth called a "beam width." Other techniques placing a greater emphasis on human
expectations and preferences were also developed for NLP. Typical sampling by Meister et al. [25]
was inspired by information theory on the premise that texts generated from language models are
not aligned with the expected information content of the user. Hence, it attempts to minimize the
difference between the generated text’s information content and the expected information content.
Basu et al. [3] identified that humans prefer generated texts with a certain level of perplexity that is
neither too low nor too high, which led to the development of Mirostat sampling. This sampling
method will self-adapt and guide the text decoding toward a predetermined perplexity value without
any model finetuning. Therefore, it provides better maintenance over perplexity levels in NLP-
generated texts. Language model decoding can also be considered as a sequence of decisions, similar
to that in a game, where the current generated tokens (state) will influence the next tokens (moves)
being generated in order to achieve certain objectives. Monte Carlo Tree Search (MCTS) was
initially coined by Coulom [6], and later used to identify the best future moves for the game of Go
[37]. It was initially developed as a decision-making, search algorithm, it has then been used in
machine translation and, more recently, for protein design [28, 43]. Its mechanism involves the use of
a UCT to manage the exploration-exploitation decision as well as the backpropagation of information
regarding each node visit and reward. As a policy-value network, it may use search results to improve
itself and provide guidance for more accurate updates compared to deterministic sampling methods.
See Appendix D for more details on these various sampling methods.

1

Figure S1: High-level single and multi-mutant IRS algorithms for generating novel protein
sequences. Detailed algorithms are provided in supplementary (Algorithms S1 and S3).

A.2 Protein Language Models

The majority of protein language models can be classified into two broad categories: autoregressive
(AR) and masked-language models (MLM) although other learning paradigms such as seq2seq [9]
or FIM [12] have also been explored. Unirep [1] was the first PLM trained autoregressively across
unaligned protein sequences across protein families. With the improvements seen in Transformers
[42] for NLP, masked-language models such as ProteinBERT, ESM-1b, TAPE-BERT, and MSA
Transformer [5, 33, 31, 32], as well as autoregressive models, such as Tranception, RITA, and
ProtGPT2 [27, 13, 10]. These PLMs have been shown to achieve remarkable performance across
diverse tasks, such as zero-shot fitness prediction [24, 27]. For protein design, prior PLM works have
relied on the simple sampling methods discussed in § A.1, such as top-k, top-p, random, or greedy
sampling [36, 4, 26, 23, 10]. Only recently have Wang et al. [43] leveraged a MCTS-based approach
to carry out a 35 residue-restricted iterative protein design. Sgarbossa et al. [36] developed a method
that iteratively applies random masking of residues in the protein sequence and fills them greedily
based on MSA Transformer [32] predictions.

B Protein Design Approaches

B.1 Autoregressive sampling (ARS) generation

This approach can be used with initial-residue prompting or unprompted generation. As previously
reported in Nijkamp et al. [26], prompted generation allows for a more targeted generation, meaning
that generated protein sequences are closer in identity to a certain target protein sequence. Hence,
when given an initial residue prompt, the pipeline will extrapolate the AA sequence while keeping
certain information about the initial residue throughout the generation process. Generating protein
sequences using this method is an iterative process that will last until a desired sequence length
is achieved. At each round, we add one (or more) of the 20 possible amino acids to the working
sequence and a zero-shot PLM will then generate a fitness score for each of them. Then, a predefined
sampling method will select the next residue using the scores as guidance. We could generate multiple
sequences by repeating this process.

2

B.2 Iterative redesign sampling (IRS)

We used an iterative redesign protein design pipeline, that takes in a template protein sequence and
generates all possible single mutations of the sequence. For multiple mutations, we could either
introduce subsequent mutations after the first one or directly introduce two or more mutations at
each cycle. All the mutations could then be scored using PLMs to guide the process. This pipeline
only considers substitution-based mutations and is similar to the method used by Sgarbossa et al.
[36], Johnson et al. [20]. All mutant scores are sampled using a predefined sampling method which
will then be used to mutate the sequence. This mutation cycle may be repeated multiple times to
introduce multiple single mutations. Any sampling strategies that are mentioned in Section A.1 can
be used along with this method. To generate multiple protein sequences, we repeated this pipeline
several times with the same initial template sequence. An illustration of the code for the single-mutant
IRS is provided in Figure S1 while a detailed algorithm pseudocode is available in Algorithm S1.

C Evaluation Metrics

1. TM-score: Assesses the topological similarity between the predicted structure of the
generated sequences and the structure of the template wild type sequence [47]. The final
score is the average of the pairwise TM-scores. Structures were predicted with ESMFold [22].
Ideally, the structure of generated sequences is as close to that of the template sequence as
possible to ensure functional relevance.

2. pLDDT: Quantifies the confidence of a structure prediction model (here ESMFold [22]),
averaged over the entire sequence. Higher pLDDT has been observed to correlate with
higher functional designs, e.g., for the design of binders to specific targets [29].

3. Avg. Fitness: Reports the average fitness gained by the generated sequences to that
of the template wild-type sequence. In practice, we compute this metric for the three
aforementioned fitness predictors and average the corresponding scores.

4. Max. fitness: Evaluates the ability of the sampling procedure to generate sequences that
significantly enhance the fitness of the template wild-type sequence. For each fitness
predictor, we compute the maximum fitness value in the generated set and average the
corresponding score across models. To normalize across models, ratios are standard-scaled
before averaging based on the distribution of fitness scores observed over a reference set
(e.g., a prior DMS experiment).

5. Avg. Sequence Dissimilarity (SD): Reports the average primary sequence dissimilarity
between generated sequences and the template wild-type sequence (i.e., the proportion of
amino acids that are different). Ideally, we generate novel sequences that are distant in
sequence space from the initial wild-type sequence.

6. Fréchet ESM Distance (FED): Assesses the extent to which the generated sequences are
distant in embedding space to known natural sequences (e.g., sequences in an MSA for that
protein family). It can be seen as a protein-related analog of the Fréchet Inception Distance
(FID), initially introduced to evaluate GAN-generated images [30, 14, 35]. It leverages the
embeddings from the penultimate layer of ESM-1v [24], and computes the Fréchet distance
between the embeddings of the generated sequences and the sequences in an MSA for that
protein family.

D Glossary

D.1 avGFP Protein

The jellyfish Aequorea victoria has a particular protein that exhibits a green fluorescent when
exposed to light [40]. Our experiments were conducted using the Aequorea victoria green fluorescent
protein (avGFP) data by Sarkisyan et al. [34]. It is also one of the widely used biophysical property
benchmarks and used in other protein generation attempts by Biswas et al. [4].

3

D.2 Top-K Sampling

The sorting of probabilities (or scores) in descending order and zero-masking the values that are
beyond the k rank. It truncates unreliable, lower probability tokens and considers only the highest k
probable tokens.

D.3 Greedy Sampling

A variant of top-k sampling that only considers the highest (top-1) probable token.

D.4 Beam Search

Beam search is a greedy, heuristic search algorithm that looks ahead into the next N tokens. It
considers the best combination of all proceeding tokens ahead of the current token. Although
computationally costly, this approach would generally generate better results over top-k sampling as
it takes into account the next N combinations that might be missed when selecting individual tokens
for each position.

D.5 Top-p Sampling

As a solution to the top-k sampling and beam search that is prone to the boredom trap, top-p sampling
(or nucleus sampling) was developed Holtzman et al. [16]. It samples from a pool of the smallest
possible set of tokens in which the cumulative probability exceeds the probability p, also called the
nucleus. Compared to top-k sampling, this approach has a dynamically adjusting sampling pool
according to the predicted probability distribution of the language model.

D.6 Mirostat Sampling

Based on reports that text quality is most desirable at certain likelihood ranges, mirostat sampling
was developed to keep the generated text within a predetermined perplexity value [3]. Therefore,
high-quality text could be obtained by maintaining certain perplexity values and without any model
fine-tuning. This approach prevents the generated text from the boredom trap (repetitions) as well as
the confusion trap (incoherence). The main notation for this sampling is k = (ϵ̂2µ/(1−N−ϵ̂))(1/ŝ),
where ŝ =

∑m−1
i=1 tibi/

∑m−1
i=1 t2i and µ = µ− ηe in which, e is the difference between the observed

surprise and τ

D.7 Typical Sampling

Inspired by the psycholinguistic theory of human communication, Meister et al. [25] formally defines
a criterion for text generation that minimizes the next generated token information content as close as
possible to the model’s conditional entropy (or expected information content). Using this information
theory foundation, typical sampling efficiently enforces this criterion upon text generation. As written
in the original paper, typical sampling is a minimization optimization problem of the following subset:∑

yϵC′(y<t)

|H(Yt|Y<t = y<t) + logp(y|y<t)| (3)

which is subject to
∑

yϵC(y<t)
|p(y|y<t ≤ τ .

D.8 Monte Carlo Tree Search

The MCTS algorithm effectively employs the Upper Confidence bounds applied to Trees (UCT) to
tactfully strike the balance between exploration and exploitation when making mutations at each
evolution cycle. This process involves initiating from the residual tokens within the template sequence
(parent node) and executing simulations to identify the optimal mutation token (node), utilizing PLM
scoring to determine rewards (fitness) as guidance. The node with the highest reward is selected at
each cycle. The equation for the process can be defined as

UCT (nodei) =
Wi

Si
+ c

√
lnSp

Si
(4)

4

where Wi is the total number of simulations of that node that resulted in rewards, Si is the total
number of simulations of that node, Sp is the total number of simulations of the parent node, and c is
the exploration parameter.

D.9 Fréchet distance

The objective of generative models is to imitate the original data as best as possible. Hence, the
distance between the generated data pw(.) and p(.), or also called the Fréchet distance, can be a
measure of generation quality [11, 14]. This measure is also known as the Wasserstein-2 distance
[44]. The Fréchet distance d(., .) is calculated between the p(.) Gaussian with mean (m,C) and the
pw(.) Gaussian with mean (mw, Cw). Since we only modified the Inception model used in Heusel
et al. [14] into ESM-1v that is suitable for protein sequences, the “Fréchet Inception Distance” (FID)
equation [8] still applies:

d2((m,C), (mw, Cw)) = (||m−mw||)22 + Tr(C + Cw − 2(CCw)
1
2) (5)

E EVmutation Initialization

Initializing the EVmutation [17] model requires two steps: (1) generating deep multiple sequence
alignments (MSA) and (2) generating the model parameters. To generate the MSA, we used the
official EVcouplings [18] tool, which can be found at https://evcouplings.org/, and search
against the UniRef100 [39] database. We opted to use the v1 tool as it seems to produce deeper
alignments than the v2. Advanced configurations on the tool were left to the default settings except
for the position gap threshold and sequence gap threshold which were set to 1.0, as we mainly
work with substitutions. The run that has the highest quality score was selected for generating
the model parameters. We used the recommended plmc [17] commands to accomplish this with
L2-regularization on the couplings set at 47.4, according to their formula.

F ProteinBERT fine-tuning

The pre-trained ProteinBERT model and fine-tuning protocol were provided by Brandes et al. [5].
The process of fine-tuning for biophysical function only requires experimental labels (quantitative
function) and following their protocol. All the layers of pretrained model are initially frozen and a
fully connected layer is added on top of the model. This state was trained for 40 epochs. After this,
all the layers are unfrozen and trained for another 40 epochs. Hence, fine-tuning was done on the
embeddings, and no additional conditioning on GO annotations. Learning rate reduction on plateau
and early topping callback was applied in the fine-tuning protocol.

G Tables

Method Relevance Quality Diversity
TM-score ↑ pLDDT ↑ Avg. Fitness ↑ Max. Fitness ↑ SD ↑ FED ↑

ARS 0.31 38.4 -16.11 -14.53 0.52 7.12
IRS 0.40 34.8 -0.49 0.01 0.04 0.06

Table S1: Comparison of ARS and IRS methods on the different aspects of the evaluation framework.
Bold denotes best scores.

5

https://evcouplings.org/

Metric Relevance Quality Diversity
TM-score ↑ pLDDT ↑ Overall Fitness ↑ Max. Fitness ↑ SD ↑ FED ↑

Single-Mutant Greedy sampling 0.48 36.7 -0.35 -0.35 0.04 0.22
Beam Search (1) 0.48 36.4 -0.35 -0.35 0.04 0.22

Double-Mutant

HPF 0.34 33.0 -1.81 -0.88 0.08 0.17
QFF 0.33 32.1 -1.71 -0.95 0.08 0.09
Beam Search (2) 0.39 34.5 -1.90 -1.90 0.08 0.15
MCTS 0.59 44.1 0.84 0.84 0.01 0.16

Biswas et al. [4] (Supervised) 0.60 44.0 0.27 1.35 0.01 0.00

Table S2: Comparison between single-mutant and double-mutant IRS protein generation with
Tranception PLM. Only the best sampling methods are included, where HPF is greedy and QFF is
top-k. Detailed results for single, double-HPF, and double-QFF IRS are available in Table S7, Table
S8, and Table S9. Bold denotes best scores for that metric.

Metric Relevance Quality Diversity
TM-score ↑ pLDDT ↑ Overall Fitness ↑ Max. Fitness ↑ SD ↑ FED ↑

Single-Mutant
Mirostat sampling 0.14 41.8 -14.68 -14.68 0.56 61.84
Beam Search (1) 0.10 75.9 -14.96 -14.96 0.54 4.41
MCTS 0.14 41.8 -14.68 -14.68 0.56 61.84

Double-Mutant
Greedy sampling 0.13 76.4 -14.54 -14.54 0.53 4.46
Beam Search (2) 0.07 74.5 -14.15 -14.15 0.53 78.19
MCTS 0.33 36.9 -18.44 -18.44 0.58 1.87

Table S3: Comparison between single-mutant and double-mutant ARS protein generation. Best
approaches for NLP-based samplings are presented. Other results for single and double-mutant ARS
are available in Table S5 and Table S6, respectively. Bold denotes best scores.

Sampling Method Hyper. Value Relevance Quality Diversity Time (s) ↓
TM-score ↑ pLDDT ↑ Avg. Fitness ↑ Max. Fitness ↑ SD ↑ FED ↑

MCTS 1 0.59 44.1 0.84 0.84 0.01 0.16 1660.26
2 0.59 44.1 0.84 0.84 0.01 0.16 5467.85

Table S4: Effect of hyperparameters on ARS double-mutant protein generation with MCTS sampling

6

Sampling Method Hyper. Value Relevance Quality Diversity
TM-score ↑ pLDDT ↑ Overall Fitness ↑ Max. Fitness ↑ SD ↑ FED ↑

Random 0.33 33.5 -16.78 -15.36 0.52 1.19

Greedy 0.08 75.9 -14.96 -14.96 0.54 4.41

Top-k

2 0.21 69.4 -15.17 -13.81 0.52 27.76
3 0.24 62.6 -15.10 -13.71 0.52 23.02
5 0.30 55.7 -14.93 -13.13 0.52 17.17
10 0.31 41.5 -15.35 -13.14 0.51 1.24
15 0.33 36.1 -15.64 -13.22 0.51 1.21
20 0.33 33.0 -16.72 -14.98 0.52 1.01

Top-p

0.1 0.34 33.7 -16.67 -14.72 0.52 1.01
0.2 0.34 33.1 -16.75 -15.34 0.52 1.25
0.3 0.34 33.4 -16.68 -15.14 0.52 1.17
0.4 0.34 33.7 -16.71 -14.86 0.52 1.08
0.5 0.35 33.5 -16.62 -15.14 0.52 0.95
0.6 0.33 33.6 -16.68 -15.12 0.52 1.06
0.7 0.33 33.3 -16.68 -15.08 0.52 0.96
0.8 0.34 33.0 -16.63 -15.26 0.52 0.98
0.9 0.33 33.1 -16.70 -14.95 0.53 0.94
1.0 0.34 33.1 -16.82 -15.68 0.53 1.04

Typical

0.1 0.30 32.4 -15.91 -14.12 0.51 10.74
0.2 0.31 32.9 -16.11 -14.32 0.52 10.34
0.3 0.32 33.0 -16.12 -14.42 0.52 9.09
0.4 0.31 32.7 -16.11 -14.15 0.52 8.13
0.5 0.32 33.0 -16.15 -14.04 0.52 6.38
0.6 0.33 32.8 -16.11 -14.05 0.51 4.87
0.7 0.32 33.7 -15.99 -14.13 0.52 3.68
0.8 0.34 33.3 -16.15 -14.74 0.52 2.29
0.9 0.34 33.1 -16.19 -14.12 0.52 1.19
0.95 0.33 33.5 -16.21 -15.01 0.52 0.55

Mirostat 3.0 0.14 41.8 -14.68 -14.68 0.56 61.84

MCTS 1 0.14 41.8 -14.68 -14.68 0.56 61.84
2 0.14 41.8 -14.68 -14.68 0.56 61.84

Beam Search 1 0.10 75.9 -14.96 -14.96 0.54 4.41

Table S5: Performance of the different sampling methods and hyperparameter values on single-ARS
protein generation. Bold scores denote best values.

7

Sampling Method Hyper. Value Relevance Quality Diversity
TM-score ↑ pLDDT ↑ Overall Fitness ↑ Max. Fitness ↑ SD ↑ FED ↑

Random 0.34 32.8 -16.57 -14.76 0.52 1.34

Greedy 0.13 76.4 -14.54 -14.54 0.53 4.46

Top-k

2 0.20 68.1 -14.98 -12.97 0.52 37.52
3 0.21 64.0 -15.00 -13.57 0.52 19.79
5 0.23 62.1 -14.91 -13.21 0.52 21.49
10 0.27 59.7 -14.86 -13.55 0.51 22.37
15 0.29 58.2 -14.95 -13.54 0.51 19.90
20 0.29 57.3 -15.01 -13.09 0.51 16.07
30 0.30 56.7 -14.97 -13.65 0.51 11.95
40 0.30 55.3 -15.06 -13.48 0.51 10.22
50 0.30 53.6 -15.02 -13.31 0.51 7.63

Top-p

0.1 0.34 33.4 -16.66 -14.41 0.52 1.10
0.2 0.34 33.4 -16.67 -14.49 0.52 1.23
0.3 0.34 33.2 -16.50 -14.68 0.53 1.04
0.4 0.34 33.3 -16.64 -15.20 0.52 1.01
0.5 0.35 33.1 -16.67 -14.96 0.52 1.05
0.6 0.34 33.2 -16.73 -15.15 0.52 1.05
0.7 0.34 33.3 -16.66 -15.10 0.52 1.16
0.8 0.33 33.4 -16.80 -15.06 0.52 1.02
0.9 0.34 32.9 -16.61 -14.99 0.52 1.04
1.0 0.34 33.0 -16.75 -14.62 0.52 1.39

Typical

0.1 0.34 33.1 -16.32 -14.59 0.52 4.09
0.2 0.33 32.8 -16.39 -14.63 0.51 3.46
0.3 0.34 32.9 -16.48 -14.95 0.52 3.12
0.4 0.33 32.8 -16.30 -14.88 0.52 2.51
0.5 0.34 32.8 -16.47 -14.51 0.52 2.23
0.6 0.34 33.1 -16.38 -13.87 0.52 1.82
0.7 0.34 32.8 -16.25 -14.99 0.52 1.26
0.8 0.35 32.7 -16.45 -14.97 0.52 1.25
0.9 0.33 33.3 -16.52 -14.76 0.52 1.03
0.95 0.34 33.0 -16.53 -14.88 0.52 1.07

Mirostat 3.0 0.33 36.9 -18.44 -18.44 0.58 1.87

MCTS 1 0.33 36.9 -18.44 -18.44 0.58 1.87
2 0.33 36.9 -18.44 -18.44 0.58 1.87

Beam Search 2 0.07 74.5 -14.15 -14.15 0.53 78.19

Table S6: Performance of the different sampling methods and hyperparameter values on double-ARS
protein generation. Bold scores denote best values.

8

Sampling Method Hyper. Value Relevance Quality Diversity
TM-score ↑ pLDDT ↑ Overall Fitness ↑ Max. Fitness ↑ SD ↑ FED ↑

Random 0.44 35.8 -0.44 -0.02 0.04 0.04

Greedy 0.48 36.7 -0.35 -0.35 0.04 0.22

Top-k

2 0.39 33.1 -0.48 -0.20 0.04 0.08
3 0.41 34.9 -0.46 -0.08 0.04 0.10
5 0.36 33.9 -0.44 -0.12 0.04 0.10
10 0.39 35.0 -0.43 -0.07 0.04 0.15
15 0.36 33.9 -0.43 -0.01 0.04 0.19
20 0.37 34.4 -0.41 0.13 0.04 0.19
30 0.38 34.5 -0.36 0.07 0.04 0.15
40 0.37 34.7 -0.40 0.10 0.04 0.13
50 0.38 35.0 -0.35 0.15 0.04 0.18

Top-p

0.1 0.35 33.3 -0.71 -0.26 0.04 0.03
0.2 0.37 33.6 -0.71 -0.23 0.04 0.02
0.3 0.36 33.2 -0.68 -0.07 0.04 0.02
0.4 0.39 33.6 -0.68 0.01 0.04 0.01
0.5 0.38 34.4 -0.69 -0.23 0.04 0.03
0.6 0.35 33.3 -0.64 -0.11 0.04 0.01
0.7 0.38 33.6 -0.65 -0.07 0.04 0.01
0.8 0.36 33.0 -0.65 -0.21 0.04 0.01
0.9 0.38 34.0 -0.64 0.20 0.04 0.01
1.0 0.37 33.1 -0.63 -0.02 0.04 0.02

Typical

0.1 0.44 36.6 -0.38 0.25 0.04 0.04
0.2 0.45 36.8 -0.41 0.03 0.04 0.02
0.3 0.46 37.4 -0.40 0.18 0.04 0.01
0.4 0.43 36.1 -0.39 0.14 0.04 0.02
0.5 0.43 35.9 -0.39 0.08 0.04 0.02
0.6 0.45 35.6 -0.41 0.22 0.04 0.02
0.7 0.44 35.6 -0.42 0.12 0.04 0.04
0.8 0.40 34.8 -0.40 0.08 0.04 0.03
0.9 0.44 36.6 -0.41 0.17 0.04 0.01
0.95 0.44 36.2 -0.41 0.09 0.04 0.02

Mirostat 3 0.45 36.6 -0.38 0.27 0.04 0.04

MCTS 1 0.59 44.1 0.84 0.84 0.01 0.16
2 0.59 44.1 0.84 0.84 0.01 0.16

Beam Search 1 0.48 36.4 -0.35 -0.35 0.04 0.22
2 0.39 34.5 -1.90 -1.90 0.08 0.15

Table S7: Performance of the different sampling methods and hyperparameter values on single-IRS
protein generation. Bold scores denote best values.

9

Sampling Method Hyper. Value Relevance Quality Diversity
TM-score ↑ pLDDT ↑ Overall Fitness ↑ Max. Fitness ↑ SD ↑ FED ↑

Random 0.33 32.7 -1.78 -0.95 0.08 0.10

Greedy 0.32 33.5 -1.86 -1.12 0.08 0.20

Top-k

2 0.32 33.7 -1.82 -1.32 0.08 0.21
3 0.33 33.3 -1.86 -1.13 0.08 0.09
5 0.32 33.1 -1.82 -1.21 0.08 0.17
10 0.32 33.3 -1.80 -1.17 0.08 0.20
15 0.33 33.7 -1.81 -0.99 0.08 0.18
20 0.32 33.0 -1.81 -1.11 0.08 0.20
30 0.34 33.2 -1.77 -1.16 0.08 0.15
40 0.32 32.8 -1.80 -1.23 0.08 0.12
50 0.33 33.2 -1.79 -0.95 0.08 0.13

Top-p

0.1 0.33 33.5 -1.85 -1.25 0.08 0.12
0.2 0.32 33.1 -1.76 -1.18 0.08 0.16
0.3 0.33 33.5 -1.79 -1.04 0.08 0.15
0.4 0.32 32.4 -1.84 -1.09 0.08 0.15
0.5 0.32 32.5 -1.85 -0.64 0.08 0.10
0.6 0.31 32.7 -1.76 -0.86 0.08 0.15
0.7 0.31 32.6 -1.76 -1.12 0.08 0.13
0.8 0.30 31.9 -1.79 -0.84 0.08 0.13
0.9 0.34 33.1 -1.80 -0.90 0.08 0.07
1.0 0.34 32.8 -1.76 -0.73 0.08 0.15

Typical

0.1 0.32 32.3 -1.84 -1.05 0.08 0.14
0.2 0.30 32.1 -1.82 -1.12 0.08 0.12
0.3 0.31 32.4 -1.85 -1.00 0.08 0.17
0.4 0.30 32.5 -1.84 -1.04 0.08 0.11
0.5 0.32 32.7 -1.83 -1.05 0.08 0.14
0.6 0.31 32.7 -1.78 -1.19 0.08 0.09
0.7 0.31 32.4 -1.85 -1.08 0.08 0.18
0.8 0.31 32.3 -1.85 -0.93 0.08 0.09
0.9 0.32 32.9 -1.79 -0.81 0.08 0.15
0.95 0.32 32.8 -1.81 -0.78 0.08 0.11

Mirostat 3.0 0.34 33.0 -1.81 -0.88 0.08 0.17

Table S8: Performance of the different sampling methods and hyperparameter values on double-IRS-
HPF protein generation. Bold scores denote best values.

10

Sampling Method Hyper. Value Relevance Quality Diversity
TM-score ↑ pLDDT ↑ Overall Fitness ↑ Max. Fitness ↑ SD ↑ FED ↑

Random 0.34 32.8 -1.97 -1.20 0.08 0.02

Greedy 0.34 33.6 -1.77 -1.03 0.08 0.19

Top-k

2 0.36 34.5 -1.70 -1.02 0.08 0.17
3 0.34 34.1 -1.70 -0.89 0.08 0.10
5 0.33 33.9 -1.75 -1.11 0.08 0.16
10 0.37 34.4 -1.71 -0.88 0.08 0.10
15 0.35 33.8 -1.75 -1.00 0.08 0.08
20 0.37 34.3 -1.63 -0.96 0.08 0.07
30 0.35 33.9 -1.68 -0.76 0.08 0.07
40 0.36 34.4 -1.72 -1.10 0.08 0.06
50 0.35 33.4 -1.79 -0.85 0.08 0.03

Top-p

0.1 0.32 31.7 -2.05 -1.14 0.08 0.03
0.2 0.32 31.9 -2.03 -1.35 0.08 0.02
0.3 0.33 32.2 -1.96 -0.95 0.08 0.01
0.4 0.34 32.7 -1.95 -1.11 0.08 0.01
0.5 0.33 32.6 -1.98 -1.18 0.08 0.03
0.6 0.34 32.7 -1.95 -1.07 0.08 0.05
0.7 0.31 31.8 -1.97 -1.25 0.08 0.01
0.8 0.33 32.2 -1.97 -1.22 0.08 0.01
0.9 0.32 32.4 -1.95 -1.01 0.08 0.05
1.0 0.35 32.8 -1.95 -1.02 0.08 0.01

Typical

0.1 0.33 32.2 -1.96 -1.17 0.08 0.01
0.2 0.34 32.9 -1.95 -1.08 0.08 0.02
0.3 0.31 32.5 -1.98 -1.34 0.08 0.01
0.4 0.35 32.6 -1.93 -1.35 0.08 0.02
0.5 0.35 32.6 -1.89 -1.33 0.08 0.01
0.6 0.35 32.7 -1.98 -1.00 0.08 0.01
0.7 0.32 32.3 -1.95 -0.96 0.08 0.03
0.8 0.33 33.0 -1.92 -1.19 0.08 0.03
0.9 0.33 32.9 -1.95 -1.31 0.08 0.01
0.95 0.33 32.7 -1.95 -1.11 0.08 0.03

Mirostat 3.0 0.33 32.1 -1.89 -1.14 0.08 0.02

Table S9: Performance of the different sampling methods and hyperparameter values on double-IRS-
QFF protein generation. Bold scores denote best values.

11

H Algorithms

Algorithm S1 Single-mutant IRS Protein Generation Pseudocode

Require: initial_sequence, num_sequences, cycles, output_path ▷ Main Inputs
Require: sampler, sampling_threshold ▷ Final Sampler Params
Require: PLM ▷ Protein Language Model (e.g., Tranception, RITA, Progen)
Ensure: num > 0 and cycles > 0

SN ← num_sequences ▷ Number of sequence(s) to generate
EC ← cycles ▷ Number of evolution cycle(s) per sequence
generated_sequences← list()
final_sampler ← sampler ▷ Random, Greedy, Top-k, Top-p, Typical, or Mirostat
final_threshold← sampling_threshold ▷ Threshold for final sampling
while len(generated_sequences) < SN do

seq ← initial_sequence
while iteration < EC do

mutants← generate_all_single_mutants(seq)
scores← PLM(mutants)
mutation← final_sampler(scores, final_threshold)
seq ← get_mutated_sequence(seq,mutation)

end while
generated_sequences.append(seq)

end while
save_as_fasta(generated_sequences) ▷ Output FASTA file

Algorithm S2 Autoregressive Protein Generation Pseudocode

Require: initial_sequence, num_sequences, length, output_path ▷ Main Inputs
Require: sampler, sampling_threshold ▷ Sampling Params
Require: PLM ▷ Protein Language Model (e.g., Tranception, RITA, Progen)
Ensure: num > 0 and length > 0
SN ← num_sequences ▷ Number of sequence(s) to generate
SL← length ▷ Desired length of each sequence
EF ← extension_factor ▷ No. of AA(s) to extend at each cycle
generated_sequences← list()
final_sampler ← sampler ▷ Random, Greedy, Top-k, Top-p, Typical, or Mirostat
final_threshold← sampling_threshold ▷ Threshold for final sampling
while len(generated_sequences) < SN do

if initial_sequence then
seq ← initial_sequence

else
seq ← random(AA_residue)

end if
while seq_length < SL do

mutants← extend_seq_by_N(seq, EF) ▷ Extend seq with EF residues
scores← PLM(mutants)
seq ← final_sampler(scores, final_threshold)
seq_length← len(seq)

end while
generated_sequences.append(seq)

end while
save_as_fasta(generated_sequences) ▷ Output FASTA file

12

Algorithm S3 Multi-mutant IRS Protein Generation with HPF or QFF strategy Pseudocode

Require: initial_sequence, num, cycles, output_path ▷ Main Inputs
Require: sampler, sampling_threshold ▷ Final Sampler Params
Require: multi_mutant, inter_threshold ▷ Additional for multi-mutant
Require: use_fitness_oracle,model_path ▷ Only if using QFF
Require: PLM ▷ Protein Language Model (e.g., Tranception, RITA, Progen)
Require: fitness_oracle ▷ Separate fitness prediction oracle (e.g., ProteinBERT)
Ensure: num > 0 and cycles > 0 and multi_mutant ≥ 2
SN ← num_sequences ▷ Number of sequence(s) to generate
EC ← cycles ▷ Number of evolution cycle(s) per sequence
MM ← multi_mutant ▷ Number of multiple mutations to apply at each round
IST ← inter_threshold ▷ Threshold for intermediate sampling
final_sampler ← sampler ▷ Random, Greedy, Top-k, Top-p, Typical, or Mirostat
final_threshold← sampling_threshold ▷ Threshold for final sampling
generated_sequences← list()
if use_fitness_oracle then ▷ Using QFF intermediate sampling

intsampling ← load_model(model_path)
else ▷ Using HPF intermediate sampling

intsampling ← topk_sampler()
end if
while len(generated_sequences) < SN do

seq ← initial_sequence
while iteration < EC do

mutation_count← 0
while mutation_count < MM do

mutation_count += 1
if mutation_count = 1 then ▷ First Mutation

allmutants← generate_all_single_mutants(seq)
lastmutants← PLM(allmutants)

end if
if mutation_count > 1 and mutation_count < MM then ▷ Subsequent Mutation

allmutants← generate_extra_mutants(lastmutants)
extramutants← intsampling(allmutants, IST)
lastmutants← PLM(extramutants)

end if
if mutation_count = MM then ▷ Final Mutation

allmutants← generate_extra_mutants(lastmutants)
extramutants← intsampling(allmutants, IST)
scoredmutants← PLM(extramutants)
mutation← final_sampler(scoredmutants, final_threshold)

end if
end while
seq ← get_mutated_sequence(seq,mutation)

end while
generated_sequences.append(seq)

end while
save_as_fasta(generated_sequences) ▷ Output FASTA file

13

	Introduction
	Method
	Taxonomy for PLM sampling methods
	Single-Mutant Protein Generation
	Multiple-Mutant Protein Generation
	Holistic in silico evaluation framework for protein design
	Experiments
	Effects of broad sampling approaches
	Benefits of multiple-mutant strategies
	Effects of different sampling hyperparameters
	Conclusion and Future Directions
	Background and related work
	Sampling Language Models
	Protein Language Models

	Protein Design Approaches
	Autoregressive sampling (ARS) generation
	Iterative redesign sampling (IRS)
	Evaluation Metrics
	Glossary
	avGFP Protein
	Top-K Sampling
	Greedy Sampling
	Beam Search
	Top-p Sampling
	Mirostat Sampling
	Typical Sampling
	Monte Carlo Tree Search
	Fréchet distance
	EVmutation Initialization
	ProteinBERT fine-tuning
	Tables

	Algorithms

