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Abstract

Language models applied to protein sequence data have gained a lot of interest in
recent years, mainly due to their ability to capture complex patterns at the protein
sequence level. However, their understanding of why certain evolution-related
conservation patterns appear is limited. This work explores the potential of protein
language models to further incorporate intrinsic protein properties stemming from
protein structures, surfaces, and interfaces. The results indicate that this multi-task
pretraining allows the PLM to learn more meaningful representations by leveraging
information obtained from different protein views. We evaluate and show improve-
ments in performance on various downstream tasks, such as enzyme classification,
remote homology detection, and protein engineering datasets. Trained models and
code are available at github.com/Ieremie/general-protein-embeddings.

1 Introduction

With the constant growth of protein sequence data, sequence databases such as Uniref (Suzek et al.,
2007) have grown to more than 200 million protein sequences. These massive datasets attracted the
application of methods borrowed from Natural Language Processing to learn evolutionary information
in an unsupervised way. However, protein language models are limited in their capacity to understand
why specific parts of the protein sequence space exhibit higher levels of conservation compared to
others. That being said, it is important to consider that conservation patterns observed in protein
sequences can be explained by protein characteristics stemming from other views of the protein such
as their structures, surfaces, and interactions. For instance, residues co-evolve at distant positions
in the sequence to maintain the protein structure and function (Marks et al., 2012; Morcos et al.,
2011), residues that are buried and more tightly packed evolve slower compared to residues that are
loosely packed or residing at the molecular surface (Conant and Stadler, 2009; Franzosa and Xia,
2009; Bustamante et al., 2000; Bloom et al., 2006) and residues that are involved in protein-protein
interfaces have a higher degree of conservation (Yang et al., 2012; Mintseris and Weng, 2005).

We explore the ability of a language model to incorporate further protein knowledge by constraining
the generated embeddings to be good predictors of intrinsic protein properties. We hypothesize that
a PLM that is trained simultaneously on multiple self-supervising tasks could learn conservation
patterns that are not immediately observable at the sequence level. Therefore, embeddings learned by
the PLM would be more general and fit for a wider variety of downstream tasks. To our knowledge,
our work is the first to directly pretrain a PLM with structure, surface, and interface information.
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2 Related work

Sequence-based methods. Initial work (Alley et al., 2019; Rao et al., 2019; Bepler and Berger, 2019)
trained small LSTM-based language models on these datasets and showed how learned embeddings
can compete on downstream tasks with classic protein profiles. The inevitable scaling to more weights
(≈ 650M ) and the introduction of attention-based architectures (Rives et al., 2021; Elnaggar et al.,
2021; Rao et al., 2021) introduced new state-of-the-art models and various protein prediction tasks
such as secondary structure prediction and contact map prediction. Current models (Lin et al., 2022;
Chowdhury et al., 2022) have billions of weights and allow the prediction of protein structures using
nothing but the protein sequence as input.

Surface-based methods. Gainza et al. (2020) has introduced a unique approach employing geodesic
convolutions on molecular surfaces to capture interaction fingerprints. In contrast, other techniques,
as demonstrated by Somnath et al. (2021), learn from protein surfaces by incorporating surface
meshes into the protein structure graph.

Structure-base methods. Approaches to learning from protein structures usually employ 3D CNNSs
(Townshend et al., 2019), graph neural networks (Somnath et al., 2021; Hermosilla et al., 2020; Jing
et al., 2020) and continuous CNNs (Fan et al., 2022). Of particular interest are methods that perform
self-supervised learning using information stemming from protein structures (Zhang et al., 2022;
Wang et al., 2022).

3 Learning general protein embeddings

3.1 Protein Language Model

We employ a three-layer Bidirectional LSTM architecture similar to previous work (Bepler and
Berger, 2021; Alley et al., 2019) with skip connections from each layer as a model for pretraining.

 

Protein Language Model

K ...

...

M A D A

K ...M A D R A

Z

ZT

Shape Index

Solvent accessibility

Residue depth...

...

...

...

Structure task Surface taskSequence task

x x

G

 

 

Interface task

Uniref90 SCOPe SCOPe

Masif

...

Interface label

...

Delta SASA

 

Figure 1: The training overview of the protein language model. The PLM is trained to recover
masked residues as in the classical setting. This model is then further pretrained using information
stemming from protein structures, surfaces, and protein interactions. The datasets used for pretraining
are highlighted in blue.

Let X = [x1,x2, . . . ,xL] be the input protein sequence, where xi is the one-hot encoded vector
representation of the i-th amino acid in the sequence. First, the input sequence X is passed through a
learned embedding layer, which maps each one-hot encoded vector xi to a continuous embedding
space ei. Next, the embedded sequence E is fed into the BiLSTM layers. To incorporate skip
connections, the LSTM hidden states from each layer in the architecture are concatenated, resulting
in the final hidden representation zi at each position. The concatenation operation can be represented
as follows: zi = [ei;h

(1)
i ;h

(2)
i ;h

(3)
i ], where (; ) denotes the concatenation of vectors and h

(l)
i is the

hidden representation at each layer.

2



The PLM is trained using masked token prediction on Uniref90 (Suzek et al., 2007) (July 2018).
During training, we mask residues with a 10% probability. Instead of using a designated mask
token, we replace the original residues with other amino acids drawn from a background distribution
calculated using Uniref90. The model is trained to recover these residues using the cross-entropy
loss: Lmasked = − 1

N

∑N
i=1

∑21
j=1 yij log(pij). In comparison to state-of-the-art protein language

models like those described in (Lin et al., 2022), which have billions of parameters, our model is
relatively lightweight with only 14M parameters. This allows us to train multiple models and analyse
the importance of each component.

3.2 Structure head

For the structural task, we aim to predict the inter-residue contact map of a protein sequence.
To achieve this, we utilize a learned weight matrix W and a bias term b. Given the amino acid
embeddings Z = [z1, z2, . . . , zL], where zi represents the embedding vector of the i-th amino acid
in the sequence, we compute the inter-residue contact map as ZWZT + b. This operation results in
a matrix of size L× L, where L denotes the length of the protein sequence.

Each entry in the resulting matrix represents the probability that the residues are no further apart than
8 Å in the 3D protein structure. The weights are updated using the cross-entropy loss, which we
name Lcmap.

3.3 Surface head

To incorporate surface information into our model, we introduce an additional component that predicts
the surface properties of the residues. This component consists of three linear layers, which are used
to predict each residue’s solvent-accessible surface area (SASA), depth, and shape index. To capture
the combined effect of these surface predictions, we introduce an additive surface loss, denoted as
Lsurf which uses the MSE loss for the distance and shape prediction and MAE loss for the SASA
prediction.

SASA values are computed using the Shake-Rupley algorithm (Shrake and Rupley, 1973) and it
represents the atomic surface in contact with a probe of radius R that rolls on the outside of the
molecule by maintaining contact with the atom’s van der Walls spheres. For each protein domain, we
generate its surface using a similar approach to previous work (Gainza et al., 2020). We then compute
the residue depth by averaging the distance of each residue’s atoms to the closest vertex on the protein
mesh. Let R be the residue, and V the set of all vertexes on the protein surface. The residue depth
can be expressed as Rd = 1

n

∑n
j=1 minv∈V ||aj ,v|| where ||.|| represents the Euclidean distance

between two points. Residue depth offers a descriptive view of the degree of residue burial. It
provides complementary information to SASA, especially for residues with similar SASA values that
have different degrees of burial (Chakravarty and Varadarajan, 1999).

To account for the shape of the protein surface at different locations, we compute the Shape index
(Koenderink and Van Doorn, 1992) for each vertex in the protein mesh. This is of interest due to the
importance of protein clefts in determining enzyme active sites (Laskowski et al., 1996). For each
amino acid, we assign a shape index value based on the average of the 3 closest vertices to the residue
(see Appendix A).

The pretraining dataset for both the surface and structure tasks is SCOPe v2.06 (Chandonia et al.,
2019). We use the training split provided by Bepler and Berger (2021), with the training dataset
having 22408 protein structures.

3.4 Interface head

For the interface task, we use the interface prediction dataset curated by Gainza et al. (2020) which
contains 3003 protein structures composed of one or multiple chains. The protein complex surface
generation step is different from Gainza et al. (2020) to remove interface overestimation (see Appendix
B). We compute the interface label at the sequence level based on the solvent accessible surface area
lost upon complex formation with the interacting partner. A residue is considered part of the interface
if there is at least a 4% change and 5Å

2
difference in SASA upon complex formation(Porollo and

Meller, 2007). We use three linear layers to predict if a residue is part of the interface, the delta
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SASA, and the distance to the closest part of the surface labelled as interface. We include the last
predictor to account for residues that are not part of the interface but could influence the interface
structure.

3.5 Training details

Prediction heads for the second stage of pretraining are kept as simple as possible. We only use
linear layers with a single hidden layer to arrive at the prediction of interest and train the model
end-to-end. The intuition behind this design is to allow the modelling of structure, surface, and
interface information to be handled by the protein language model rather than a complex architecture
trained on top of the embeddings.

We followed a two-stage pretraining approach, where we first trained the language model and then
further pre-trained with additional tasks. This is to ensure that the sequence information learned is
not lost upon changing the training context. For the initial language model training (referred to as
ProtEMBLM), we employed the masked loss over a total of 240k training steps with an accumulative
batch size of 1024 protein sequences. To accommodate memory constraints, protein sequences were
randomly cropped to a maximum length of 500. This stage of pretraining took approximately 6 days,
with an equivalent of ≈ 3.1 passes through Uniref90.

In the second stage of pretraining, we introduced additional tasks to the language model and conducted
training with a multitask objective. For the contact map prediction task (ProtEMBLM+CMAP), we
extended training for an additional 240k steps. To guide the training process, we employed weight
parameters: λmasked = 0.4 and λcmap = 0.6. The batch size for the language task was reduced to
256, while a batch size of 64 was utilized for the contact map prediction. Similarly, for the language
and surface task (ProtEMB+SURF), we assigned weights λmasked = 0.4 and λsurf = 0.6. The surface
weight was evenly distributed among the various surface losses. In the case of the interface task,
we carried out pretraining of the language model for 150k steps, with weight values λmasked = 0.4
and λiface = 0.6. The iface weight was distributed as 0.4 towards the iface label prediction and 0.2
towards distance and delta SASA prediction.

Finally, to combine the information from all tasks we further pretrain two language models,
ProtEMB+CMAP+SURF and ProtEMB+CMAP+SURF+IFACE with λmasked = 0.2 and the remaining weight
being equally distributed among tasks.

4 Evaluation and results

We evaluate the ability of PLM to learn meaningful protein representations on a set of downstream
tasks: enzyme classification (Hermosilla et al., 2020), remote homology detection (Rao et al., 2019)
and three protein engineering datasets Dallago et al. (2021). For all the downstream tasks we fine-tune
the language model along with an attention layer combined with an MLP that has a single hidden
layer (Appendix E).

In Table 1, the base model trained only on the language task obtains performances that are comparable
to much larger models, such as ESM-1b (45x larger). The performance difference becomes more
apparent in the Superfamily and Family classification where large language models can generalise
better. However, when contact map prediction is introduced as an additional task during pretraining,
the homology task shows a significant improvement. Similarly, the PLM further trained with surface
information improves performance on the Enzyme task, surpassing HoloProt(Somnath et al., 2021)
which uses surface information as input. When both contact map prediction and surface tasks are
introduced during the pretraining stage, the PLM shows better improvements across downstream
tasks. This suggests that the model retains and combines information learned from protein properties
during pretraining. Conversely, constraining the learned embeddings to be good predictors of protein
interface regions shows a degradation in performance. This could be attributed to the relatively small
dataset which leads to overfitting (see Appendix D). While pretraining a PLM with further data
coming from other protein properties improves performance, it does not match the results obtained
by models working directly on 3D structures. The incorporation of more structural information, such
as torsion angles and residue distograms (Zhang et al., 2022), could change this performance gap.
The performance enhancement is not solely a result of extended training on the language task, as
detailed in Appendix F.
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Table 1: PLM evaluation on homology detection and enzyme reaction classification. Results marked
with (*) are from (Hermosilla et al., 2020) and (†) from (Zhang et al., 2022). Standard deviations
stem from 4 different runs for REACT and 6 for FOLD using slightly different learning rates. We
report the percentage classification accuracy.

Architecture FOLD% REACT %

Fold Super. Fam.

Sequence-based
Rao et al. (2019)* LSTM (43 M) 26.0 43.0 92.0 79.9

Rives et al. (2021)† Transf. (650 M) 26.8 60.1 97.8 83.1
ProtEMBLM LSTM (14 M) 26.3 ± 0.96 43.3 ± 0.41 90.7 ± 0.44 81.8 ± 0.39

ProtEMB+CMAP - 32.7 ± 1.07 51.6 ± 0.47 94.8 ± 0.35 82.9 ± 1.19
ProtEMB+SURF - 29.3 ± 1.00 47.5 ± 0.85 92.9 ± 0.55 83.3 ± 1.48
ProtEMB+IFACE - 25.2 ± 0.66 40.0 ± 1.03 84.1 ± 2.90 79.2 ± 1.46

ProtEMB+CMAP+SURF - 33.4 ± 0.69 53.4 ± 0.90 95.7 ± 0.66 83.3 ± 1.23
ProtEMB+CMAP+SURF+IFACE - 33.0 ± 0.53 49.7 ± 0.74 93.1 ± 0.55 81.0 ± 1.15

Structure-based
Hermosilla et al. (2020) CNN (9.8 M) 45.0 69.7 98.9 87.2
Somnath et al. (2021) GNN (0.6 M) - - - 78.9

Zhang et al. (2022) GNN 54.1 80.5 99.9 87.5

Table 2: Performance (Spearman correlation) on the FLIP datasets. Uncertainties are standard devia-
tions over 3 seeds. For the Meltome dataset, we only train a single model due to the computational
cost.

Model AAV

1-vs-many 2-vs-many 7-vs-many low-vs-high

CARP-640M 0.73 ± 0.05 0.81 ± 0.03 0.77± 0.03 0.19 ± 0.008
PromptPROTEIN-640M 0.55 - - -
ProtEMBLM 0.41 ± 0.08 0.48 ± 0 0.55 ± 0.06 0.20 ± 0.04
ProtEMB+CMAP 0.44 ± 0.05 0.45 ± 0 0.62 ± 0.03 0.23 ± 0.01
ProtEMB+SURF 0.48 ± 0.01 0.54 ± 0.09 0.58 ± 0.02 0.20 ± 0.02
ProtEMB+IFACE 0.47 ± 0.02 0.49 ± 0.05 0.61 ± 0.03 0.19 ± 0.07
ProtEMB+CMAP+SURF 0.41 ± 0.06 0.48 ± 0.05 0.58 ± 0.06 0.19 ± 0.02
ProtEMB+CMAP+SURF+IFACE 0.48 ± 0.02 0.46 ± 0.05 0.62 ± 0.02 0.23 ± 0.02

GB1 Meltome

2-vs-many 3-vs-many low-vs-high mixed-split

CARP-640M 0.73 ± 0.03 0.87 ± 0 0.43 ± 0.04 0.53
PromptPROTEIN-640M 0.55 0.78 - 0.69
ProtEMBLM 0.64 ± 0.03 0.82 ± 0 0.39 ± 0.09 0.28
ProtEMB+CMAP 0.67 ± 0.02 0.81 ± 0 0.45 ± 0.02 0.27
ProtEMB+SURF 0.63 ± 0.03 0.82 ± 0 0.50 ± 0.05 0.28
ProtEMB+IFACE 0.61 ± 0.07 0.82 ± 0 0.41 ± 0.03 0.25
ProtEMB+CMAP+SURF 0.65 ± 0.01 0.82 ± 0 0.40 ± 0.09 0.29
ProtEMB+CMAP+SURF+IFACE 0.65 ± 0.03 0.82 ± 0 0.44 ± 0.05 0.29

The second pretraining stage also yields performance improvements on the protein engineering
datasets (Table 2). PLMs pretrained with structural and surface information exhibit similar perfor-
mances with larger models (Yang et al., 2022). Additionally, these pretrained models show better
results across various splits when compared to the base PLM. They perform particularly well on
splits containing sequences with low fitness in the training set and high fitness sequences in the test
set (low-vs-high).

By integrating information from various protein properties, the protein language model enhances its
understanding of the connections between protein sequences, structures, and interactions. Through
empirical evidence, we demonstrate improvements in diverse downstream tasks ranging from un-
derstanding enzyme activity to mutational landscapes. The PLM is not confined to capturing only
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sequence conservation patterns; it can also deduce the factors that induce conservation. Moreover,
these models facilitate the generation of more general embeddings, effectively distinguishing between
protein structural classes and families (refer to Appendix C).

5 Conclusion

PLMs trained on large datasets of protein sequences learn evolution patterns that are visible at the
sequence level. However, having a deep understanding of why certain conservation patterns appear
requires looking at protein structures and their interactions. Here, we probe the idea of further
pretraining a language model to improve performance on a set of downstream tasks. While models
that exclusively require protein sequences as input might be preferable in some cases, the release
of the AlphaFold database (Varadi et al., 2022) and the ability to generate protein structures on the
fly allows performing unsupervised learning on protein structures. Rather than chasing models with
billions of parameters, a more carefully designed pretraining regime could generate more meaningful
representations and reduce compute resources.
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A Shape index smoothing

The shape index is a measure that describes the surface shape of the local curvature. Highly concave
regions have values of −1 while highly convex regions have values of +1. This measurement allows
the evaluation of the local shape independently of the local size (Koenderink and Van Doorn, 1992).
We choose to smooth the shape index, as the surface exposed by each amino acid contains more than
one vertex. In Figure 2, it can be observed that the smoothing effect better describes the overall shape
of each amino acid compared to focusing on the closest vertex.

(a) Shape Index (b) Shape index (avg. 3) (c) Residue type

Figure 2: Protein domain with the SCOPe id D3GKZA1 represented as a molecular surface. In Figure
(a), the shape index of each vertex is drawn as a heat value going from red to blue in the range [−1, 1].
(b) shows the same index, but averaged over with the closest 2 neighbours. In Figure (C) the protein
surface is coloured based on the amino acid type. The averaging of the shape index maintains the
curvature information while better capturing the overall curvature displayed by each amino acid
residue.

B Surface generation for protein complexes

A number of 5902 protein interactions are taken from the dataset gathered by (Gainza et al., 2020).
This dataset contains interactions from multiple databases (PDBBind (Wang et al., 2005), SAbDab
(Dunbar et al., 2014), ZDock(Pierce et al., 2014)) where only the interacting protein chains with
high shape complementary are kept. We made a slight change in the way we define the interaction
interface. In the source code provided by Gainza et al. (2020), the interface is considered the region
on the molecular surface of the protein chains which is not visible upon the analysis of the complex
molecular surface. However, they consider the protein complex as all the protein chains appearing in
the structure file taken from the Protein Data Bank. The problem arising is that in the case we are
interested in the interactions between two protein chains, a third chain could ’cover up’ a significant
portion of the molecular surface which would incorrectly be labeled as an interface. It can also
be the case where contacting chains found in asymmetric crystal units (which are not part of the
biological unit) add further noise. Interacting regions with other protein chains from the biological
unit might indeed be valid interfaces, however, those are not the interactions of interest. In the
provided Supplementary Information it is suggested that interactions with high-shape complementary
are chosen to remove protein chain interactions formed in the crystal unit, therefore it is highly
unlikely that the surface was deliberately generated this way. We compare the interface size for all
protein chains (see Figure 3) and we find that the surfaces provided by Gainza et al. (2020) tend to
have a larger interface surface area, with many outliers (all surface is considered an interface). These
interactions where the interface is larger than 75% of the protein chain’s surface or smaller than 30
vertexes were removed during their training and testing regime. We found that from the data set of
protein interactions, 3415 contained extra chains in the PDB file. Out of the 5902 protein interactions,
3003 are selected for protein interface prediction.

C Analysing protein embeddings

We generate embeddings for the SCOPe pretraining dataset using the base PLM model and the model
is further pretrained using information stemming from sequence, structure, and surface. In 4, the 2D
projection of these embeddings labelled by the structural class is shown.
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Figure 3: The comparison between protein interface sizes as generated by Gainza et al. (2020) and
our implementation. Protein interfaces are overestimated due to the inclusion of additional protein
chains within the protein complex which are not the protein interaction of interest. Note the high
number of protein interactions where the interface is the entire molecular surface.
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Figure 4: Protein embeddings plots in two dimensions using t-SNE for the SCOPe training dataset.
On the left, the embeddings come from the protein language model trained purely on the sequence
task. On the right, the embeddings are generated using the model trained on sequence, structure, and
surface. The top row shows the separation of SCOPe structural classes, and the bottom row highlights
the separation of the top 20 most frequent protein families.
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D Interface prediction performance

To understand the loss in performance on the downstream tasks when the PLM is further trained with
interface information, we benchmark the model on a dataset of 53 transient interactions (Gainza et al.,
2020). In Figure 5, it can be observed that the language model trained with interface information
(LM+IFACE) does not achieve high performance. Using the solvent-accessible surface area predictor
of a language model trained with surface information (LM+SURF) and no interface data, a similar
performance is achieved. This suggests that the information captured from the interaction dataset
during the pretraining phase is low and it leads the PLM to overfit. This could explain the loss in
performance displayed by the PLM trained with interface data on the downstream tasks.
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Figure 5: Median AUC values for interface prediction on a benchmark of 53 protein interfaces coming
from transient protein interactions. We use the distance to interface predictor to compute interface
scores as it offers the best performance compared to the ∆SASA and IFACE predictors.

E Fine tuning on downstream tasks

E.1 Enzyme classification (REACT)

During the fine-tuning phase of the enzyme task, we employ a batch size of 32 protein sequences
and utilize an MLP with a single hidden layer size of 1024. We apply a dropout value of 0.7. To
ensure the PLM weights are not wrongly updated, we freeze the PLM weights for the initial 15
epochs. We select the best-performing model based on validation accuracy, with a patience threshold
of 30 epochs. We fine-tune the PLM 4 different times, each time using distinct learning rate pairs
(Head LR|Encoder LR): 1e−4|5e−5, 1e−4|3ee−5, 1e−4|5e−5, and 2e−4|4e−5. In case there is no
improvement in validation accuracy for 3 consecutive epochs, the learning rates are scaled down by a
factor of 0.6.

A number of data samples are removed from the dataset of Hermosilla et al. (2020) to ensure no
information leakage between splits: 4y84_X, 5l5e_X, 6huu_J, 4qby_J, 4ya9_J, 5mp9_k, 5mpa_k,
3von_E, 3von_b, 3von_p, 3von_i, 6hed_4, 6hec_5, 6he8_4, 6he9_3, 6he7_6, 6he8_k, 6hed_h, 6hea_i,
6hea_h, 6he9_i, 3mg8_I, 4qlq_W, 6huv_I, 5fga_W, 4qby_W, 5mpa_j, 5mp9_j, 5lf1_b, 5lf1_B, 5gjq_j,
1iru_R, 5gjq_k, 5lf0_W, 5m32_I, 5le5_I, 5lf1_I, 5lf3_I, 5gjq_q.

During training, we augment the protein sequences with a 30% probability using the HMM match
and insertion distributions obtained by running HMMSCAN Finn et al. (2011) against the Pfam
HMM database Mistry et al. (2021).

E.2 Homology prediction (FOLD)

For the homology prediction task we fine-tune the PLM using a batch size of 100 and learning
rates (Head LR|Encoder LR) 3.5e−4|4e−5, 2.5e−4|4e−5, 2e−4|4e−5, 1.9e−4|5e−5, 1e−4|4e−5,
3e−4|4e−5. The remaining parameters are similar to the Enzyme task apart from the augmentation
probability which we set to 20%.

E.3 FLIP AAV, GB1 and meltome

For all the downstream tasks, we use an MLP with a single hidden layer of size 1024 and a dropout
value of 0.25. No augmentation is applied during training, and we select the best model based on the
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validation loss. For the AAV tasks, we use a learning rate combination (Head LR|Encoder LR) of
0.001|0.002, a patience of 25 epochs, a learning rate scheduler patience of 15 epochs and a batch size
of 256. For the GB1 tasks, we use the same hyperparameters, but we extend the early stop patience
to 40 epochs. Lastly, for the Meltome prediction task, we use a learning rate combination (Head
LR|Encoder LR) of 0.0004|0.0002, scheduler patience of 10 epochs, early stop patience of 20 epochs,
and a batch size of 16. We carry out a total of 6 different random runs, with 3 of them incorporating
a random validation dataset( 30% of the data instead of the predefined splits). We select the best
results from either the runs with the random validation split or the predefined one. The learning rate
is decayed using a factor of 0.6.

F Train base PLM for longer

We are particularly interested in discerning whether the enhancement in downstream tasks stems
from the inclusion of extra tasks or the prolonged training on the language task. Models trained on
surface and structure tasks adopt a multi-task objective and undergo an additional 240k training steps
with a batch size of 256 for the language task, equivalent to extending the base PLM pretraining by
60k steps with a batch size of 1024. Therefore, the base PLM trained for 300k steps could be directly
compared with the PLM trained on additional tasks. Due to a spike in the loss at that training step, we
use the model trained for 380k steps for comparison (the first improvement on the validation dataset
after the spike).

Table 3 indicates that while there are benefits from extended training, the improvements are marginal.
In comparison to models trained on additional tasks (see Table 1), the PLM trained solely on
the sequence task for a longer duration does not surpass them. This suggests that the observed
improvements in downstream tasks are not solely attributed to prolonged training on the language
task.

Table 3: Comparison of PLMs trained only on the language task on downstream tasks.
Num. steps FOLD% REACT %

Fold Super. Fam.

ProtEMBLM 240k 26.3 ± 0.96 43.3 ± 0.41 90.7 ± 0.44 81.8 ± 0.39
ProtEMBLM 380k 26.6 ± 0.51 44.8 ± 0.69 90.6 ± 0.49 82.1 ± 1.90
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