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Abstract

Without knowledge of specific pockets, generating ligands based on the global
structure of a protein target plays a crucial role in drug discovery as it helps
reduce the search space for potential drug-like candidates in the pipeline. However,
contemporary methods require optimizing tailored networks for each protein,
which is arduous and costly. To address this issue, we introduce TargetVAE, a
target-aware variational auto-encoder that generates ligands with high binding
affinities to arbitrary protein targets, guided by a novel prior network that learns
from entire protein structures. We showcase the superiority of our approach by
conducting extensive experiments and evaluations, including the assessment of
generative model quality, ligand generation for unseen targets, docking score
computation, and binding affinity prediction. Empirical results demonstrate the
promising performance of our proposed approach. Our source code in PyTorch is
publicly available at https://github.com/HySonLab/Ligand_Generation.

1 Introduction

Drug discovery is a complex and expensive process that involves multiple stages and often takes
years of development, with costs running into billions of dollars [15]. The first stage is to design
novel drug-like compounds that have high binding affinities to protein targets. This process consists
of two sub-tasks: searching for candidates and measuring drug-target affinities (DTA). Searching
for potential candidates in a huge database of roughly 1033 chemically valid molecules is a daunting
task as current methods often rely on virtual screenings, professional software, and expert evaluation
[40, 3]. Besides, drug-target affinities (DTA) are critical measurements for identifying potential
candidates, as well as avoiding those that are inefficient for clinical trials. The most reliable technique
for predicting DTA involves atomistic molecular dynamics simulations. However, these methods
are computationally expensive and time-consuming, making them infeasible for large-scale sets of
protein-ligand complexes. Our ultimate objective is to accelerate and automate these two sub-tasks in
the first stage of the drug development process, using computational methods and machine-learning
techniques.

To effectively design probable drug-like candidates, deep generative models [46, 17, 18, 25, 36,
18, 7, 17, 26, 25] have been proposed as a potential approach to reduce the amount of work for
wet-lab experiments [11, 3, 40]. These methods demonstrate remarkable results in the unconditional
generation or optimization for simple molecular properties (e.g., QED, SA, etc.). However, when
enhancing binding affinity or other computationally expensive molecular properties, these generative
models are prohibitively slow. They need to be trained in reinforcement learning frameworks where
the generated molecular graph is modified based on the reward. It is worth noting that this reward
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function is determined by calling a property network that estimates the binding affinities. Albeit
effective and powerful, these approaches require that specific property networks are trained for each
protein target, which is not trivial due to the vast amount of (un)-known proteins [1, 3]. Furthermore,
binding scores (labels) for supervision training are not widely available, and computing them via
software like Autodock or Vina is time-consuming.

Contributions In summary, our contributions are three-fold as follows:

• We build a conditional VAE model that can generate chemically valid, drug-like molecules
with high binding scores to an arbitrarily given protein structure. Apart from other methods,
ours can directly condition the entire structure of any protein target and design multiple
candidates that can bind to it, without requiring the training of a specific property network
for each target.

• To diversify the generated results, we adapt previous works in computer vision domains.
Specifically, we aim at transferring weights of a pre-trained unconditional VAE, which is
trained on a large dataset of drug-like molecules, to a conditional VAE which is trained on a
small, well-aligned dataset of protein-ligand pairs, allowing us to generate diverse sets of
molecules while keeping relevant to the reference targets.

2 Method

2.1 Problem Setup

Given a well-aligned dataset D of protein-ligand pairs, our objective is to predict the binding affinity
and generate novel drug-like ligands that have the potential to bind to a conditioning protein structure.
We cast the former as a prediction task based on geometric and relational reasoning on protein and
ligand structures, whereas the latter is regarded as a protein-structure conditioned ligand generation.
Let (l, p, s) ∈ D be a pair of protein-ligand where l and p denote the representations of ligands and
proteins, respectively, and s indicates the binding score between them. We define such representations
for proteins and ligands that best fit with the corresponding objectives in the following sections.
Additionally, Figure 4 depicts the overview of our approaches in both tasks.

2.2 Target-aware Ligand Generation

Although there exist many machine-learning approaches that generate drug-like molecules, it is
challenging for graph-based or smiles-based methods to generate chemically valid ligands with high
probability. Meanwhile, SELFIES (SELF-referencIng Embedded Strings) [24] is a string-based
representation of molecules that is 100% robust to molecular validity. A ligand l can be defined as a
string of l = (l1, l2, ..., ln) in which li is a SELFIES token, which belongs to a predefined symbol
set S derived from the training dataset. We generate ligands l̂ = (l̂1, l̂2, ..., l̂n) by computing n
independent probability vectors y = (y1, y2, ..., yn), yi ∈ R|S|. Each new token l̂i is defined as
l̂i = Sj where j =argmax

0≤j<|S|
(yi).

Let ϕ, θ, and ψ denote the encoder, decoder, and prior network in a conditional VAE framework,
respectively. According to Figure 4b, in this work, ϕ : Rn×|S| → Rd and θ : Rd → Rn×|S| are
multiplayer perceptrons (MLPs), and ψ is the PMN described in Section A where the language
modeling part is excluded for computational efficiency. All the networks are jointly optimized based
on Equation 12. After training, given a protein structure p, a ligand l̂ is generated by sampling a latent
vector z ∼ N (µψ(p), σψ(p)), which is fed to the decoder θ to decode into a SELFIES representation.

Conditional Inference with Pretrained Unconditional VAE In addition to validity, the diversity of
generated sets of ligands is also an important criterion in drug discovery. While classical conditional
VAE trained on protein-ligand pairs can generate novel and valid molecules, the diversity and
uniqueness of these samples are relatively low due to the limited amount of available data. We address
this issue by adapting the work proposed in [13] from the computer vision domain to diversify the
latent variables. In this framework, the decoder θ of the generative model is independent with the
condition y as pθ,ψ(x, z|y) = pθ(x|z)pψ(z|y), allowing θ to re-use weights of the decoder θ∗ of
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an unconditional VAE as both have the identical architecture. We train the model to optimize the
objective as:

log pθ,ψ(x|y) ≥ Ofor ≜ Eqϕ [log pθ,ψ(x|z)]− KL[qϕ(z|x)||pψ(z|y)] (1)

Different from Eq 12, both qϕ and pθ in Eq 1 are not conditioned by the auxiliary covariate y. This
allows conditional VAEs to use weights of ϕ∗ and θ∗ of a pre-trained VAE, which is trained on a
diverse set of unconditional molecules, to make amortized inferences on a smaller aligned dataset of
protein-ligand pairs.

3 Experiments

3.1 Binding Affinity Prediction

3.1.1 Experimental Setup

We evaluate the capability of our models on two ligand-binding datasets, DAVIS and KIBA. Our
empirical results suggest that modeling long-range interactions on invariant features and leveraging
sequence information provide promising performance on the task of protein-ligand affinity prediction
which requires neural networks to reason on large regions of 3D structures of receptors. Both datasets
contain proteins and ligands:

• Davis [6] has 442 proteins and 68 ligands, making up 30,056 protein-ligand binding pairs,
and the binding scores are measured as KD constants.

• Kiba [38] has 229 proteins and 2,111 ligands, making up 118,254 protein-ligand binding
pairs, and binding affinities are measured by KIBA scores.

For fair comparisons, we follow the same train-test split settings in [30]. We use mean-squared errors
(MSE), concordance index (CI), and r2m to evaluate the performance. Baseline methods include
KronRLS, SimBoost, SimCNN-DTA, DeepDTA, WideDTA, AttentionDTA, MATT-DTI, GraphDTA,
FusionDTA, BiCompDTA, and their results are taken from [20].

3.1.2 Experimental Results

We conduct a five-fold validation (given in the dataset) to select the optimal weights for PMN.
According to Table 1, our method outperforms the baselines on the DAVIS dataset by a large margin
and achieves comparable performance to the best competitor on the KIBA dataset. Similar to PMN,
FusionDTA also augments the representations of proteins by adopting ESM-1b [32] Transformer
encoder for producing representation vectors of protein sequences. However, instead of leveraging
efficient Transformers like ours, the approach utilizes full-rank Transformers for learning on long
protein sequences, which requires excessive computational resources for training and fine-tuning.
This can explain the trade-off between performance and training efficiency between our method and
FusionDTA. On the other hand, while BiCompDTA demands carefully processed features to encode
protein sequences, our approach can learn this information directly from raw structures and sequences
in a data-driven manner.

3.2 Target-aware Drug Design

Dataset We utilize the dataset KIBA [38] for conditional molecule generation. KIBA contains 229
proteins and 2,111 ligands, and there are 118,254 protein-ligand pairs in total. For unconditional
pre-training, we train a VAE on the ZINC250K dataset, which contains about 250,000 drug-like
molecules. As both datasets provide SMILES as representations for the molecules, we convert them
to SELFIES representations. We filter out SMILES that can not be converted to SELFIES and build
a vocabulary of SELFIES blocks, which consists of 108 tokens. We split the dataset into 90 % of
proteins for training and 10% of targets for testing.

3.2.1 Experimental Results

Approximation of real distributions This experiment aims to explore the capabilities of condi-
tional VAE in generating real-world molecules given their corresponding targets. Figure ?? illustrates
the FCD scores of TargetVAE trained with objectives Ocond in Eq. 12 and Ofor in Eq. 1. For each
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Table 1: Experimental Results on DAVIS and KIBA dataset. Results are averaged over five runs.

Approach DAVIS KIBA

MSE ↓ CI ↑ r2m ↑ MSE ↓ CI ↑ r2m ↑
KronRLS [28] 0.379 0.871 0.407 0.411 0.782 0.342
SimBoost [14] 0.282 0.872 0.644 0.222 0.836 0.629
SimCNN-DTA [35] 0.319 0.852 0.595 0.274 0.821 0.573
DeepDTA [52] 0.261 0.878 0.63 0.194 0.863 0.673
WideDTA [30] 0.886 0.262 — 0.875 0.179 —
AttentionDTA [49] 0.216 0.893 0.677 0.155 0.882 0.755
MATT-DTI [48] 0.227 0.891 0.683 0.150 0.882 0.756
GraphDTA [41] 0.258 0.884 0.656 0.162 0.879 0.736
FusionDTA [47] 0.220 0.903 0.666 0.167 0.891 0.699
BiCompDTA [20] 0.237 0.904 0.696 0.167 0.891 0.757

PMN (ours) 0.202 0.906 0.739 0.153 0.874 0.767
std ± 0.007 ± 0.003 ± 0.011 ± 0.002 ± 0.003 ± 0.003

Target Ofor Ofor Ocond

Figure 1: 2D illustration of molecules generated by TargetVAE trained with two objectives Ofor and Ocond

target, lower FCD scores show that TargetVAE trained by Ofor approximate the distributions of
real-world molecules better than that trained by Ocond. We further explore this phenomenon by
visualizing the generated molecules and recognize that posterior collapse happens when TargetVAE is
trained by Ocond. According to Figure 5, samples generated by TargetVAE trained by Ocond collapse
to simple molecules, while the model trained by Ofor can generate diverse samples for each protein
target. Moreover, Table 2 shows the average scores of the top ten molecules in three properties (i.e.
QED, SA, and pLogP). In particular, TargetVAE trained by Ofor can generate molecules with high
QED (>90) and low SA (<2), which are uncommon in drug discovery [2]. In contrast, the model
trained by Ocond converges to molecules with high pLogP values, while possesing very low QED,
indicating that they are not drug-like molecules.

Zero-shot generation to arbitrary targets As shown in Table 3, TargetVAE can generate molecules
with higher binding affinities (lower KD, in nanomoles/liter) than prior state-of-the-art RL-based or
iterative methods like GCPN, MOLDQN, GraphDF, and MARS. We achieve comparable performance
with LIMO, another VAE-based approach. While effective, LIMO shares a similarity with RL-based
methods in that it requires training a specific property network for each protein target, resulting
in inefficiency and limitations when dealing with a large number of targets. Moreover, optimizing
molecules for high binding affinities may compromise other critical properties such as QED and
SA, leading to sub-optimal overall performance. To prove this fact, we select two molecules having
the highest QED scores and make comparisons with those produced by LIMO and GCPN in [9].
Table 4 demonstrates that while having the lowest KD, ligands generated by LIMO are not likely

Table 2: Comparison between Ocond and Ofor

Objective QED ↑ SA ↓ pLogP ↑
Ocond 0.118 2.48 9.57

Ofor 0.913 1.29 3.81
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Figure 2: 3D visualizations of how ligands bind to ERR1 (first row) and ACC1 (second row). 3D
conformations of generated molecules are calculated by the Obabel software [29].

drug-like molecules. In contrast, GCPN can generate drug-like molecules with QED up to 0.80, yet
the method fails at producing ligands with high binding affinities. TargetVAE, on the other hand,
offers the advantage of maintaining a balance among properties. Our method excels at generating
ligands that possess desirable drug-like qualities, and synthetic accessibility, while still exhibiting
reasonably favorable binding affinities. Finally, Figure 2 shows how the generated ligands bind to
their targets.

Table 3: Top-three generated molecules with high binding affinities (shown as KD ↓) for ESR1 and
ACAA1.

Method ESR1 ACAA1

1ST 2ND 3RD 1ST 2ND 3RD

GCPN [46] 6.4 6.6 8.5 75 83 84
MOLDQN [51] 373 588 1062 240 337 608
GraphDF [26] 25 47 51 370 520 590
MARS [45] 17 64 69 163 203 236
LIMO [9] 0.72 0.89 1.4 37 37 41

TargetVAE (ours) 0.55 2.7 5.1 87.3 165 177

Table 4: Trade-off between binding affinities and pharmaceutical properties (i.e. QED and SA).

Ligand ESR1 ACAA1

KD(↓) QED ↑ SA ↓ KD(↓) QED ↑ SA ↓
LIMO #1 4.6 0.43 4.8 28 0.57 5.5
LIMO #2 2.8 0.64 4.9 31 0.44 4.9

GCPN #1 810 0.43 4.2 8500 0.69 4.2
GCPN #2 2.7 ×104 0.80 3.7 8500 0.54 4.2

TargetVAE (ours) # 1 100 0.79 6.0 420 0.77 5.82
TargetVAE (ours) # 2 40.2 0.72 5.9 662 0.71 7.64

4 Conclusion

We present two novel techniques named TargetVAE and Protein Multimodal Network (PMN) ap-
proaches to addressing protein-ligand binding prediction and target-aware ligand generation. Our
proposed methods outperform other baselines in binding affinity prediction and can generate diverse
sets of ligands with high binding affinities to arbitrary targets. We expect this work can help accelerate
the process of drug discovery in the future.
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[39] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention
networks. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=rJXMpikCZ.

[40] G. M. Verkhivker, D. Bouzida, D. K. Gehlhaar, P. A. Rejto, S. Arthurs, A. B. Colson, S. T. Freer,
V. Larson, B. A. Luty, T. Marrone, et al. Binding energy landscapes of ligand-protein complexes
and molecular docking: Principles, methods, and validation experiments. In Combinatorial
Library Design and Evaluation, pages 177–216. CRC Press, 2001.

[41] T. Voitsitskyi, R. Stratiichuk, I. Koleiev, L. Popryho, Z. Ostrovsky, P. Henitsoi, I. Khropachov,
V. Vozniak, R. Zhytar, D. Nechepurenko, S. Yesylevskyy, A. Nafiiev, and S. Starosyla. 3dprotdta:
a deep learning model for drug-target affinity prediction based on residue-level protein graphs.
RSC Adv., 13:10261–10272, 2023. doi: 10.1039/D3RA00281K. URL http://dx.doi.org/
10.1039/D3RA00281K.

[42] Z. Wan, J. Zhang, D. Chen, and J. Liao. High-fidelity pluralistic image completion with
transformers. arXiv preprint arXiv:2103.14031, 2021.

[43] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma. Linformer: Self-attention with linear
complexity, 2020.

[44] L. N. Wasserstein et al. Markov processes over denumerable products of spaces describing
large systems of automata. Problems of Information Transmission, 5(3):47–52, 1969.

[45] Y. Xie, C. Shi, H. Zhou, Y. Yang, W. Zhang, Y. Yu, and L. Li. Mars: Markov molecular sampling
for multi-objective drug discovery. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=kHSu4ebxFXY.

[46] J. You, B. Liu, Z. Ying, V. Pande, and J. Leskovec. Graph convolutional policy network for goal-
directed molecular graph generation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/
paper_files/paper/2018/file/d60678e8f2ba9c540798ebbde31177e8-Paper.pdf.

[47] W. Yuan, G. Chen, and C. Y.-C. Chen. FusionDTA: attention-based feature polymerizer and
knowledge distillation for drug-target binding affinity prediction. Briefings in Bioinformatics,
23(1), 12 2021. ISSN 1477-4054. doi: 10.1093/bib/bbab506. URL https://doi.org/10.
1093/bib/bbab506. bbab506.

8

https://openreview.net/forum?id=B1gjs6EtDr
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
http://dx.doi.org/10.1039/D3RA00281K
http://dx.doi.org/10.1039/D3RA00281K
https://openreview.net/forum?id=kHSu4ebxFXY
https://proceedings.neurips.cc/paper_files/paper/2018/file/d60678e8f2ba9c540798ebbde31177e8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d60678e8f2ba9c540798ebbde31177e8-Paper.pdf
https://doi.org/10.1093/bib/bbab506
https://doi.org/10.1093/bib/bbab506


[48] Y. Zeng, X. Chen, Y. Luo, X. Li, and D. Peng. Deep drug-target binding affinity prediction with
multiple attention blocks. Briefings in Bioinformatics, 22(5), 04 2021. ISSN 1477-4054. doi:
10.1093/bib/bbab117. URL https://doi.org/10.1093/bib/bbab117. bbab117.

[49] Q. Zhao, F. Xiao, M. Yang, Y. Li, and J. Wang. Attentiondta: prediction of drug–target binding
affinity using attention model. In 2019 IEEE international conference on Bioinformatics and
Biomedicine (BIBM), pages 64–69. IEEE, 2019.

[50] C. Zheng, T.-J. Cham, and J. Cai. Pluralistic image completion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[51] Z. Zhou, S. Kearnes, L. Li, R. N. Zare, and P. Riley. Optimization of molecules via deep
reinforcement learning. Scientific reports, 9(1):1–10, 2019.

[52] H. Öztürk, A. Özgür, and E. Ozkirimli. DeepDTA: deep drug–target binding affinity prediction.
Bioinformatics, 34(17):i821–i829, 09 2018. ISSN 1367-4803. doi: 10.1093/bioinformatics/
bty593. URL https://doi.org/10.1093/bioinformatics/bty593.

9

https://doi.org/10.1093/bib/bbab117
https://doi.org/10.1093/bioinformatics/bty593


MTMTLHTKASGMALL

    

GVP-MPNN

.

.

.
Stack  scalar

features 

.

.

.

Protein Sequence

Em
bedding

FFN

Residue Graph

M
H

A

Add & N
orm

FFN

Add & N
orm

x L 

Language
Modeling

M
H

A

Add & N
orm

FFN

Add & N
orm

x L 

.

.

.

Transformers on
Invariant Features

Figure 3: Overview of our Protein Multimodal Network (PMN)
.

A Protein Multimodal Network (PMN)

Proteins are complex structures that consist of long chains of residues/amino acids. Each amino
acid is a molecule with 3D structures, and a combination of hundreds to thousands of residues
determines the unique 3D structure of a specific protein and its functions. It is worth noting that
while two residues are distant along the protein sequence, they could be close to each other in
three-dimensional space. This is our key observation to design a novel framework that can unify
different representations of proteins in an end-to-end learning manner. In the field of graph learning,
the conventional graph neural networks based on the message passing scheme [12] that propagates
and aggregates information of each node to and from its local neighborhoods have been shown to
be incapable of capturing the long-range interactions in a large-diameter graph [8]. Meanwhile, the
graph Transformers that considers all pairwise node interactions via the self-attention mechanism can
successfully capture the long-range dependencies [21, 4]. Since proteins can be seen as long-range
graphs, we utilize sequential and graph Transformers to encode both sequences and 3D graphs of
residues and combine them to create a unified representation for a large protein, making our model
operate on multi-modalities of proteins.

Long-range Modeling on 3D Structures According to Figure 3, there are three major components
in the 3D modeling part, including a local encoder, a GVP module, and a global Transformers encoder
(Trans). We use a message-passing network (MPNN) in which dense layers are replaced by GVP to
operate on invariant features [19]:

mij = GVPs
(
concat(h(i)v , h(j→i)

e )
)

(2)

h(i)v = LayerNorm
(
h(i)v +

1

|N (i)|
∑

j∈N (i)

mij

)
(3)

Where mij computed by a module of three GVP layers denotes the message propagated from node
j to i. Also, h(i)v and h(j→i)

e indicate the embeddings of node i and edge (j → i) and are tuples of
scalar and vector features as described in Section ??. The local encoder outputs a tuple of scalar and
vector features for each residue node, which are rotationally invariant and equivariant, respectively.
We utilize a GVP module to update the tuple hv = (s, V ) as (s′, V ′) = GVP

(
(s, V )

)
, and we take

the invariant scalar feature s′ ∈ Rd as the node embedding for successor modules. The resulting
tensor S ∈ RN×d, in which row i indicates a d-dimensional scalar feature si of node i, is passed to a
L-layer Transformers encoder:

Ql = Zl−1W
Q
l ,Kl = Zl−1W

K
l , Vl = Zl−1W

V
l (4)

Hl = MultiheadAttention(Ql,Kl, Vl) (5)
Zl = LayerNorm(Zl−1 + FFN(Hl)) (6)

Here, Z0 ≜ S and {WQ
l ,W

K
l ,W

V
l }Ll=1 ∈ Rd×dk , and Zg ≜ ZL denotes the final node embeddings

produced by the network. Notably, this global encoder allows residue nodes to attend to other nodes
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on a large protein graph, especially those that are distant from them (i.e. long-range modeling).
Finally, we aggregate node embeddings by a row-wise Aggregator ζ (e.g., mean, max, sum, etc.) to
produce an embedding for the protein structure pg = ζ(Zg) ∈ Rd.

Language Modeling on Protein Sequence A protein can be represented as a sequence s =
(s0, s1, ..., sn) in which si ∈ R20 is a one-hot vector indicating one in a total of 20 types of
residues. We utilize Transformer-based language models, where the layers are the same as in Eq.
(4, 5, 6), to compute the text representation of this protein sequence with the initial embeddings
Z0 = [z1, z2, ..., zn] ∈ Rn×d with zi ∈ Rd is calculated as zi = Embed(si) + pi.

Here, pi is the positional encoding feature added at each token i. Then, we define ps = ζ(Zs) ∈ Rd
as the global representation for the entire protein sequence. Notably, there may be hundreds to
thousands of residues in a long-chain protein, so we utilize efficient Transformers [34, 5, 23] to
reduce the computational complexity. At the end of the network, we calculate a unified representation
of the protein p =W2ReLU(W1(concat(pg, ps)) + b1) + b2.

A.1 Binding Affinity Prediction

PMN

FFN

MPNN

2D Molecular Graph
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Figure 4: Figure 4a is a framework for predicting binding affinities between proteins and ligands. Figure 4b is
TargetVAE with an encoder, decoder, and a prior network. The PMN prior network computes the conditions

from protein structures for constructing the latent space of the VAE framework, which learns to generate
SELFIES representations of molecules

Figure 4a illustrates our proposed approach to predicting the binding affinities between ligands l and
protein targets p. A drug-like ligand is represented by a 2D molecular graph Gl and a binary Morgan
Fingerprint vector vm ∈ R2,048[33], which embodies critical properties of chemical structures. G
and vm are passed to a message-passing neural network (MPNN) and feed-forward network (FFN).
Also, the given protein structure p is sent to the protein multimodal network (PMN) mentioned in
Section A:

zl1 = MPNN(Gl) (7)
zl2 =Wm2ReLU(Wm1vm + bm1) + bm2 (8)
zp = PMN(p) (9)

Then, zl1, zl2, and zp are combined to yield a unified input for the top FFN to output a scalar value ŷ
denoting the predicted binding affinity score:

ŷ =Wu2ReLU(Wu1concat(zl1, zl2, zp) + bu1) + bu2 (10)

B Additional Experiments

C Variational Auto-Encoders

A variational auto-encoder (VAE) is regarded as an auto-encoding variational Bayes model [22] that
comprises two components, including a generative model and an inference model (also known as
probabilistic encoder). The former uses a probabilistic decoder pθ(x|z) and a prior pψ(z) to define
a joint distribution pθ,ψ(x, z) = pθ(x|z)pψ(z) between latent variables z and data x; in addition,
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Kingma and Welling [22] let pψ(z) be isotropic Gaussian. An ideal generative model should learn
to maximize the log-likelihood log pθ,ψ(x) = log

∫
pθ,ψ(x, z)dz. However, this is intractable as

marginalization over the latent space is usually infeasible with realistic data. VAE alleviates this issue
by using an encoder qϕ(z|x) to approximate the true posterior distribution of the latent space and
maximize the evidence lower bound (ELBO) over each training sample x:

log pθ,ψ(x) ≥ Eqϕ [log pθ,ψ(x|z)]− KL[qϕ(z|x)||pψ(z)] (11)

In conditional VAE, the generative component is augmented by auxiliary covariates y. Given a
condition y, the generative model defines a conditional joint distribution of z and x as pθ,ψ(x, z|y) =
pθ(x|y, z)pψ(z|y). Similarly, the condition inputs are integrated into the encoder as qϕ(z|x, y).
These two extensions establish a prominent conditional VAE model [37, 50, 16, 42] that is trained to
maximize the conditional ELBO as:

log pθ,ψ(x|y) ≥ Ocond ≜ Eqϕ [log pθ,ψ(x|y, z)]− KL[qϕ(z|x, y)||pψ(z|y)] (12)

D Geometric Vector Perceptron

Jing et al. [19] propose Geometric Vector Perceptron (GVP) as a simple module for learning vector-
valued and scalar-valued functions over geometric vectors and scalars. The module transforms an
input tuple (s, V ) of scalar features s ∈ Rn and vector features V ∈ Rµ×3 into a new tuple (s′, V ′) ∈
Rm × Rν×3. According to Algorithm 1, GVP consists of two separate linear transformations Wm

and Wh that work on the scalar and vector features respectively, followed by nonlinearities σ and σ+.
Before being transformed, the scalar feature s is concatenated with the L2norm of the vector feature
V . This enables GVP to extract the rotation-invariant information from the input vector V . Moreover,
an additional transformation Wµ is used to control the dimensionality of the output vector V ′, making
it independent of the number of norms extracted. Albeit simple, GVP is an effective module that
guarantees desired properties of invariance/equivariance and expressiveness. The scalar and vector
outputs of GVP are invariant and equivariant respectively, with respect to an arbitrary composition R
of rotations and reflections in 3D Euclidean space. In other words, if GVP(s, V ) = (s′, V ′), then
GVP(s,R(V )) = (s′, R(V ′)).

Algorithm 1 Geometric Vector Perceptron

Input: Scalar and vector features (s, V ) ∈ Rn × Rµ×3

Output: Scalar and vector features (s′, V ′) ∈ Rm × Rν×3

h← max(µ, ν)
GVP:
Vh ←WhV ∈ Rh×3

Vµ ←WµVh ∈ Rµ×3

sh ← ||Vh||2 (row-wise) ∈ Rh
vµ ← ||Vµ||2 (row-wise ∈ Rµ
sh+n ← concat(sh, s) ∈ Rh+n
sm ←Wmsh+n + b ∈ Rm
s′ ← σ(sm) ∈ Rm
V ′ ← σ+(vµ)⊙ Vµ (row-wise multiplication) ∈ Rµ×3

return (s′, V ′)

E Implementation Details

Binding Affinity Prediction The proposed model was developed in PyTorch, and experiments
were carried out on an NVIDIA A100 GPU. For each experiment, we trained the model in 700
epochs. The models are optimized by Adam optimizer, with a learning rate of 0.0001, and a batch
size of 128. We use a two-layer graph attention network (GAT) [39] to learn the representations of
2D molecular graphs. For the protein multimodal network, we reuse a three-layer message passing
network proposed in [19], followed by two layers of Performer [5] to learn the global context of
protein structures. Hidden dimensions equal 256 in all layers. To learn sequential information, we
use four layers of Linformer [43] with 8 heads and embedding dimensions of 128.
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Ligand Generation We trained an unconditional VAE based on setup in [9] and reused the pre-
trained weights of its encoder and decoder as initialization for TargetVAE. For the prior network, we
use PMN with the same setting used in the binding affinity prediction task, but the language modeling
component is detached for efficiency purposes. The models were trained with the coefficient β = 0.1,
which controls the KL term in ELBO, in 30 epochs with a learning rate of 0.0001, and batch size
equals 256.

F Metrics

F.1 Binding Affinity Prediction

• Mean squared error (MSE):

MSE =
1

n

N∑
i=1

(yi − ŷi)2 (13)

where n is the number of samples, yi is the observed value, and ŷj is the predicted value.
• Concordance Index:

CI =
1

Z

∑
δi>δj

h(ŷi − ŷj) (14)

ŷi denotes the prediction for the larger affinity δi, ŷj is the predicted value for the smaller
affinity δj . Z is the normalization constant, and h(x) is defined as:

h(x) =


1 x > 0

0.5 x = 0

0 x < 0

(15)

• r2m Index:

r2m = r2 ×
(
1−

√
r2 − r20

)
(16)

where r2 and r20 are the squared correlation coefficients with and without intercepts respec-
tively.

F.2 Ligand Generation

Fréchet ChemNet Distance (FCD) [31] calculates the distance between the distribution of pw(·) of
real-world molecules and the distribution of pg(·) of molecules generated by the model. Numerical
representations of the molecules are obtained by the activations of the penultimate layer of ChemNet
[27]. For each distribution p, the mean and covariance are computed from the activations, which
correspond to the molecules in p, assuming that the hidden representations follow a multi-dimensional
Gaussian. Let (µw,Σw) and (µg,Σg) denote means and covariances of pw and pg respectively. Then,
the Fréchet Distance [10] (i.e. Wasserstein-2 distance [44]) is used to calculate the two Gaussians:

d2(pg, pw) = ||µg − µw||2 + Tr(Σg +Σw − 2(ΣgΣw)
1/2) (17)

Our paper reports the FCD as d2(pg, pw).

G Discussions

In this work, we seek an effective approach to generate ligands by conditioning the entire structures
of proteins, while also introducing a novel architecture for operating on these structures. For protein
modeling, using efficient transformers can reduce the time complexity to a linear scale with respect
to the number of residues. It is worthwhile to explore methods that can improve the modeling of
long-range interactions on large protein graphs while maintaining a subquadratic complexity. In the
context of target-aware ligand generation, although TargetVAE can perform on par with expensive
RL-based methods, there still exist gaps between theoretical results and practical applications in the
field of drug discovery. To bridge these gaps, wet lab experiments should be integrated into future
work, allowing better evaluations of the models and enhancing their practical applicability.
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H Visualization

UniProt: Q9P289 QED: 0.931 QED: 0.921 QED: 0.887

UniProt: Q9HBH9 QED: 0.901 QED: 0.890 QED: 0.920

UniProt: Q9Y6M4 QED: 0.905 QED: 0.858 QED: 0.851

UniProt: Q9UEE5 QED: 0.904 QED: 0.832 QED: 0.856

UniProt: Q9HC98 QED: 0.921 QED: 0.906 QED: 0.867

UniProt: Q9Y243 QED: 0.881 QED: 0.927 QED: 0.905

UniProt: Q9UGJ0 QED: 0.845 QED: 0.898 QED: 0.841

Figure 5: More visualizations of molecules generated by TargetVAE, given the corresponding targets.
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