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Abstract

The inverse protein folding challenge aims to identify specific amino acid se-
quences that fold into a predetermined protein structure. Despite advancements
like AlphaFold2, it remains a complex issue in protein engineering. This paper
introduces a novel architecture inspired by the self-attention mechanisms in Al-
phaFold2 and RoseTTAFold2, adapted for solving the inverse folding problem. Our
approach, contrasted with previous graph-based models, leverages attention-based
transformer architecture to efficiently integrate information across the entire protein.
We combine attention mechanisms, such as invariant point attention, with those
designed for sequence and pair representations, resulting in enhanced performance
in the inverse protein folding task. Furthermore, we introduce a novel feature
representation of protein structure used as an inductive bias in pair representation.
The proposed model is trained and tested using the OpenFold codebase on the
Protein Data Bank and the AlphaFold distillation dataset, achieving performance
improvements over ProteinMPNN regarding sequence recovery. The model’s vali-
dation on the CAMEO dataset, which comprises proteins released from October
16th, 2021 – January 16th, 2022, further substantiates its efficacy in enhanced
sequence recovery across short, single, and multiple chains.

1 Introduction

In the field of protein engineering, addressing the inverse protein folding problem stands as a notable
challenge. This problem concerns identifying a specific amino acid sequence that will fold to a
predetermined protein backbone structure. Recent groundbreaking solutions for the inverse problem
have emerged, with graph-based neural networks at the forefront, like ProteinMPNN and PiFold,
GVP-GNN, and alphadesign [5, 6, 9, 7]. These models have shown to be accurate while also being
small in model size. Nonetheless, there remains scope for enhancement in the performance of current
approaches.

The advances in computational structural biology have been greatly propelled by the development of
AlphaFold2[10], which made substantial progress in the protein structure prediction problem. The
exploration into the crucial features that underlie the success of AlphaFold2 and RosettaFold2[3]
has paved the way for numerous new applications, and we expect them to provide new insight into
potential solutions for the inverse protein folding problem.
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In this manuscript, we propose a new and flexible architecture inspired by the self-attention mech-
anisms in AlphaFold2 and RoseTTAFold2 but adapted to solving the inverse folding problem.
Attention-based architecture can efficiently integrate information from the entire protein, in contrast
to graph-based models such as ProteinMPNN, which are limited to integrating information from a
local neighborhood. However, despite success in structure prediction tasks, such architectures are not
designed and readily applicable to the inverse-folding problem. While GVP-transformer[8] incor-
porated transformer in its architecture, it employed a generic transformer architecture that doesn’t
fully leverage structure-based features. We achieve this by integrating invariant point attention for
structure representation with attention mechanisms designed for sequence and pair representations.
Additionally, we introduce a novel feature representation of a protein structure called pairwise relative
distance representation as a substitute for the commonly used Euclidean distance representation.
Our novel approach introduces all-to-all interactions across different representation types, aiming to
improve performance in the inverse protein folding problem.

2 Methods

We propose a new architecture, drawing inspiration from the attention mechanisms in both AlphaFold
and RoseTTAFold2. Our implementation is based on the OpenFold codebase[1], a faithful reimple-
mentation of AlphaFold2. This architecture outperforms ProteinMPNN in sequence recovery on our
holdout dataset. At the core of our architecture lies a versatile module that takes in and outputs single,
pair, and rigid representations simultaneously. Below, we describe these representations specifically
for the inverse protein folding problem:

• Single Representation: We initialize this as a trainable parameter and subsequently use it to
predict the amino acid sequence. Specifically, a multilayer perceptron is used to predict the
sequence identity from the single representation. Its programmable nature allows our model
to adapt or extend to various generative models, such as diffusion.

• Pair Representation: The pair representation is initialized as the positional embedding, based
on the residue index, of the protein. The process involves computing the relative distances
by determining the difference in residue indices between pairs of residues. This calculated
distance is then transformed into a one-hot vector clipped within a range of [-48 to 48]. A
linear projection is applied to this one hot vector to initialize the pair representation.

• Rigid Representation: Following the methodology employed by AlphaFold2, the Gram-
Schmidt process is applied to the backbone atom coordinates. In this context, each residue
is represented using N, Ca, C backbone atoms in the Gram-Schmidt process to construct a
rigid frame transformation. The transformation, denoted as T , is expressed as T = (R, t⃗),
where R is the rotation matrix and t⃗ is the translation vector which is also the Cα position
of the residue.

Since each module has the same inputs and outputs, we can stack these modules, allowing subsequent
module outputs to evolve into latent representations. Within each module, we subject all represen-
tations to attention-based updates and interchange between the three representations. The single
representation is updated by self-attention biased by the pair representation. This pair representation
plays a role in updating the single representation by biasing the dot product affinities matrix during
attention. The single representation reshaped to the form of pair representation (Nres, Nres, hidden)
through an outer sum influences the pair representation updates. The updated single and pair repre-
sentation influences the rigid representation through Invariant Point Attention(IPA), and the single
representation is also updated. Unlike AlphaFold2, we initialize the rigids to the protein backbone
coordinates instead of the block hole initialization for IPA. In addition, the rigids are used to update
pair representation instead of keeping pair representation unchanged.

RoseTTAFold2 showed that Triangular multiplicative update and biased axial attention are required
for the best performance to update the pair representation. The biased row and column-wise axial tied
attention has the added benefit of updating the pair representation while allowing information to flow
from the rigid representation to the pair as a bias. We utilize these attention mechanisms in our pair
representation update, and here, we present a novel method to create the pair bias that is invariant to
rotations and translations.
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Figure 1: Model Architecture A)The architecture of one unit of a block that takes single, rigid, and
pair representations as input and output. Arrows indicate the direction of flow for the representation,
and after an attention-based update, the previous representation is added, which is indicated by a ‘+’
B) Architecture of the entire model for sequence prediction

2.1 Pairwise Relative Distance Representation

To introduce information flow from the structure to pair presentation, we devised a new type of rota-
tional and translational invariant pairwise representation of the rigids, which we refer to as Pairwise
Relative Distance Representation. This representation achieved better performance compared to the
commonly used squared Euclidean distance representation in our experiments. This representation
introduces structure information from the updated rigid representation from IPA and backbone update
to pair representation updates.

Specifically, for a protein chain with N residues, each rigid frame Ti represents a transformation from
the local to a global reference. We calculate the relative distance coordinate for each pair of residues
i, j where i, j ∈ [0, N − 1]. We do this by taking the inverse transformation and applying it to all Cα

positions xj , and the following formulas explain this:

The inverse transformation is defined as

T−1 = (R, t⃗)−1 = (R−1,−R−1t⃗)

We apply the inverse transformation across all residues to create a (Nres, Nres, 3) matrix as:

dij = T−1
i ◦ xj

dij = R−1
i xj +−R−1

i t⃗i

dij is interpreted as a relative distance matrix invariant to rotations and translations. This representa-
tion for individual residue pairs preserves more information than Euclidean distance, as the relative
orientation information is also preserved. We apply a linear transformation on this pairwise relative
distance matrix to bias the pair representation through biased axial attention.

2.2 Dataset and Training

We train our model on Protein Data Bank[4] with a cutoff date of October 10th, 2021, and the
alphafold distillation dataset that is generously open-sourced by the openfold team[2]. The dataset
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was filtered to exclude low-resolution (greater than 9 Angstrom) protein chains and protein chains
where a single amino acid dominated the entire sequence (80% of the sequence). We also utilized
the stochastic filters and sampled chains inversely proportional to the cluster size that was used in
openfold. The protein chains were also sampled with 75% probability from the self-distillation dataset
and 25% from the PDB dataset. Each training sample consisted of one protein chain cropped to a
residue size of 256. The residue crop start position is sampled from start ∼ Uniform[1, 256− x+ 1],
where x ∼ Uniform[0, 256]. If the protein chain is smaller than 256, we keep it as it is and pad the
sequence until 256 residues. Our model comprises of eight trifold modules and eight shared blocks of
structure module. The final model has 25 million parameters with a weight file size of approximately
99.8MB. We train with a learning rate warmup with a maximum lr = 1e-3. The batch size during
training is set to 8, and we trained on four GPU A100 that took 36GB of memory per GPU for 125
epochs. The model was trained with the cross-entropy loss as the objective function and averaged
across all TriFold modules and structure module blocks. The loss function is defined below:

L(y, ŷ) = −
C∑
i=1

yi log(ŷi)

where y is the true label vector, ŷ is the predicted probability vector, C is the number of classes ( C =
21 for 20 AA and a missing token), and i is the index of the class.

3 Result

In this paper, the validation of our model is conducted on the CAMEO dataset[12], similarly utilized
for the validation dataset in openfold. Our CAMEO dataset comprises of proteins with a maximum
sequence length of 700, released from October 16, 2021 – January 16, 2022, culminating in 183
samples. Within this dataset, 55 are single-chain proteins. Among these, 7 have fewer than 100 amino
acids and are classified as short. Additionally, 121 samples possess multiple chains. In calculating
statistics such as sequence recovery, residues without positional value in the file are omitted, and
sequence recovery across all chains is calculated. The performance of our model is validated by
computing the sequence recovery and contrasting it with ProteinMPNN, a model trained on PDB
until August 02, 2021. To our understanding, ProteinMPNN is the nearest model trained on a dataset
with a comparable date cutoff, thus facilitating a more straightforward comparison of our model’s
efficacy. The default setting in ProteinMPNN is employed, wherein all available chains are designed,
the temperature parameter is set to 0.1, and two sequences are predicted. The sequence with the
higher sequence recovery is selected for our validation result.
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Figure 2: Sequence Recovery in ProteinMPNN and our Model using CAMEO dataset A) Sequence
recovery comparison between our model and ProteinMPNN B) Comparison across small, single and
multi-chain proteins

Compared to ProteinMPNN, our model demonstrates an enhanced capability to recover sequence
identity for most proteins in our validation. Figure 2A illustrates that our model attains higher
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sequence recovery for most samples in the CAMEO dataset. In several instances, our model achieves
high accuracy (greater than 80%), a feat ProteinMPNN does not accomplish in any of the samples.
Furthermore, Figure 2B underscores that our model consistently outperforms across short, single,
and multiple chains, with a higher median sequence recovery.

Seq Recovery: 66.67%
RMSD: 1.59

Seq Recovery: 58.68%
RMSD: 0.54

Seq Recovery: 20.6%
RMSD: 26.15

A B C

Figure 3: Example structure predictions using the designed sequence in AlphaFold2 for a) 7l6j,
b)7lbu, c)7f7n. Green is the predicted structure, and burnt orange is the ground truth

In addressing the inverse folding problem, it is crucial to demonstrate that the designed sequence can
fold to the desired structure. AlphaFold2[10, 13]is utilized to predict the structure of the designed
sequences, as depicted in Figure 3. Figures 3A and 3B display a good alignment of the designed
sequence to the ground truth. However, as Figure 3C reveals, the model encounters difficulties for
proteins with disordered regions or regions lacking secondary structures, indicated by the suboptimal
sequence recovery and alignment.

4 Discussion

The presented results in this paper underline the efficacy of the TriFold architecture in addressing the
inverse protein folding problem. The architecture leverages attention-based capabilities to extract
information from the entire protein chain. This allows TriFold to outperform existing models like
ProteinMPNN regarding sequence recovery. An essential component of the architecture’s success is
the integration of different attention mechanisms, such as invariant point attention and those designed
for single and pair representations, and allowing the exchange of representations across the module.
To our knowledge, we are the first to integrate IPA with single and pair attention-based updates
in a module for the inverse folding problem. Moreover, we introduced a novel approach to bias
the pair representation using a pairwise relative distance representation invariant to rotations and
translations. We found this to be a better feature compared to squared Euclidean distance to bias the
pair representation and allow information to flow from structure to pair representation. We also hope
to benchmark our model in other validation datasets, such as CATH[14], to grant insights into our
model’s strengths and capabilities. We also believe that our model architecture can aid in designing
generative models. For example, current advancements in diffusion models like RF-diffusion[15],
Frame-diff[17] for structure design, GRADE-IF[16] for sequence design, and ProteinGenerator[11]
for sequence-structure design are setting the standard for contemporary generative models. We are
optimistic that our architecture will contribute significantly to these emerging domains.
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