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Abstract

Accurate prediction and optimization of protein-protein binding affinity is crucial
for therapeutic antibody development. Although machine learning-based prediction
methods ∆∆G are suitable for large-scale mutant screening, they struggle to predict
the effects of multiple mutations for targets without existing binders. Energy
function-based methods, though more accurate, are time consuming and not ideal
for large-scale screening. To address this, we propose an active learning workflow
that efficiently trains a deep learning model to learn energy functions for specific
targets, combining the advantages of both approaches. Our method integrates the
RDE-Network deep learning model with Rosetta’s energy function-based Flex
ddG to efficiently explore mutants that bind to Flex ddG. In a case study targeting
HER2-binding Trastuzumab mutants, our approach significantly improved the
screening performance over random selection and demonstrated the ability to
identify mutants with better binding properties without experimental ∆∆G data.
This workflow advances computational antibody design by combining machine
learning, physics-based computations, and active learning to achieve more efficient
antibody development.

1 Introduction

Optimizing the binding affinity between proteins is an important aspect of drug development, in-
cluding antibody engineering [1, 2]. In recent years, deep learning-based de novo molecular design
methods have been proposed [3, 4, 5, 6, 7, 8]. However, approaches that utilize existing antibody
information to design improved variants are also important, as de novo methods may not fully
leverage the knowledge of existing antibodies [9, 10, 11, 12]. This is particularly crucial when
dealing with known antibodies that require improvements in desirable properties such as binding
affinity, specificity, and developability. In recent years, many mutation-induced binding free energy
change (∆∆G) prediction methods based on machine learning and deep learning have been pro-
posed [9, 13, 14, 15, 16, 17, 18], and their prediction accuracy has improved. However, in cases
where there are insufficient data on existing antibodies, the prediction results may not be reliable. In
such situations, even if the predicted ∆∆G for mutants, especially multiple mutations, is optimized,
overfitting may occur, making it difficult to propose improved sequences in practice. In addition,
traditional methods for calculating ∆∆G of mutants based on energy functions [19, 20, 21] are
applicable even when sufficient ∆∆G information about known mutants is not available, and it is
known that energy functions with structural sampling, such as Rosetta’s energy function-based ∆∆G
prediction method Flex ddG, have high prediction accuracy. However, such methods that involve
structural sampling require enormous computational costs compared to machine learning-based
methods, making them unsuitable for large-scale screening of mutants.
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In recent years, the pharmaceutical industry has shown an increasing interest in using a machine
learning approach called active learning [22, 23, 24] to streamline time-consuming calculations
such as compound docking and molecular simulations[25, 26, 27]. Active learning is a method
that iteratively selects the next data sample to be experimented based on a machine learning model
called a surrogate model [22, 23, 24], with the aim of efficiently conducting costly experiments
such as experimental verification and molecular simulations. Here, it is important to balance the
exploration phase, which reduces uncertainty and selects data with high information content, with
the exploitation phase, which discovers data with high activity or desirable properties, to select
cost-effective data samples. These methods are useful for exploring promising candidate samples
even in the absence of extensive existing experimental data. By iteratively adding data, active learning
can guide the optimization process more efficiently than conventional high-throughput screening
methods. For example, in the field of small molecule drug discovery, active learning combined
with molecular simulations and docking simulations has already succeeded in improving screening
performance without relying on experimental information [25, 26, 27]. Similarly, several active
learning approaches have been proposed in the field of antibody engineering [28, 29, 30]. Seo et
al. [28] take an approach that combines a deep learning model based on the CTRL method with
experimental validation by ELISA. Lu et al. [29] propose a method called K-Nearest Robust Active
Learning, KRAL, and apply it to epitope prediction in B cell data. Gessneret al. [30] discover antibody
sequences with improved binding affinity based on relative binding free energies calculated using
Bayesian optimization. Such active learning approaches for experimental information or relative
binding free energy calculations provide accurate predictions of binding affinity but require enormous
costs, time, and difficult setups. Also, to achieve sufficient performance with these approaches, a
sufficient number of samples may be required, so a more convenient approach for faster pre-screening
would be useful. Furthermore, among these existing approaches, methods based on relative free
energy perturbation calculations can be executed faster than experimental validation approaches if
computational resources are available, but it is difficult to handle multiple mutations [31].

Therefore, we propose a new workflow that efficiently learns the scoring of the Flex ddG method [21]
through active learning, in contrast to conventional methods, to construct a fast pre-screening model.
Flex ddG achieves performance comparable to state-of-the-art models [32] but requires a relatively
long computation time for structural sampling. Our workflow guides the selection of promising
antibody variants by combining the predictive performance of machine learning with the physics-
based knowledge of Flex ddG. In this study, we achieve this by incorporating both experimental
∆∆G values and computational binding information predictions through multitask learning based on
the architecture of the RDE-Network developed by Luo et al. This allows us to identify antibody
sequences that may improve binding affinity while minimizing the need for large-scale experiments
and enhancing the predictive performance of Flex ddG’s computational ∆∆G. To demonstrate
the effectiveness of our method, we optimize Trastuzumab (Herceptin®), an antibody targeting the
human epidermal growth factor receptor (HER2), and the results showed a significant improvement
in screening performance compared to random selection. Furthermore, an interesting result was
obtained that the binding classification performance could be improved even without experimental
information on HER2 by using additional data based on Flex ddG. This study contributes to the
growing field of efficient and effective computational antibody design by presenting a novel workflow
combining machine learning, physics-based computation, and active learning.

2 Materials and Methods

Figure 1 shows an overview of the active learning workflow proposed in this study.

Trastuzumab, an antibody targeting the HER2 protein, was used as the antibody to be optimized,
and the complementarity-determining regions (CDR-H) of the heavy chain were optimized. In this
process, mutant data was sampled by randomly mutating the amino acid sequence of Trastuzumab’s
CDR-H (8 residues for CDR-H1, 8 residues for CDR-H2, and 13 residues for CDR-H3) to 19 amino
acid residues excluding cysteine with a mutation probability of 0.2, generating 100,000 mutants (of
which 98,567 were unique sequences).

Luo et al.’s RDE-Network [16] was used as the Flex ddG surrogate model. RDE-Network en-
ables ∆∆G prediction performance by learning information on mutants included in the SKEMPI2
dataset [33] based on the predicted probability distribution, using a flow-based rotamer probability
distribution model pretrained on crystal structures. RDE-Network is one of the state-of-the-art models
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Figure 1: Overview of the proposed active learning workflow.

in terms of ∆∆G prediction performance for mutants. Here, in addition to the ∆∆G prediction
module existing in the original RDE-Network prediction model, a Binding Module that predicts
whether to bind directly from the output layer of the wildtype and mutation RDE modules was added.
In other words, multitask learning was performed using experimental ∆∆G and computational
binding information. For the Rotamer Density Estimator, pre-trained parameters were used and fixed
during surrogate model training. The learning parameters other than the newly added parts of the
model were the same as those of Luo et al., and the cross-entropy loss for binding was added with
a weight of 0.5. Unlike the data split of Luo et al., the data split of the learning dataset was based
on the Holdout information included in the SKEMPI2 dataset to ensure that PPBs similar to the
PPBs of the validation set were not included in the training set. Based on the holdout information,
a relationship network of complexes included in the SKEMPI2 dataset was constructed, and the
connected components of this network were treated as a single group. Based on these groups, a
3-fold group split was performed, using the fold containing HER2-Trastzumab data as validation data
and the remaining folds as training data. This excluded all ∆∆G information related to HER2 and
antibodies from the training set prior to active learning.

In each cycle, 200 trastzumab mutants were selected and a total of 1200 were selected over 6 cycles
of active learning. In each cycle, only mutants that differed by 2 or more mutations from those
selected so far, including previous cycles, were selected in descending order of the surrogate model’s
predictions, to ensure an appropriate balance between exploration and exploitation of the selected
sequences. The parameters of Flex ddG were based on those of [21] with the number of structural
ensembles set to N = 10. The ∆∆G calculated by Flex ddG was added to the learning data in the
next active learning cycle as binding data if it was less than 0 and as non-binding data if it was 2 or
greater. Data with 0 < ∆∆G < 2 were excluded from the learning data. Also, in the first cycle, the
model was trained by the surrogate model without any HER2 mutation data.

As a test set for model evaluation, surface plasmon resonance (SPR) assay data of Trastuzumab
mutants designed by Shanehsazzadeh et al. [6] was used. At this time, ∆∆G was obtained from the
KD values of the SPR experiment, and only mutants with the same length of CDR-H3 as Trastuzumab
were selected, which will be referred to as the Trastuzumab mutant dataset hereafter. The Trastuzumab
mutant dataset includes 419 binding mutants and 846 non-binding mutants.

3 Results and Discussion

Figure 2(a) shows the transition of the distribution of the top 200 Flex ddG values of the data selected
in previous cycles. For comparison, the results were compared with the case where 1200 data
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Figure 2: (a) Transition of the calculated top 200 Flex ddG values of the selected mutants at each
active learning cycle. (b) Number of selected mutants that bound and unbound based on Flex ddG at
each active learning cycle.
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Figure 3: The H-chain sequences of the HER2 mutant dataset were embedded using AbLang [34] and
compressed to 2D using UMAP [35] for visualization. The red dots represent the selected mutants
at each active learning cycle, and the blue dots represent the top 200 selections for that cycle. In
the early cycles of active learning, the blue and red dots overlap, but in the later cycles, the red dots
spread out more than the blue dots.

points were randomly selected from the data pool and evaluated by Flex ddG. The figure shows that
the proposed method can discover Trastuzumab mutants with significantly lower Flex ddG values
compared to random selection in the final cycle. In the early stages of learning, the top predictions
of RDE-Network tended to select worse mutants than Random, but by using them for learning in
subsequent cycles, the enrichment was improved. Furthermore, in Figure 2(b), the number of selected
mutants that bound and unbound based on Flex ddG at each active learning cycle, it can be seen that
in the initial learning, many unbound data were sampled due to inaccurate model predictions, but in
the latter half of learning, almost no non-binding data were selected. Figure 2(c) shows the transition
of the rank of the predicted ∆∆G of the selected mutants. In the early cycles, the selection is close
to greedy selection, but in the latter half of learning, mutants with worse ranks are selected, which
means that more diverse mutants were selected, i.e., more exploratory sampling was performed, due
to the constraint of selecting only those that differed by 2 or more mutations from the previously
selected ones. This can also be seen from the difference between greedy selection and actual selection
in the embedded space in Figure 3. Thus, balancing exploitation and exploration is important for
more efficient learning of active learning models.

Furthermore, Figures 4(a) to (d) show the Spearman correlation with experimental ∆∆G or Flex
ddG’s ∆∆G and the ROC-AUC for experimental binding and Flex ddG-based binding at each active
learning cycle, respectively. The Spearman correlation was calculated only for the binding mutants in
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Figure 4: (a) Transition of Spearman correlation of the surrogate model for the Trastuzumab mutant
dataset at each active learning cycle. (b) Transition of Spearman correlation on Flex ddG of the
surrogate model for the Trastuzumab mutant dataset at each active learning cycle. Each correlation
was calculated only for those labeled as binders. (c) Transition of ROC-AUC scores for binding
classification for the Trastuzumab mutant dataset at each active learning cycle. (d) Transition of
ROC-AUC scores for binding classification on Flex ddG for the Trastuzumab mutant dataset at each
active learning cycle. The target variable was set as “binder” when ∆∆GFlexddG < 0.

the Trastuzumab mutant dataset, and for the binding ROC-AUC, 50 data points each were selected
from the experimental binding data (∆∆GFlexddG < 0) and randomly selected non-binding data for
a total of 100 data points for comparison with Flex ddG calculation. From Figures 4(a) and 4(b), it
can be seen that the predictive performance of the active learning model slightly improved from the
baseline and reached a level comparable to Flex ddG. However, the correlation with experimental
∆∆G did not change even as the number of active learning cycles increased. Also, Figures 4(c) and
4(d) show a significant improvement in performance compared to the baseline model. Furthermore,
in the latter half of active learning, the discriminative performance surpassed that of Flex ddG. This
is an interesting result showing that the actual screening performance can be improved without
using experimental information, just by adding the computational values of Flex ddG to the learning.
From the above, the proposed method seems to be effective in improving the binding classification
performance in particular.

4 Conclusions

In this study, we developed an active learning workflow for optimizing antibody sequences. The
proposed method successfully screened Trastuzumab variants against HER2 efficiently. By utilizing
active learning models as proposed in this study, we succeeded in efficiently screening by evaluating
only a subset of the vast number of Trastuzumab variants against human HER2 using Flex ddG,
without calculating the energy of all sequences. Furthermore, by combining the SKEMPI2 dataset and
the computational energy information of variants’ Flex ddG, RDE-Network was able to more accu-
rately discriminate the binding of human HER2 without learning the experimental ∆∆G information.
This suggests that it may be useful for exploring variants with higher binding in the early stages of
antibody design, where only a few weak binders are obtained, or for optimizing variants with better
pharmacological properties. In this study, RDE-Network was used as a surrogate model for active
learning, but this framework is applicable to any model and can be useful for easily constructing
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models tailored to specific targets. However, the active learning method proposed in this study is pri-
marily for optimization and requires the preparation of complex structures of known binding ligands.
Furthermore, since the sequences evaluated in this study have not been experimentally validated, the
effect may be limited if Flex ddG calculations do not correlate well with the experimental ∆∆G,
and it should be noted that in actual drug development phases, the developability of the selected
variants should also be considered. This study investigated offline-based optimization, but combining
it with genetic algorithms, as in other cases, may cover a more diverse mutant space. In the future,
by combining active learning with more accurate affinity prediction methods that require even more
extensive calculations, such as relative binding free energy perturbation calculations, we aim to
construct models with higher binding affinity prediction accuracy for specific targets and improve
screening accuracy.
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