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Abstract

The structure of a protein is crucial to its biological function. With the ex-
pansion of available protein structures, such as those in the AlphaFold Protein
Structure Database (AFDB), there is an increasing need for efficient methods
to index, search, and generate these structures. Additionally, there is a grow-
ing interest in integrating structural information with models from other modal-
ities, such as protein sequence language models. We present a novel VQ-VAE-
based protein structure tokenizer, AIDO.StructureTokenizer (AIDO.St), which is
a pretrained module for protein structures in an AI-driven Digital Organism [1].
AIDO.StructureTokenizer is a 300M parameter model consisting of an equivari-
ant encoder to discretize input structures into tokens, and an invariant decoder to
reconstruct the inputs from these tokens. In addition to evaluating structure recon-
struction ability, we also compared our model to Foldseek, ProToken, and ESM3
in terms of protein structure retrieval ability. Through our experiments, we discov-
ered an intriguing trade-off between the encoder’s locality and retrieval ability and
the decoder’s reconstruction ability. Our results also demonstrate that a better bal-
ance between retrieval and reconstruction enables a better alignment between the
structure tokens and a protein sequence language model, resulting in better struc-
ture prediction accuracy. Models and code are available through ModelGenerator
in https://github.com/genbio-ai/AIDO and on Hugging Face.

1 Introduction
The rapid developments of protein structure prediction methods such as AlphaFold have resulted
in a vast increase in the protein structure databases [2, 3], opening up new avenues for integrating
structural information to better understand proteins. Despite these advancements, leveraging the full
potential of protein structures within large-scale models remains a significant challenge, particularly
due to the complexity and computational demands of working with 3D structural data.

Tokenizing protein structures is an innovative approach designed to convert the complex 3D infor-
mation of proteins into a discrete, more manageable format that can be seamlessly integrated with
sequence-based models. Traditional methods for analyzing protein structures typically rely on pro-
cessing 3D coordinates or distance matrices, which are computationally intensive and difficult to
align with sequence data. Recently, there has been increasing interest in developing models that can
incorporate structural information alongside sequence data [4, 5, 6].
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In this work, we introduce a novel vector quantization variational autoencoder (VQ-VAE) architec-
ture for protein structure tokenization, featuring an equivariant encoder and an invariant decoder. We
trained one of the largest VQ-VAE models to date, utilizing 300 million parameters on over 477,000
protein structures from the PDB. This tokenizer efficiently converts protein structures into discrete
tokens, facilitating their seamless integration with sequence-based models.

While most tokenizers focus solely on reconstruction accuracy—which provides only a partial indi-
cation of tokenizer quality—we evaluate ours through additional tasks such as homology detection
and integration into a protein language model for structure prediction. We observe an interesting
trade-off between the encoder locality and the reconstruction ability of the decoder. By comparing
to Foldseek, ProToken and ESM3, we showed that our model can achieve a better balance by ob-
taining substantial improvements in various structure retrieval tasks and prediction tasks while at the
same time sacrificing less than 2% in the overall structure reconstruction ability. Our results point
to the direction of a more efficient and accurate framework for protein structure modeling.

2 Background and Related Work
Foldseek [7] introduced an efficient method for tokenizing protein structures by encoding local fea-
tures, such as distances and angles, to accelerate homology detection. However, this approach results
in significant information loss, limiting its usefulness for tasks that require detailed structural recon-
struction [7]. ProToken addressed this limitation by employing a symmetric encoder-decoder archi-
tecture, allowing for high-fidelity reconstruction from tokens, though these tokens have proven less
effective in broader downstream applications [8]. Subsequent models, such as ProstT5 and SaProt,
built on Foldseek’s tokenization to enhance protein language models, improving performance in
tasks like mutation effect prediction by integrating structural tokens with sequence data [5]. ProSST
further refined this approach by implementing a local denoising autoencoder and expanding the
token vocabulary, leading to superior results in mutation effect prediction and underscoring the im-
portance of optimizing tokenization schemes for better downstream performance [6]. ESM3 is one
of the most successful applications of VQ-VAE for protein structure tokenization in multimodal
modeling [9]. By using VQ-VAE to discretize protein structures into tokens, ESM3 effectively in-
tegrates both structural and sequence data within a large language model (LLM). This integration
enables conditional sequence generation and structure prediction. Beyond sequence and structure,
ESM3 incorporates features and annotations, making it versatile for a wide range of biological tasks.

3 Methods
We employ a Vector Quantized Variational Autoencoder (VQ-VAE) to tokenize the 3D structure of
proteins. The primary goal of this tokenization is to transform the continuous geometric data of
protein backbones into discrete tokens that can be later integrated into sequence-based models.

3.1 Architecture Details
The VQ-VAE architecture used in our approach is a novel combination of an equivariant encoder
and an invariant decoder (see Fig. 1.A for an overview). More specifically,

• Structure Encoder: The encoder projects the backbone structure into a latent space where
each residue is represented as a vector. The encoder is based on the Equiformer architecture
[10], which incorporates local attention mechanisms. To ensure computational efficiency
and maintain locality in the extracted features, the attention scope is restricted to the 30-
nearest neighbors in the input structure. We choose a rather small encoder (6M) compared
to the large decoder (300M) following finding in [11].

• VQ-VAE Codebook: The invariant part of the latent vectors produced by the encoder
are then quantized by mapping each vector to the nearest entry in a fixed-size codebook
following the procedure in [12]. This process converts the continuous latent vectors into
discrete tokens, conserving the amino acid sequence length.

• Structure Decoder: The quantized vectors are fed into a Multi-Layer Perceptron (MLP),
which generates the “single embedding” input for the decoder which reuses the ESMFold
Folding Trunk architecture [13]. The Folding Trunk then reconstructs the full 3D structure,
including side chains, based on the structural tokens. The reconstruction process is guided
by several loss functions, including the Frame Aligned Point Error (FAPE) loss, which
measures the discrepancy between the predicted and actual protein structures. All losses
and training details are included in Appendix A.3.
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Figure 1: A.The backbone structure is encoded as residue-level frame, comprising a rotation matrix,
translation vector, and residue index. The rotation matrix is used as node features, while inter-node
translation and residue index differences for edge features. Equiformer blocks propagate informa-
tion between k-nearest neighbors and outputs processed node embeddings. The invariant part of
these embeddings is projected to a lower dimension and discretized via a VQ-VAE Codebook. The
Structure Decoder then processes these tokens and reconstructs the full 3D structure, including side
chains, using the ESMFold-based Folding Trunk. B. Homology Detection: Structures from the
SCOPe40 database are tokenized and aligned using Smith-Waterman. This gives us a score that we
can use to evaluate if two proteins are homologous. C. Structure Prediction: We fine-tune a Lan-
guage Model to predict the structure tokens given by the encoder. The predicted tokens are then
given to the decoder which will output the predicted structure.

We observed that the locality of the encoder—how much local structural information each token
captures—significantly impacts both performance and the type of information encoded. Foldseek,
for instance, employs a highly local approach by considering only the 2 nearest neighbors (for these
two residues it also uses the residues before and after to compute some relative vector, making the
actual receptive field between 2 and 6) during encoding. ProToken, on the other hand, uses full
attention mechanisms, capturing global dependencies across the entire protein structure. Both ESM
and our model strike a balance between these extremes: ESM utilizes a k-nearest neighbors (kNN)
value of 16, while our model uses a kNN of 30. In our model kNN means that we mask the attention
such that each query can only attend its 30 nearest neighbors. We believe that this choice of locality
is a major modeling decision that influences the model’s performance and the nature of the structural
information encoded in the tokens.

More details of the architecture and the training methods can be found in the Appendix A.2 and A.3.

3.2 Alignment to Protein Language Model
To integrate structural information with a protein language model (pLM), we tokenized the Al-
phaFold Database (AFDB) using our VQ-VAE-based tokenizer. This produced discrete structural
tokens aligned with the amino acid sequences, where the i-th amino acid directly corresponds to the
i-th structural token, ensuring a natural alignment between sequence and structure.

We fine-tuned pre-trained pLM to predict these structural tokens from the amino acid sequence using
two models: ESM2-650M [13] for efficiency, and our in house MoE pLM [14] for comprehensive
model optimization. The predicted tokens can then be passed to the VQ-VAE decoder, transforming
the pipeline into a full structure prediction model capable of generating 3D protein structures from
sequence-only data (see Fig. 1.C). More details can be found in Appendix A.4.
4 Tokenizer Evaluation
Evaluating the effectiveness of a tokenizer is not a straightforward task, as it requires careful con-
sideration of what constitutes a “good” tokenization. In the context of protein structures, a good
tokenizer must encapsulate all the essential structural information. However, it is equally important
that this information is preserved in a coherent and interpretable manner. Specifically, given the goal
of using these tokens for multimodal tasks, such as integrating protein sequences and structures, the
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tokenization process must maintain the sequentiality of the original data. This means that each token
should correspond meaningfully to its respective amino acid in the sequence, ensuring that the i-th
token remains closely related to the i-th amino acid. Maintaining this correspondence is critical for
enabling downstream tasks that rely on the alignment of sequence and structure information, such as
joint training with protein language models. We evaluate the effectiveness of our approach through
a comprehensive set of tasks that assess the quality of the tokenization.

4.1 Reconstruction Evaluation
The quality of the tokenization was previously assessed primarily through reconstruction perfor-
mance, comparing the output of the decoder to the original input structure. This evaluation reflects
the effectiveness with which structural information is encoded into discrete tokens as shown in Table
1. The metrics used are TM-score, RMSD (Root Mean Square Deviation), and GDT (Global Dis-
tance Test). These metrics provide a quantitative assessment of how closely the reconstructed protein
matches the original structure. See the Appendix B.1 for detailed definitions of these metrics. In the
reconstruction evaluation, we observed that certain proteins, particularly those with a larger radius
(greater than 100 Å), posed a challenge for the model (examples in Appendix C.1). Therefore, we
decomposed the performance based on the protein’s radius, separately evaluating proteins with radii
below and above 100 Å. This allowed us to analyze how well the tokenizer encodes information
across different structural scales and identify areas where further improvements may be needed.

Table 1: Comparison of structure reconstruction performance across different tokenizers for
CASP15 protein structures, evaluated on proteins with radii below 100 Å and above 100 Å. Met-
rics include TM-Score(↑), RMSD(↓), GDT-TS(↑), and GDT-HA(↑), which measure the quality of
reconstructed protein structures to their original forms. The results demonstrate that the overall
performance of all tokenizers is quite good (TM-Score > 0.9), though large protein reconstruction
remains quite challenging.

Radius < 100 Å Radius ≥ 100 Å All Radii

Metric ESM3 AIDO.St ProToken ESM3 AIDO.St ProToken ESM3 AIDO.St ProToken

TM-Score 0.975 0.986 0.973 0.624 0.782 0.913 0.905 0.945 0.961
RMSD 1.069 0.709 1.131 7.132 4.366 2.324 2.282 1.440 1.370
GDT-TS 0.942 0.966 0.940 0.516 0.629 0.745 0.857 0.899 0.901
GDT-HA 0.846 0.861 0.796 0.355 0.438 0.532 0.748 0.776 0.743

4.2 Homology Detection Evaluation
In this task, we evaluate the effectiveness of the tokenization method by assessing its ability to cap-
ture structural similarities between proteins through homology detection. Specifically, we follow
the same procedure as Foldseek [7], applying a Smith-Waterman alignment on tokenized sequences
using the SCOPe40 database as shown in Fig.1.B. The performance shown in Table 4.2 is measured
across three levels of structural homology: family, superfamily, and fold, using sensitivity up to the
first error. This evaluation is crucial, as it allows us to test whether the tokenized representations
retain essential biological relationships between proteins, despite their conversion into sequential
discrete tokens. By maintaining the sequential information through tokenization, we ensure com-
patibility with protein language models (pLM) for future integration.

Table 2: Homology detection performance
on the SCOPe40 database. Sensitivity up to
the first error is measured at the family, su-
perfamily, and fold levels.

ESM3 AIDO.St ProToken Foldseek

(SCOPe40 retrieval)
Family 0.741 0.795 0.703 0.769
Superfamily 0.343 0.413 0.329 0.438
Fold 0.026 0.056 0.052 0.072

Despite good reconstruction capacity, we realize that the highly global tokens of ProToken perform
poorly to the highly local tokens of Foldseek (which, conversely, are unable to reconstruct structure).
The iterations in AIDO.St were made to find a good compromise between the two.

4.3 Structure Prediction
To evaluate the effectiveness of our tokenization approach for multimodal training, we fine-tuned a
protein-specific MoE language model with 16B parameters, AIDO.Protein [14], to predict structure-
related tokens. These tokens are then input into the VQ-VAE decoder to reconstruct the full protein
structure. This process allows us to assess how well our tokenized representations capture essential
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structural information and contribute to accurate structure prediction in downstream tasks. The
alignment of the pLM with the token space is a key indicator of tokenization quality. The procedure
involves tokenizing the PDB database and fine-tuning the language model to predict structural tokens
based on amino acid sequences. This evaluation serves as the most robust method for assessing the
quality of the tokens, as it directly measures their ability to align with amino acid-based models and
support accurate structural reconstructions.

Due to the computational cost of fine-tuning models on large databases, we initiated this process
fine-tuning ESM2-650M [13]. For this step, we utilized tokens generated from ESM3, ProToken,
and our proposed model (see Table 3). Despite ProToken’s strong performance in reconstruction, it
was less effective at predicting accurate structure tokens when integrated into a language model, as
indicated by its lower TM-Score across all test sets. This highlights the limitation of focusing solely
on reconstruction metrics, which can yield good structural representations but fail to generate tokens
that are well-aligned to be used in a protein language model (pLM).

In the second phase, we performed full fine-tuning of AIDO.Protein [14] to further improve structure
prediction accuracy using our model. This more resource-intensive training allowed us to surpass the
performance of the publicly released ESM3 model on all test sets, demonstrating the superior quality
of our tokenizer (see Table 4). These results highlight the importance of high-quality tokenization
in improving the overall performance of protein structure prediction models.

Table 3: Comparing tokenizer qual-
ity through structure prediction perfor-
mance. In these scenarios, we used
ESM2-650M fine-tuned pLM for struc-
ture prediction.

AIDO.St ESM3 ProToken

CASP14-RMSD 12.19 12.73 16.05
CASP15-RMSD 18.88 20.76 22.64
CAMEO-RMSD 6.98 7.38 10.85
CASP14-TMScore 0.447 0.449 0.310
CASP15-TMScore 0.478 0.485 0.292
CAMEO-TMScore 0.706 0.702 0.500

In a second step we did the costly full fine-tuning of our model in order to push further the structure
prediction performance. This allowed us to reach higher performance than ESM3 released model on
structure prediction. We outperformed ESM3 on all test sets, showing again the importance of the
token quality and the higher performance of our tokenizer.

Table 4: Final structure prediction performance com-
parison between our model and ESM3. We used the of-
ficial ESM3 language model and tokenizer. Our model
consists of a fully fine-tuned pLM based on our tok-
enization of the AFDB.

AIDO.St ESM3

CASP14-RMSD 9.02 10.29
CASP15-RMSD 14.75 14.69
CAMEO-RMSD 4.21 5.74
CASP14-TMScore 0.633 0.575
CASP15-TMScore 0.663 0.625
CAMEO-TMScore 0.835 0.781

5 Discussion
In this work, we introduced AIDO.St, a tokenizer for protein structures, designed to capture critical
structural information while preserving the sequential relationships with amino acids. This align-
ment is essential for multimodal tasks, such as integrating protein structure with sequence-based
models. Visualization of the codebook space’s relation to secondary structure and amino acids
usage reveals clear patterns in the codebook features (see Appendix C.3), suggesting potential im-
provements in the architecture. Evaluating tokenization quality is complex, as it requires balancing
structural fidelity with downstream interpretability. Our assessments focused on two key tasks: re-
construction and homology detection. While reconstruction demonstrated the tokenizer’s ability
to accurately represent protein structures, it alone is not sufficient. Good reconstruction may still
result in tokens that are challenging for a language model to align with. Therefore, more robust
assessments are necessary. We introduced homology detection to complement reconstruction by
ensuring that the tokenization retains biologically relevant relationships—crucial for tasks involving
multimodal integration.

Additionally, we explicitly trained a language model to predict these structural tokens for structure
prediction tasks, and our model outperformed the publicly released ESM3. This further highlights
the effectiveness of our approach in generating high-quality tokens that are both structurally faithful
and interpretable by language models, advancing the potential for improved protein modeling.
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A Appendix: Training

A.1 Training Data

For training the VQ-VAE, we utilized the PDB database released prior to May 1, 2022. The reso-
lution threshold was set to 4Å, resulting in approximately 470k single chain structures. To reduce
phylogenetic bias and ensure better sampling of the structural space, we applied sequence clustering
with 40% sequence identity using MMseqs2 3. This clustering was used to reweight the dataset
during sampling, ensuring more balanced representation of diverse structures.

The data settings differed for the two language models. For the ESM2 model, we applied the same
filtering settings as above but used a different time cutoff (May 1, 2020) to prevent data overlap with
the CASP14 dataset. In contrast, the MoE model training leveraged both PDB and the AlphaFold
Database (AFDB) to reduce overfitting. Proteins with an average plDDT score above 0.7 were
selected from AFDB, resulting in 170M entries.

Data Sampling During the training of the VQ-VAE, we addressed the underrepresentation of large
proteins by oversampling structures with a large radius. The radius was defined as the maximum
distance from the center of mass of all alpha carbons. We averaged the radius of each cluster obtained
from MMseqs2 [15] , and assigned the cluster-level sampling weight as min(max(10, radius), 90)−
10. During sampling, candidate clusters are first sampled according to the normalized sampling
weights, and then one member is uniformly sampled from these clusters.

The ESM2 model was trained using uniform sampling from the PDB dataset. In contrast, the MoE
model was trained with a balanced sampling strategy, where data was first sampled from the AFDB
and PDB datasets in a 1:1 ratio, followed by uniform sampling within each dataset.

Data Cropping During training of the VQ-VAE, the input structures are cropped to 256 residues
following AlphaFold2’s training strategy, but we used a different cropping algorithm. The cropping
process occurs as follows: Up to 10 random residues are selected as the initial candidates, and then
neighboring residues are added iteratively based on their distance to the candidates. The distance
threshold for adding neighbors is set to 15 angstroms. The process continues for a maximum of 10
iterations until the desired crop size is reached. If the structure contains fewer residues than the crop
size, the entire structure is kept.

For the ESM2 and MoE models, we cropped the first 1024 tokens (including special tokens) to train
the models. This approach simplified data processing and reduced computational costs; however,
it introduced notable drawbacks. Cropping based on sequence order rather than structural context
could exclude long-range structural dependencies, potentially limiting the models’ ability to cap-
ture global features. Additionally, this method disproportionately oversamples the prefix sequence,
which may bias the models toward the beginning of the protein sequence. To address these lim-
itations, we plan to explore cropping strategies that incorporate structural information and better
balance sequence representation in future work.

A.2 Architecture details

Structure Encoder: The encoder projects the backbone structure into a latent space where each
residue is represented as a vector. The encoder is based on the Equiformer architecture [10, 16].
One good property of this model is that it leverages SE(3)/E(3)-equivariant features, enabling it to
maintain rotational and translational symmetry. The to ensure that the output is independent of the
input orientation, we discard the vector feature output at the final block.

The original Equiformer implementation is too memory demanding to run on proteins. Inspired by
[16], we only used the first two orders of the spherical harmonics, and therefore, the hidden activa-
tions inside the encoder consist of scalar features and 3D vector features, which are invariant and
equivariant to the input orientation, respectively. To ensure computational efficiency and maintain
locality in the extracted features, the attention scope is restricted to the k-nearest neighbors in the
input structure.

3The clustering command is “mmseqs easy-cluster pdb.fasta pdb 40 tmp –min-seq-id 0.4 –threads 128”
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VQ-VAE Codebook: The latent vectors produced by the encoder are then quantized by mapping
each vector to the nearest entry in a fixed-size codebook. This process converts the continuous latent
vectors into discrete tokens, which are the same length as the amino acid sequence.

We apply a linear layer before the codebook and keep the feature dimension relatively small as
suggested in [17] to encourage code utilization. Another trick for increasing code utilization is to
random restart the unused codes. At the end of the training, there is no unused code.

During our experiments, we found that the codebook size (vocabulary size) is a critical hyperparam-
eter that influences the granularity of the tokenization. Typically, a larger codebook size results in a
better reconstruction performance. Since ProToken uses 512 codes, we also used 512 codes to make
a fair comparison. It worths noting that ESM3 uses 8192 codes.

Structure Decoder: The quantized vectors are fed into a Multi-Layer Perceptron (MLP), which
generates the “single embedding” input for decoder. Our decoder reuses the ESMFold Folding Trunk
architecture. The Folding Trunk then reconstructs the full 3D structure, including side chains, based
on the structural tokens.

The architecture is the same as used in ESMFold, but the number of layers and the hidden dimension
are tuned. For simplicity, we disabled the recycling loop to save training and inference time. This
architecture is very memory demanding, and we used techniques like gradient accumulation to avoid
OOM.

Featurization The backbone of a residue, composed of the N, CA, C, and O atoms, is represented
using a rotation-translation approach, inspired by AlphaFold2. Since the backbone is generally
rigid, its average coordinates Xref ∈ R3×4 can be computed from the dataset. During featurization,
the input residue backbone X ∈ R3×4 is aligned to Xref using Kabsch alignment, resulting in
X ≈ RXref + t. This equation means that knowing the rotation matrix R and translation vector t is
sufficient to determine the original coordinates. For the orientation of Xref, we used N→CA as the
direction of the x axis, and projected the direction of CA→C as the y axis using the Gram-Schmidt
process. Besides rotation and translation, the residue’s offset (residue index) is also included in the
features.

Embedding Node embeddings are created by an Embedding layer for each residue. Since the
model is agnostic to amino acid types, the Embedding layer has only one effective token, namely
[MASK]. As required by the Equiformer architecture, the features are composed of scalar and vector
components. A separate Embedding layer is used for the vector features, which also contains only
one effective token. To ensure equivariance, the vector features are rotated by each residue’s rotation
matrix.

For edge embeddings, the scalar part is derived from relative offset differences. These differences
are clamped at 32, then transformed using a series of sinusoidal bases before being passed through
an MLP layer. The vector part is based on the relative translation differences.

A.3 Training Losses

For the reconstruction loss, we borrowed the losses from AlphaFold2 and used the OpenFold imple-
mentation. The borrowed losses are FAPE, supervised chi, and distogram loss following [2]. Besides
these losses, we also added a translation loss and a distance map loss to stabilize the training.

For training the codebook, we followed the standard VQ-VAE training strategy. The VQ-VAE was
trained with the straight-through estimator trick, and there is a commitment loss that encourages the
encoder outputs to be close to the codebook vectors.

To encourage the robustness of the encoder output and the homology detection performance, we
added a contrastive cropping loss, which encourages the latent similarity between 2 cropping.

Frame Aligned Point Error (FAPE) Loss The FAPE loss is calculated by comparing the posi-
tions of atoms in the predicted structure (xj) with their corresponding positions in the true structure
(xtrue

j ), transformed into a common local frame (Ti and T true
i ). Each local frame is defined as the

backbone frame of each residue.
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xij = T−1
i ◦ xj (1)

xtrue
ij = T true−1

i ◦ xtrue
j (2)

dij =
√
∥xij − xtrue

ij ∥2 + 10−4 (3)

LFAPE =
1

10
meanij(minimum(10, dij)) (4)

Commitment Loss The commitment loss in a VQ-VAE encourages the encoder outputs to stay
close to the embedding vectors from the codebook. It is defined as:

Lcommit = β ∥ze(x)− sg[ek]∥2

Where: ze(x) is the output of the encoder network for input x . ek is the embedding vector from
the codebook closest to ze(x) . sg[·] denotes the stop-gradient operator, which prevents gradients
from flowing through its argument during backpropagation. β is a hyperparameter that balances the
strength of the commitment loss.

Translation Loss FAPE optimizes structure similarity and is clamped by a 20Å threshold. In
practice, we found the training a bit unstable. Here, we add another loss that optimizes the RMSD
of the translation vectors.

Ltrans =
1

10
RMSD(TKabsch(X,Xtrue) ◦Xtrue,X) (5)

Here, TKabsch(X,Xtrue) is the Kabsch alignment from Xtrue to X, which are the translation vectors
of all predicted and ground truth backbone frames. The Kabsch algorithm requires solving an SVD
problem. To avoid singularity, we add a very small Gaussian noise to X.

Distance Map Loss To further enhance training stability, we introduce the distance map loss,
which enforces consistency in the pairwise distances between predicted and ground truth translation
vectors. Let xi and xtrue

i represent the predicted and ground truth translation vector, respectively. We
compare the pairwise Euclidean distances between all translation vector pairs for both the predicted
and ground truth translations:

dij = ∥xi − xj∥2 (6)

dtrue
ij = ∥xtrue

i − xtrue
j ∥2 (7)

Ldistmap =
1

10
meanij(minimum(10, |dij − dtrue

ij |)) (8)

Cropping Loss The cropping loss is a contrastive loss designed to encourage the preservation of
latent embeddings when the input data is cropped. This loss ensures that even when parts of the
input are removed or altered, the encoder still produces similar output.

Let zi and zcrop
i represent the per-residue quantized latent embedding of the original input and

its cropped version, respectively. The cropping is done with the same algorithm mentioned
in the “Data Cropping” paragraph. The distribution of the i-th code is defined via pi =

softmax
(
γsg(C) · zi

∥zi∥2

)
and pcrop

i = softmax
(
γsg(C) · zcrop

i

∥zcrop
i ∥2

)
, where sg stands for the stop-

gradient operation, γ is a learnable temperature parameter that controls the sharpness of the distri-
bution, and C represents the matrix of all codebook vectors. The loss is defined as the cross entropy
between two distribution. Importantly, the loss only accounts for the common residues between the
two crop views to ensure that only shared information is compared. The final cropping loss is given
by:

Lcrop =
1

2
meani

(
CE(pi,p

crop
i ) + CE(pcrop

i ,pi)
)

(9)

9



A.4 Language Model Finetuning for Structure Prediction

We fine-tuned the pretrained protein language model to get the alignment model. Specifically, we
denotes B as batch size, L as sequence length and D as latent dimension. Protein sequences (B, L)
are input to language model to obtain the latent embedding (B, L, D). An additional two-layer MLP
classification head (dimension D to 2560 to 512) is followed and predicts the precise structural token
for every individual residual. The alignment model learns to project a sequence to corresponding
structural token and cross entropy loss is employed.

During inference, protein sequence is converted to structural token with alignment model and fed
into VQ-VAE decoder, together constructing a sequence-only protein structure predictor.

A.5 Model and training hyperparameters

The VQ-VAE architecture is set with the following hyperparameters, resulting in a 6M encoder and
a 300M decoder.

Table 5: Model hyperparameters for VQ-VAE.

Component Hyperparameters

Encoder dim=128, layer=12, dropout=0.1
Codebook dim=384, vocab=512
FoldingTrunk dim s=768, dim z=128, layer=32, dropout=0.1
Structure Module dim s=384, dim z=128, layer=8, dropout=0.1

The VQ-VAE was trained using the following hyperparameters: a cropping size of 256, batch size
of 72, gradient clipping set to 0.1, Adam optimizer, learning rate warmup over 1k steps, a maximum
learning rate of 1e-3, linear learning rate decay, a final learning rate of 5e-5 at 100k steps, weight
decay of 1e-8, and actual training steps of 92k steps.

The alignment to the language model is trained with the following hyperparameters:

Table 6: Training hyperparameters for alignment experiment.

ESM2 fine-tune MoE fine-tune

Training steps 100k 200k
Sequence length 1024 1024
Batch size 128 2048
Learning rate scheduler linear decay cosine decay
Warm up ratio 0.01 0.025
Max learning rate 1e-4 1e-4
Optimizer Adam Adam

A.6 Training Curves and Convergence of the MoE Model

We tracked the training performance of the MoE model using TM-Score metrics on three datasets:
CASP14, CASP15, and CAMEO. Figure 2 illustrates the training curves for these datasets. The
curves were exported directly from Weights & Biases (wandb). The model demonstrates consistent
improvement across all benchmarks; however, the steadily increasing trends indicate that the model
has not yet converged. This suggests that further training could enhance performance.

B Appendix: Evaluation

B.1 Reconstruction Metrics

TM-score (Template Modeling score) TM-score is a measure of structural similarity between
two protein structures. It evaluates how well the residues of one structure (typically a predicted
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Figure 2: Training curves of the MoE model for CASP14, CASP15, and CAMEO datasets measured
by TM-Score.

model) match the residues of another structure (often the experimental structure) in 3D space. The
TM-score ranges from 0 to 1, where a score closer to 1 indicates a higher similarity. Unlike RMSD,
TM-score is not very sensitive to local errors and focuses more on the global topology.

The TM-score is calculated as:

TM-score =
1

L

L∑
i=1

1

1 +
(

di

d0

)2

where L is the length of the protein, di is the distance between the i-th pair of residues, and d0 is a
scale parameter (typically 1.24 Å times the cube root of L− 15).

Interpretation - A TM-score above 0.5 generally indicates a similar fold. - A TM-score below 0.2
indicates random similarity.

RMSD (Root-Mean-Square Deviation) RMSD is a measure of the average distance between
atoms (usually the backbone atoms) of superimposed proteins. It is sensitive to local structural
differences, making it a good measure for comparing highly similar structures.

The RMSD is calculated as:

RMSD =

√√√√ 1

N

N∑
i=1

(rAi − rBi )
2

where N is the number of atom pairs, and rAi and rBi are the positions of the i-th atom in the two
structures being compared. A superposition algorithm such as Kabsch that finds the best overlap be-
tween two structures is applied before computing RMSD. The best overlap is defined as the overlap
that achieves minimum RMSD.

- Interpretation: - Lower RMSD values indicate higher structural similarity. - RMSD values are
sensitive to the length of the protein and local differences, making them less ideal for comparing
proteins of different sizes.

GDT-TS (Global Distance Test Total Score) GDT-TS is a measure of the overall similarity be-
tween two protein structures, providing a percentage score that reflects the extent to which the struc-
tures are aligned. GDT-TS is less sensitive to local deviations than RMSD and offers a more holistic
view of structural similarity.

- Calculation: GDT-TS is computed as the average of the percentages of residues that can be super-
imposed within predefined distance cutoffs (1, 2, 4, and 8 Å). Specifically:

GDT-TS =
1

4

(
P (1 Å) + P (2 Å) + P (4 Å) + P (8 Å)

)
where P (d Å) is the percentage of residues with a distance less than d Å after optimal superimposi-
tion.

- Interpretation: - A higher GDT-TS indicates better structural similarity. - GDT-TS scores range
from 0 to 100, with higher values representing a better match between the compared structures.
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B.2 Homology detection Metrics

The rationale is that a well-designed token representation will make proteins with similar structures
and functions more alignable, resulting in higher alignment scores. We measure sensitivity up to the
first false positive as our preferred metric. Alignments for each query are sorted by decreasing score
and we count the number of hits above the first false positive. Sensitivity is then calculated as the
total number of retained alignments divided by the number of related pairs in the database. When
running Smith-Waterman, we used official substitution matrix for Foldseek, while we used cosine
similarity as the substitution matrix for the rest of the models.

According to the setting of Foldseek, the retrieval on SCOPe40 is divided into 3 different subtasks,
which are Family-level, Superfamily-level, and Fold-level. This division is based on the ontology of
SCOPe dataset, where a tree structure categorizes proteins into Folds, Folds into Superfamilies, and
Superfamilies into Families. For Family, Superfamily, and Fold subtask, false positives are defined
as the proteins that are in a different Fold, and the true positives are defined as the proteins in the
same Family, in the same Superfamily but not in the same Family, in the same Fold but not in the
same Superfamily, respectively.

12



C Appendix: Supplementary Results

C.1 Examples of reconstruction

A B C

D

Figure 3: Reconstruction visualization of AIDO.St for different CASP15 entries. The entry D is
an example of large radius proteins where the reconstruction performance are lower.A:T1137s9,
B:T1188, C:T1180, D:T1137s6

C.2 Examples of spatial distribution of neighboring residues

Figure 4: 3D scatter plots visualizing the spatial distribution of neighboring residues for four dif-
ferent structure tokens. The plots show the relative positions of 30 nearest neighbors under the
local frame, highlighting distinct density patterns for each structure token. The color of the points
represents the distance from the central residue, with warmer colors indicating greater distances and
cooler colors representing closer proximity. Points farther from the center exhibit greater distribution
variety, reflecting the long-range interactions captured by the tokens. The distances are measured in
angstroms.

C.3 Visualization of tokens

We looked at interpretation of the codebook. To do so we started by ploting the t-SNE of the code-
book embedding to better capture codebook similarity. Then we looked at the probability of these
codebooks given some specific properties such as the secondary structure and the amino acid. More-
over we observe some interesting overlap, for example between 3-10 helix and Turn. Forcing the
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model to better separate codebook with different secondary structure, could introduce an interesting
inductive bias in the training.

Figure 5: Visualization of tokens with respect to secondary structures. Each point represents a token
from the codebook, mapped to different secondary structures, including Alpha helix (H), Isolated
beta-bridge residue (B), Strand (E), 3-10 helix (G), Pi helix (I), Turn (T), Bend (S), and None (-
). The location of each point is computed using t-SNE from the corresponding code vector. The
secondary structures are computed using DSSP. The color scale represents the probability of each
token given one specific secondary structure, with warmer colors indicating a higher probability.
This visualization highlights the relationship between the learned token representations and various
secondary structure types across the protein’s spatial configuration.

D Data and Code Availability

We developed the ModelGenerator package to reproduce, apply, and extend the results in this
manuscript https://github.com/genbio-ai/ModelGenerator.

Pre-trained models and finetuning data are also available on Huggingface at https://
huggingface.co/genbio-ai.
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Figure 6: Visualization of tokens with respect to amino acid types. Each point represents a token
from the codebook, mapped to different amino acid types. The location of each point is computed
using t-SNE from the corresponding code vector. The color scale represents the probability of
each amino acid type given one specific token, with warmer colors indicating a higher probability.
This visualization highlights the relationship between the learned token representations and various
amino acid types across the protein’s spatial configuration.

15


	Introduction
	Background and Related Work
	Methods
	Architecture Details
	Alignment to Protein Language Model

	Tokenizer Evaluation
	Reconstruction Evaluation 
	Homology Detection Evaluation
	Structure Prediction

	Discussion
	Appendix: Training
	Training Data
	Architecture details
	Training Losses
	Language Model Finetuning for Structure Prediction
	Model and training hyperparameters
	Training Curves and Convergence of the MoE Model

	Appendix: Evaluation
	Reconstruction Metrics
	Homology detection Metrics

	Appendix: Supplementary Results
	Examples of reconstruction
	Examples of spatial distribution of neighboring residues
	Visualization of tokens

	Data and Code Availability

