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Abstract

Protein-small molecule interactions, or receptor-ligand interactions, are essential
for understanding biological processes and advancing drug design. In this paper,
we introduce DockFormer, a method that leverages multi-modal learning to predict
both the binding affinity and structure of these interactions. DockFormer employs
fully flexible docking, where no part of the receptor remains rigid, by adapting the
AlphaFold2 architecture. Instead of relying on protein sequences and Multiple Se-
quence Alignments, DockFormer uses predicted receptor structures as input. This
modification enables the model to concentrate on ligand docking prediction rather
than protein folding, while preserving full receptor flexibility. The streamlined
design also reduces the model size to just 8 layers, compared to AlphaFold2’s 48
layers, greatly accelerating the inference process and making it more efficient for
large-scale screening. Benchmark tests on the PoseBusters dataset demonstrated a
27% success rate, while on an affinity benchmark, DockFormer achieved a Pearson
correlation of 0.91. This optimized architecture offers a valuable tool for rapid and
accurate virtual screening in drug discovery.

1 Introduction

Interactions between proteins and small molecules, or receptor-ligand interactions, are critical for
biological functions and drug design. A major challenge is the screening process, in which a huge
database is searched for ligands that bind to a specific target receptor with high affinity. Currently,
this screening process heavily relies on wet-lab experiments and physics-based computations [1],
both of which are expensive and time-consuming. The importance of these interactions stresses a
need for accurate in silico screening prediction methods.

The interaction prediction task is defined as the prediction of structure, prediction of affinity, or both.
The prediction of bound interaction structure given the receptor holo- or apo- structure is generally
known as the docking of a ligand in the receptor. Docking methods can be physics-based, such as
GLIDE [2] and AutoDock [3] or deep-learning-based, such as DiffDock [4]. These methods use
the receptor backbone structure as rigid and change the position and conformation of the ligand and
possibly the side-chains. Prediction of both protein structure and the interaction is commonly referred
to as co-folding. Co-folding methods, while potentially more accurate, are resource-intensive and
complex [5, 6]. For many years, a major obstacle to co-folding methods was the lack of accurate
methods to predict individual protein structures.

The release of AlphaFold2 [7] marked a significant advancement in protein structure prediction,
utilizing a transformer-based architecture called EvoFormer to process single and pairwise sequence
representations. In its successor, AlphaFold3, a leaner variation named PairFormer was used[5],
where Multiple Sequence Alignments (MSA) are preprocessed separately. Although the success of
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AlphaFold2 was partly due to MSA, studies have shown that even without MSA, the model can predict
protein interaction interfaces [8, 9], stressing the competence of this architecture. Despite these
advances, structural models generated are not ideal for docking ligands, as evidenced by the reduced
accuracy of methods like GLIDE (44% to 15%) and DiffDock(38% to 21%) when using AlphaFold2
predictions [1, 10]. This is because small-molecule binding can alter the protein conformation in
mechanisms known as induced fit or population shift [11, 12]. Change can be small, for example,
only in the side-chains, or significant when binding to the cryptic allosteric sites [13].

In addition to structure prediction methods, there are also approaches for predicting affinity without
the bound structure. These methods can work either with the protein structure or just its sequences.
While they perform well when trained on a specific protein, they struggle to generalize to new proteins
outside their training set. This limitation often arises because, without the bound structure, the models
cannot learn the specific interactions influencing affinity and instead tend to memorize small molecule
features and their impact on affinity in specific proteins [14].

Multi-modal learning is the concept of a model that processes multiple different types of data. Here
we apply multi-modal learning to train a multi-task model, DockFormer, that performs two prediction
tasks of different data types - structure and affinity. In computer vision, it has been shown that if
tasks are similar enough we could get improved accuracy in all tasks by using a single model, as
opposed to different specialized models[15]. In the field of protein folding, multi-modal methods
such as ESM3[16], have also been proven to be successful in obtaining state-of-the-art performance
on multiple tasks such as structure prediction, structure design, and masked position prediction.

Here we present DockFormer, a multi-modal model that learns to predict both affinity and bound
structure. DockFormer explores the ability of the PairFromer architecture to identify biological
and physical interfaces by removing the MSA completely and letting the model predict contacts
between receptors and ligands solely based on their geometrical and physicochemical compatibility.
DockFormer tackles the trade-off between docking and co-folding by creating a model that folds the
receptor, however, it expects as input the backbone distogram, that is the distances between each pair
of Cα atoms in a prediction of the receptor structure or in a structure of an apo conformation. As
the backbone distogram only supplies optional restraints to the structure, the model will still learn
to co-fold the receptor and ligand. However, this allows the model to not learn the complex folding
process of proteins and allows for simpler and less resource-intensive model inference.

2 Methods

DockFormer architecture is based on the AlphaFold2[7] architecture, with several significant differ-
ences to support ligands and enhance efficiency. The main difference is in the replacement of the MSA
and template inputs with an input receptor structure. This change also results in making the Evoformer
much simpler, and more similar to the PairFormer architecture presented in AlphaFold3[5]. The
number of layers in the Evoformer portion of the model is reduced to 8 (instead of 48 in AlphaFold2).
Another significant difference is the incorporation of tokens representing ligand atoms, in addition to
the tokens representing amino acids. The last change is the addition of an affinity module that is used
to train the model as a multi-modal model.

The first step is the input embedding. The input for DockFormer is an AlphaFold2 prediction, or
an experimentally determined apo conformation, of the receptor structure and a reference structure
of the ligand generated by RDKit [17]. The output of the embedding stage is a single embedding
and a pair embedding. The single embedding is a 1D vector containing an embedding vector for
each token - either an amino acid or a ligand atom. The pair embedding is a 2D vector that contains
an embedding for each pair of tokens. The features that are used for embedding protein tokens are
only the amino acid types. For ligand tokens, the features used are atom types, charge, chirality, and
bond types between atoms. Additionally, the input structures are converted into intra-protein and
intra-ligand distograms, that is the distances between each pair of tokens. For the protein, the distance
between Cα atoms is calculated and matched to one of 15 bins spread evenly between 3.25Å and
20.75Å, similar to the recycling process in AlphaFold2. For the ligand, the distances between the
atoms are matched to one of the 10 bins evenly spread between 0.75Å and 9.75Å. The encoding of
each matched bin is added to the embedding in the pair embedding.

After generating single and pair embedding, those are passed through a transformer-based model,
with 8 blocks, where each block is similar to a Pairformer block. Recycling is also applied similarly
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Figure 1: The model architecture. The inputs to DockFormer are receptor and ligand structure
distograms. The structures are not required to be in the holo conformation, they can be an apo
experimental structure or a structure prediction. For the ligand, a random reference conformation
is generated. The distogram of the structures and the types of amino acids and atoms is then used
to create a one-dimensional embedding for each input token referenced as single embedding and
a two-dimensional input embedding for each pair of tokens referenced as pair embedding. These
embeddings are the input for the deep learning-based model. The model consists of 8 Pairformer
blocks that each output a single and pair representation. Both representations are used by the structure
module to generate a structure. Only the parts in the pair representation that represent a pair of a
ligand atom and a receptor amino acid are considered in the affinity module.

to AlphaFold2 with 3 recycles. The final single- and pair- representations that are outputted by the last
block are passed to the structure module as implemented in AlphaFold2. For ligand tokens, the frame
rotations are ignored, and only transformations of frames are used as the atom positions. An additional
optional step is to replace the predicted ligand positions with the closest conformation from a set of
1,000 conformations by RDkit. This step prevents impossible bond distances or conformations.

In addition to the structure module, there is also an affinity module, which predicts the affinity as a
classification task. The classification task is defined as 30 bins for affinities between 0 and 15, where
the number represents the minus log of the nanomolar measured affinity. The final predicted affinity
is a weighted average of the bins, weighted by the probability predicted for each bin. To predict the
probability of each affinity bin, we apply a linear layer to every vector in the pair representation that
represents a pair of a ligand atom and a receptor amino acid. Each such vector is weighted by a layer
designated to weigh vectors for affinity relevance, and also by considering the logits predicted by the
inter-contact auxiliary head.

An additional approach for affinity prediction was tested. In this approach, we add a classification
token to the model input, similar to what is common in Natural Language Processing models [18].
The vector corresponding to the affinity token in the single representation is passed through a linear
layer to predict the affinity bins. This approach has shown similar results to the interface-based
approach. Although the interface-based approach is more complicated, it leverages data learned from
structures, in the form of receptor-ligand contacts and encourages biological restraints on affinity
prediction.

We have also implemented several new auxiliary heads and loss modifications. The inter-contact
auxiliary head is trained to predict, given a pairwise representation, the binary classification task
of whether the amino acid Cα atom and ligand atom have a distance of at most 5Å. The binding
site prediction head predicts for a single representation of a receptor token whether this token is at
most 5Å of the ligand. We have also added a variation of FAPE loss that considers all frames of the
receptor, but only the ligand atoms, and by weighing this loss, we have forced the model to emphasize
the contact between receptor and ligand.

The training data is composed of ~20,000 samples from the PDBBind 2020 dataset and ~30,000
PLINDER samples that had a correlated binding affinity, marked in the training split and released
before September 2019 (to prevent data leakage to the PoseBusters benchmark). We first trained
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Figure 2: Results on PoseBusters benchmark A Percentage of predictions with ligand RMSD
under 2Å, as measured on the PoseBusters benchmark (n=428). B Predicted affinity accuracy on
benchmark derived from PLINDER test set (n=104). Axes are the minus log of the nanomolar affinity.
C RMSD between predicted ligand positions when pockets aligned, compared to RMSD between
ground truth receptor structure and input receptor structure. D The y-axis is the RMSD between the
input receptor structure and the predicted receptor structure. The x-axis is the result of subtracting the
RMSD between the input structure and the ground truth structure from the RMSD of the predicted
structure and the ground truth structure. Positive x values represent an improvement in the accuracy
of DockFormer prediction compared to the input structure. E Example of accurate prediction by
DockFormer from the PoseBusters benchmark. Predicted receptor (light gray) and ligand (green) vs.
ground truth receptor (dark gray) and ligand (yellow).

the model on the PDBBind samples, and only after 15,000 optimization steps started using the full
dataset.

3 Results

To assess the performance of DockFormer in predicting structures, we have used the PoseBusters
common protein-small molecule structures benchmark dataset[19]. This dataset contains 428 protein-
small molecule interactions. For 27% of the structures, DockFormer has computed a model with
ligand Root Mean Square Deviation (RMSD) of less than 2Å compared to the experimental structure,
when aligned by protein pocket residues Cα atoms (a pocket residue is a residue with one of the
atoms within 8Å of any of the ligand atoms). DockFormer is favorably comparable to methods that
do not get the holo receptor structure as input and did not use the entire Protein Data Bank (PDB)
dataset for training. Although AlphaFold3 and RosseTTAFold-AllAtom achieve significantly higher
performance (Figure 2A) their training set was considerably larger, as they were trained on the entire
PDB. An interesting comparison is between DockFormer and Umol[10] (accuracy of 0.27 vs. 0.18),
as both models are based on the AlphaFold2 architecture and their main difference is the smaller
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number of layers in DockFormer and the removal of MSA from the pipeline. This is evidence that
the concept of using input structures over co-folding completely from scratch seems to be beneficial.

To further analyze DockFormer structure prediction, we have examined the relationship between
input receptor structure accuracy (generated by AlphaFold2) and docking accuracy. We find that in
74% of the test set samples in PoseBusters the Cα RMSD to the ground truth structure is below 2Å,
and only in 8% of the samples it is above 10Å(Figure 2C). In 98% lof samples, the input receptor
structure does not change significantly after the prediction(Cα RMSD < 1Å). However, in most cases
where there is a significant change in structure, it becomes more similar to the ground truth structure
compared to the input (Figure 2D). This provides evidence that DockFormer refines the receptor
structure to fit the ligand. To further analyze this point, we have tested DockFormer with an input
receptor structure in the holo conformation, in a variation named DockFormer-holo. The performance
improved slightly, from 27% to 31%, indicating that the DockFormer is not dependent on an accurate
receptor structure.

One of the advantages of the DockFormer is its lean architecture designed for prediction efficiency.
On the PoseBusters dataset, the median prediction time was 2.67 seconds, with an average of 6.11
seconds. Although these run times do not account for the generation of the input receptor structure,
they remain highly relevant for screening processes where the same receptor is tested against multiple
ligands, making the receptor structure generation a negligible factor.

In addition to structure prediction, to validate the affinity prediction we have used the test dataset from
PLINDER. We have filtered out only structures released after 2019 and not present in the PDBBind
dataset, to prevent data leakage. This resulted in a dataset of 104 receptor-ligand complexes with
affinity. The Pearson correlation of predicted affinity compared to ground truth affinity for this dataset
is 0.91(Figure 2B), which shows the ability of the model to predict affinity with high accuracy.

4 Discussion

We have presented DockFormer, a method for predicting structure and affinity of receptor-ligand
interactions that integrates two key concepts into the AlphaFold2 [7] architecture. First, the method
uses an approximated receptor structure, either apo conformation or prediction, as an input, enabling
the model to specialize in the docking task over the protein folding task, while keeping the receptor
structure flexible to capture conformational changes. This also enables reducing the model architecture
to provide efficiency in training and inference. Second, by employing multi-task learning for
simultaneous affinity and structure prediction, the network gains additional information that can
further enhance its accuracy.

Despite these innovations, our structure prediction accuracy is currently lower compared to other
state-of-the-art structure prediction methods such as, AlphaFold3[5] and RoseTTAFold All-Atom[6].
We suggest that these methods demonstrate higher performance partly because they have been trained
on significantly larger datasets. Training on all available PDB structures, rather than a limited subset
such as PDBbind[20], provides them with a wealth of structural data, which increases the ability to
generalize, and also provides the model with more examples similar to the benchmark set. We initially
trained DockFormer only on samples that had both affinity and structural data available, limiting
our training set to approximately 50,000 samples. However, multi-modal training also enables
training on partial data, and therefore in future versions we plan to incorporate larger PLINDER
structure dataset[21], which offers around 300,000 structures for training, and the BindingDB affinity
dataset[22], which contains about 2,000,000 affinity measurements.

Another key concept in several of the competing successful methods is diffusion-based architecture.
We believe that diffusion architectures are particularly effective at optimizing subtle interactions
between the ligand and the receptor pocket, resulting in more plausible and accurate structures. They
also explicitly model side-chain interactions, whereas our method treats side-chains implicitly, which
could contribute to their higher accuracy. In future versions, we intend to incorporate diffusion which
may increase accuracy.

The foundational concepts behind DockFormer have the potential to be extended beyond receptor-
ligand interactions. For instance, similar models could be developed for protein-protein interactions,
including specialized models for challenging cases like antibody-antigen binding or protein-peptide
interactions. In those cases, the additional modality of the model can be specificity. By leveraging
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large databases such as STRING[23], which provide interaction labels, we can train models to predict
whether proteins interact. The reduction DockFormer offers in model size may make specialized
task-specific models more feasible.

5 Code Availability

The code for running and training the model, with weights trained on the PLINDER dataset, is
available for running inference or download at: https://huggingface.co/spaces/benshor/DockFormer.
This implementation builds upon the OpenFold[24] implementation of AlphaFold2[7].
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