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Abstract

This paper investigates the impact of incorporating structural information into the
protein-protein interaction predictions made by ESM3, a multimodal protein lan-
guage model (pLM). We utilized various structural variants as inputs and compared
three widely used structure acquisition pipelines—EvoEF2, Gromacs, and Rosetta
Relax—to assess their effects on ESM3’s performance. Our findings reveal that
the use of a consistent identical structure, regardless of whether it is relaxed or
variant, consistently enhances model performance across various datasets. This
improvement is striking in few-show learning. However, performance deteriorates
when different relaxed mutant structures are used for each variant. Based on these
results, we advise caution when integrating distinct mutant structures into ESM3
and similar models.This study highlights the critical need for careful consideration
of structural inputs in protein binding affinity prediction.

1 Introduction

The global COVID-19 pandemic has highlighted the critical role of protein-protein interactions in
virus behavior, particularly through mutations such as amino acid substitutions. These mutations can
disrupt existing interactions and alter binding energies ∆∆G = ∆GMUT −∆GWT , impacting the
structures and functions of proteins. The understanding of these dynamics, especially the interactions
between the receptor binding domain (RBD) and antibodies or Angiotensin-converting enzyme 2
(ACE2), is crucial due to their implications in viral infectivity and evasion mechanisms [1].

Traditional experimental methods, including high-throughput experiments like deep mutational scan
[2], while reliable, are often limited by their time-intensive and costly nature, making them impractical
in urgent pandemic responses. This has led to an increased reliance on computational methods, which
have shown to be invaluable not only in identifying potential viral threats but also in facilitating the
rapid development and optimization of therapeutic antibodies [3] [4].

Computational approaches to studying protein dynamics can be broadly categorized into traditional
biophysical methods and machine learning or deep learning techniques. Traditional biophysical
methods, such as those utilizing force fields in tools like FoldX [5] and Rosetta [6], relying on
empirical interatomic interactions to predict folding stability or binding affinity While effective, the
highest accuracy in these methods often demands extensive computational resources, such as those
required for Free Energy Perturbation [7].

Machine learning models and pLMs become a popular alternative to these resource-heavy physical
simulations. Despite the inability to validate variant structures, the integration of 3D structural data
into machine learning models is transforming the landscape of PPI prediction. Different models use
different relaxation methods to obtain variant structure, in order to predict free energy difference
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∆∆G for protein-protein complexes. DDAffinity[8], a message passing neural network, uses FoldX
[5] BuildMutant for both the wildtype and variant structures. DDGPred [9], a deep neural network,
uses Rosetta Relax [10] to obtain mutated structures to predict. EGRAL[11], a graph neural network,
uses Rosetta Relax and Backrub [12], in a pipeline close to the conformation sampling of flex ddg [6]
method. It allows them to obtain variant structure for SKEMPI2.0 dataset [13] which only provides
wildtype (wildtype) structures in order to predict mutational property changes. Unibind,[14] a Graph
Neural Network, uses EvoEF2 BuildMutant [15] to obtain the structure graph.

While these papers concentrate on refining the architecture of their models to enhance performance
on pretraining tasks and subtasks, comparatively little attention is given to evaluating the impact of
these structural acquisition pipelines. These set the stage for our investigation into the ESM3 model
[16], a multimodal pLM that, unlike previous ESM models [17] which is trained on sequence only,
natively incorporates sequence data, all-atom coordinates, and functional annotations. This capability
renders ESM3 exceptionally versatile, allowing it to generate embeddings from either sequence-only
inputs or combined sequence and structure inputs. Importantly, there are no stringent requirements for
the structures provided, nor is there a need for preprocessing these structures. This flexibility means
the method to obtain protein structures can be modified easily and evaluated as part of the end-to-end
pipeline. In the following work, we demonstrate that (i) identical protein structures significantly
enhances the binding affinity predictions of ESM3, and (ii) the performance of the model is degraded
by using a relaxed structure for each variant, compared to using the one identical structure of any
variant.

2 Methodology

2.1 ESM3 and model inputs

The model we benchmarked is composed of ESM3 and a regression head. We have extracted the
hidden representation used by output heads after the attention mechanism. Additionally, it is crucial
to highlight that the geometric encoder is invariant to rotations and translations, so that alignment is
not needed. ESM weights are kept frozen. The embeddings are mean-pooled to obtain a complex
embedding, instead of a tensor of residue embeddings. We renormalized the embeddings and binding
affinities ∆∆G by mean and variance. In our results, we report Spearman correlations on several
high-throughput datasets: the Bloom dataset[2], which consists of a deep mutational scan of the
SARS-CoV-2 RBD binding to ACE2, covering 3,803 single-mutation variants of the RBD. The Desai
dataset [18] [19], which includes 215 = 32, 768 combinatorial mutational data of RBD binding with
ACE2 and LY-CoV555, CB6, REGN10987 and S309 antibodies. It is crucial to note that for these
datasets, all mutations are on the RBD.

Our comparison identifies the SVM, implemented with default settings in scikit-learn [20] , as the
most effective regression head for these datasets, as detailed in SI Figure 7. Consequently, we will
utilize the SVM for subsequent analyses. However, it is important to note that our findings should not
depend on the choice of the regression model.

We evaluate three distinct types of inputs: sequence-only, sequence paired with identical structure,
and sequence paired with variant structures. For sequence and identical structure analyses, we use the
ProteinChain class from ESM3 repository to load the desired PDB file, which reads both the sequence
and atom coordinates. We can then modify the returned object to change the sequence while keeping
structure preserved. For sequence and variant structures, we have the flexibility to directly load the
PDB file or adjust the sequence to match the desired variant, depending on whether the sequence
aligns with the target variant.

2.2 Acquiring variants structures

Computational techniques such as in silico mutations, rotamer optimization, and energy minimization
are typically used to generate variant structures. These methods are based on the physical principle
that the most stable structures are also the most probable, due to the conformation space following a
Boltzmann distribution. At low temperatures, the minimum energy state serves as an approximation
for the minimum of free energy, allowing for the representation of a protein by a single structure.

In line with these principles, our initial step involves performing an in silico mutation using EvoEF2.
The EvoEF2 BuildMutant commandt[15], which performs rotamer optimization to mutate specific
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residues using pre-defined libraries of side chain conformations. After mutation, there are two popular
protocols: (i) Rosetta Relaxation protocol [10] is used to obtain variant structure with alternating side
chain and backbone optimization. (ii) Gromacs energy minimization uses a steep descent energy
minimization method with force field CHARMM36.[21].

In the category of sequence paired with variant structures, three widely used relaxation protocols for
obtaining variant structures were evaluated : (i) EVoEF2 alone (ii) EvoEF2 with Rosetta Relax, and
(iii) EvoEF2 with Gromacs energy minimization. The wildtype RBD structure is extracted from PDB
file 6XF5[22], a trimer of the isolated spike protein. In the latter experiments, unless specifically
mentioned, the training size is 100 random samples.

Additionally, as a control, we conduct Molecular Dynamics(MD) simulations using Gromacs and the
CHARMM36 force field to generate structures under thermodynamic fluctuations for the wildtype.
Structures are extracted every 2 femtoseconds and assigned to specific variants. Furthermore, we
introduce noisy structure variants by applying Gaussian noise with a 0.1 Ångströms(Å) variance
to all atoms in an EvoEF2-relaxed structure. This method helps us assess the impact of structural
perturbations on model performance.

We used Intel Xeon Sapphire Rapids CPUs and A100 GPUs. Rosetta Relax required approximately
10 minutes per sample, while Gromacs took about 20 minutes per sample, each using a single CPU
core. The MD simulation for the wildtype was completed in 24 hours using a single A100 GPU and
15 CPU cores. Meanwhile, ESM3 generated embeddings within an hour on a single GPU, without
any inference optimization. Notably, the EvoEF2 BuildMutant was quite efficient, processing roughly
30,000 variants serially in just about one hour.

3 Results

Firstly, we evaluated the performance of ESM3 using only sequence data, as well as when paired
with identical structures. As shown in Figure 1, while the performance of ESM1, ESM2 and ESM3
varies when sequence is the only input, the performance of ESM3 is consistently superior when the
sequence is paired with an identical structure. This enhancement is also significant across various
datasets we tested, as shown in SI Figure 12.

One might anticipate that using RBD structures from RBD-ACE2 binding interactions would yield
better results when predicting the binding between RBD mutants and ACE2. As there are minor
structural change on the binding surface due to PPI. However, our findings show no significant
difference in predictive accuracy. For instance, the structure of 7W9I [23], which is the SARS-CoV-2
RBD bound to ACE2, did not demonstrate enhanced predictive accuracy when predicting on Bloom
RBD-ACE2 dataset. Similarly, 7KMG [24], which contains RBD binding with the LY-CoV555
antibody, and 6XF5 [25], the SARS-CoV-2 spike protein with RBD in the down position, also did not
exhibit a significant difference in predictive performance in either task shown in Figure 1. We have
also tested other PDB structures containing various variants and antibodies, from which we use only
the RBD chain, as shown in SI Figure 6, and found no significant differences. This suggests that,
although there are minor structural differences in these PDB structures, the ESM3 model could not
effectively utilize these variations to enhance prediction accuracy.

Secondly, we evaluate the performance of ESM3 when it is provided with sequences and structures
for each mutant, sourced from various pipelines. As indicated previously, using the wildtype
structure—referred to here as ’Wildtype’—enhances the performance of the ESM3 model compared
to using sequence data alone.

Interestingly, as shown in Figure 2, utilizing the EvoEF2 generated mutant structure does not show
any observable effects on the predictive power of ESM3 across all datasets we tested. Furthermore,
after using EvoEF2 to introduce mutations, we applied two popular relaxation methods. Surprisingly,
the minimized mutated structures produced via Rosetta or Gromacs exhibited lower Spearman
correlations, aligning their performance with that of sequence-only inputs.

Consequently, we tested two additional structural pipelines: the ’MD Frame’ in which each mutant is
provided with a structure extracted every 2 femtoseconds during MD simulations, and the ’Noisy
0.1 Å’, which involves a Gaussian noise with mean 0 and variance 0.1 Å applied to all atoms in an
EvoEF2-generated configuration. Interestingly, despite the minimal perturbation in the ’MD Frame’
and ’Noisy 0.1A’, there is a significant reduction in accuracy, even falling below that of sequence-only
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Figure 1: Left: Spearman correlation for Models: ESM1, ESM2, and ESM3 sequence only and
sequence plus selected structures, evaluated on Bloom dataset for ACE2 binding affinity. 7W9I is the
SARS-CoV-2 RBD bound to ACE2, 7KMG is RBD binding with the LY-CoV555 antibody, 6XF5 is
the SARS-CoV-2 spike protein with RBD in the down position Right: Same analysis on the Desai
dataset for RBD and LY-CoV555 antibody binding affinity.

embeddings. This indicates that the embeddings are highly sensitive to noise introduced by processing
pipelines. These results are consistent on other datasets we tested, all summarized in SI Figure 11.
Further specifics for each dataset can be found in (LY-CoV555: 14, CB6: SI Figure 15, REGN10987:
SI Figure 16, S309: SI Figure 17 and ACE2: SI Figure 13).

Lastly, Gromacs minimization and Rosetta Relax were run on the wildtype structure and provided
as structure to ESM3. These embeddings with the same structure gave all equal performance with
Wildtype pipeline, as shown with "Noisy Wildtype" in Figure 2 and in SI Figure 13 - 17. This
effectively suggests that small perturbation is not an issue provided that the same structure is used
for all variants. Hence, ESM3 seems to be sensitive to RMSD when provided with protein structure
variants.

Figure 2: Left:Spearman correlation for sequence plus variant structures obtained through different
structure acquisition pipelines, evaluated using ESM3 on the Bloom ACE2 Right: Same analysis on
the Desai dataset for ACE2 binding affinity. Example of aligned strucures are shown in SI Figure 4
and 5

It is important to note that the structural variations induced by these pipelines are extremely subtle. To
accurately measure the differences between the structures generated by these pipelines, we analyzed
the Root Mean Square Deviation (RMSD) distribution by comparing the structures associated with the
wildtype variant to those relaxed using the same method. Across all structures, the RMSD consistently
remains below 2Å, as shown in Figure 3which is still within the limits of PDB measurement resolution.

Nonetheless, we can observe that the ranking of methods by mean RMSD—Minimized Gromacs,
Relax Rosetta, and MD Frame—correlates inversely with their Spearman correlation rankings,
discounting the noisy structure, which is unphysical. The MD Frame, showing the highest RMSD
differences, performed the worst, whole the Gromacs Minimization performed the best with the
lowest RMSD. This is counter-intuitive to the physical understanding that under thermodynamic
fluctuations, MD and relaxed structures should represent the actual protein structure and thus be
treated the same by the model.
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Figure 3: RMSD distribution for structures acquired using different methods.

3.1 Embeddings similarities

A further analysis of the embeddings before the renormalization shows a very high similarity of
the embeddings whose structures are generated from the same pipeline. The cosine similarity of
these embeddings compared to its own wildtype embedding is at least 0.99, as shown in Table 1.
This indicates that the generated embeddings is contained in a very small subspace of ESM3 hidden
representation space. This may explain the sensitivity of ESM3 given minimal change on the variant
structures: it probably reaches the accuracy limit of this model pretrained on a very diverse dataset of
proteins.

4 Discussions

Various studies utilize mutant structures generated by computational methods as inputs to their models
for predicting PPI. In our work, we aim to benchmark these pipelines. We have adapted ESM3 for use
as an encoder for PPI prediction. This adaptation was tested across several protein binding datasets
with various mutant structures and different structure minimization pipelines. Initially, we observed
that although using identical PDB structures enhances the model’s performance in predicting variant
binding affinities, using identical RBD structures from different RBD-protein complexes does not
significantly impact results. This finding supports the use of identical structures as a priori information
in ESM3 for PPI prediction, even if these structures do not perfectly represent the actual protein
configuration during binding.

Additionally, providing ESM3 with mutant structures generated by EVoEF2 instead of the structure
does not lead to an increase in model accuracy. Furthermore, we noted that ESM3 exhibits sensitivity
when provided with structural variations, whether they arise from relaxed structures, thermal noise in
MD simulations, or artificially introduced Gaussian noise. To mitigate such sensitivity, constraints
could be applied, for example, on amino acids far from mutation sites. This would allow for
exploration of relevant parts of the conformation space while limiting displacement in the unaffected
regions of the protein, leading to a smaller RMSD.

Our findings highlight the critical need for enhanced computational pipelines that better accommodate
variants with measurable structural changes, given that none of the mutant-generating pipelines we
tested improved model performance. Additionally, our results highlight the importance of further
evaluating the effects of mutant structure pipelines on predicting PPIs and other task, both in pLMs
and other models that require structural inputs.

Based on our findings, researchers using ESM3 to predict mutant PPIs might consider the following:
(i) Researchers could potentially bypass MD relaxation or energy minimization, opting to use the PDB
file directly from the PDB databank.(ii) Caution should be exercised when using relaxed structures
generated by EvoEF2. Furthermore, while not tested in this paper, we encourage the evaluation of
the impact of relaxation for pretrained or end-to-end models, to ensure that the use of the relaxation
pipelines effectively improves the performance of the model while not overfitting the generated
mutant structures.

5 Code Availability

The code for reproducing our experiments is available at https://github.com/Dianzhuo-Wang/
esm3-structural-inputs
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A Appendix

A.1 Similarity of embeddings

Method Mean cosine similarity Mean Euclidean distance

Wildtype 0.99994± 2.2× 10−5 96.7± 21.3
Relax Rosetta 0.99963± 9.35× 10−5 257± 35
Minimized Gromacs 0.99962± 1.15× 10−4 260± 40
MD Frame 0.99933± 1.40× 10−4 350± 38
Noisy 0.1Å 0.99976± 9.51× 10−5 213± 44

Table 1: Comparison of methods based on cosine similarity and Euclidean distance

A.2 Aligned PDB structures

Figure 4: 40 randomly selected RBD structures from the Bloom dataset, obtained via the "MD Frame"
pipeline.

Figure 5: 40 randomly selected RBD structures from the Bloom dataset, obtained via the "Gromacs
Minimization" pipeline.
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Figure 7: Choice of regression head for RBD binding affinities with COV555 antibody on Desai
Dataset

A.3 RBD structures extracted from PDB file performan similarly

Figure 6: Performance for binding affinity with COV555 for RBD structures extracted from different
PDB files

A.4 Choice of regression head

A comparison over all antibodies binding affinities in Desai Dataset suggest that SVM regressor
performs the best.
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A.5 ESM1 vs ESM2 vs ESM3

Figure 8: Performance of sequence-only for ESM1 650m, ESM2 650m, ESM2 15b, ESM3

Figure 9: Spearman Correlation for RBD binding affinity with ACE2
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Figure 10: Spearman Correlation for RBD binding affinity with ACE2

A.6 Performance on binding affinity prediction with antibodies on Desai Dataset

Figure 11: Spearman Correlation for RBD binding affinity with other proteins. Training size is 100
random samples.
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Figure 12: Spearman Correlation for RBD binding affinity with other proteins comparing sequence-
only embeddings and sequence and structure. Training size is 100 random samples.

Figure 13: Spearman Correlation for RBD binding affinity with ACE2

Figure 14: Spearman Correlation for RBD binding affinity with COV555
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Figure 15: Spearman Correlation for RBD binding affinity with CB6

Figure 16: Spearman Correlation for RBD binding affinity with REGN10987

Figure 17: Spearman Correlation for RBD binding affinity with S309
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