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Abstract

Molecular docking, which predicts the bound structure of protein-ligand conforma-
tions, is essential for structure-based drug design. Recent advances in generative
modeling, such as diffusion models and flow matching, have achieved great suc-
cess in this task by modeling docking conformations as a distribution. With these
models, a confidence model/head can be trained to rank the generated samples
for downstream study. In this work, we focus on flow matching and adopt an
energy-based perspective to understand the confidence model. This results in a
mapping function, represented by a deep network, that is directly learned to iter-
atively map random configurations, i.e., samples from the source distribution, to
bound structures, i.e., points in the target data manifold. This yields a conceptually
simple and empirically effective flow matching setup with interesting connections
to fundamental properties such as idempotency and stability, as well as empirical
structure prediction techniques such as refinement. Experiments on PDBBind and
Binding MOAD for both single and multi-ligand docking consistently demonstrate
the method’s effectiveness where it outperforms recent baselines of standard flow
matching and task-associated diffusion model, using similar computational budget.

1 Introduction

Structure prediction tasks, such as protein folding and molecular docking, play a critical role in
understanding biological mechanisms. Regression-based structure prediction models [17, 20, 3, 34,
44, 26, 24] have demonstrated impressive results on these tasks by directly predicting the structure via
a deep neural network, but these approaches fail to capture aleatoric uncertainty due to the possibility
of multiple molecular conformations. More specifically, since regression models do not explicitly
model the underlying distribution, the generated structures can be limited in diversity and not align
with the physiochemical properties of the molecules.

With the recent breakthroughs in generative modeling based on diffusion models [12, 32, 30] and
flow matching [21, 22, 2], sampling-based methods have attracted significant interest in molecular
docking [10, 8, 27, 14, 1, 9, 25]. These methods aim to learn a time-dependent vector field (or score
function) that guides randomly sampled structures from a source distribution to a target distribution
of true structures. In contrast to regression-based models, several possible configurations can be
generated. Together with a confidence model, the generated samples can be scored and selected for
prediction.

In energy-based models (EBMs) [19], the energy function assigns low energy to positive examples
and high energy to negative ones, shaping the landscape by maximizing the discrepancy between
contrastive samples. Interestingly, this approach aligns with confidence models in molecular docking,
where the energy function can serve as a scoring function, selecting the best sample with minimal
energy.

In this work, we develop an energy-based formulation for flow matching, offering a unified perspective
for pose generation and scoring in sampling-based docking. To improve flow matching training,
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we shape the loss landscape using contrastive predictions from the flow model. Although the exact
energy function is intractable, we leverage the reconstruction error, a commonly adopted energy
function for approximation. In the context of conditional flow matching, this energy function also
aligns with the conditional log-likelihood of the training sample. Through the data parameterization
of the flow matching, we present a simple instance of energy-based flow matching, IDFlow, where
the neural network iteratively predicts and refines the generated sample.

Importantly, our learned idempotent function (IDFlow) simultaneously serves as both a neural
sampler and a refiner, leading to the proposal of a predictor-refiner sampler, analogous to the
predictor-corrector sampler in diffusion models [32]. This approach iteratively refines the sampling
trajectory toward points where the energy function approximates zero, effectively enhancing flow
matching with minimal increase in training cost. The key contributions are as follows:

• We adopted an energy-based learning perspective for flow matching and sampling-based
molecular docking.

• We provide a simple instance of this perspective, IDFlow, which iteratively predicts and
refines the sample and draws interesting connections to related approaches.

• Empirical performance on both single and multi-ligand docking consistently shows the
proposed method outperforms the recent flow matching and task-associated diffusion models.

2 Background

2.1 Energy-Based Models

Energy-based models (EBMs) consider an energy function Eθ(x) ∈ R+ and assign a scalar value
to each data point. Learning within this paradigm requires devising an energy landscape and a loss
function to shape that energy. For instance, the L2 regression loss could be seen as directly using the
energy function for the loss where the energy architecture is the L2 norm between the network output
and the label:

Energy : Eθ(x) = ||fθ(x)− y||2, Loss : Lθ(x) = Eθ(x) (1)
where (x, y) is a training pair of input and label. Training with this strategy primarily reduces the
energy of the training examples. In general, energy-based learning maximizes the energy margin
between positive and negative training examples while avoiding the collapse of the overall energy
landscape. Specifically, the collapse happens when the network produces identical outputs regardless
of the input. For a detailed review, see [19].

2.2 Flow Matching

Flow matching [21, 22, 2] is a simulation-free training method for continuous-normalizing flows
[6] that connects two arbitrary distributions with flexible construction of the probability paths. This
allows for building straight paths between any source and target distribution, which holds great
potential for accelerated sampling. Specifically, flow matching aims to learn a time-dependent vector
field vt evolving the samples from the prior p0(x) to the target distribution p1(x) via an ordinary
differential equation (ODE):

dx

dt
= vθ,t(x) (2)

for t ∈ [0, 1] and θ are the model parameters, where x and vθ,t(x) could be either defined in the
Euclidean space or on a Riemannian manifold [5]. To achieve this, the flow matching objective [21]
regresses the vector field to the true vector field ut(x):

LFM(θ) := Et∼U(0,1),x∼pt(x)∥vθ,t(x)− ut(x)∥22. (3)
However, this objective function cannot be used for training as the true vector field is intractable in
practice. Previous work [21, 37] shows that with the construction of conditional probability paths,
the conditional flow matching objective shares the same gradient as the flow matching objective
∇θLFM = ∇θLCFM, such that learning from the conditional vector amount to learning from the
marginal vector field:

LCFM(θ) := Et∼U(0,1),x∼pt(x|x0,x1)∥vθ,t(x)− ut(x|x0, x1)∥22 (4)
where ut(x|x0, x1) is the conditional vector field that generates the conditional probability path
pt(x|x0, x1).
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x1 parameterization. Similar to diffusion models [38, 43], one can opt to parameterize the network
output as the vector field ut(x|x0, x1) or the data x1 [35, 15, 41, 4, 42]. The latter results in an
objective function that directly pushes down the energy of the training data:

LCFM(θ) := Et∼U(0,1),x∼pt(x|x0,x1)∥fθ,t(x)− x1∥22 (5)

where x1 and x0 are sampled from the training set and the prior distribution, respectively. The x1

parameterization yields an Euler-like step sampling algorithm:

dx

dt
=

fθ,t(x)− x

1− t
(6)

where fθ is the mapping between a point from the sampling trajectory to the corresponding target
data point, and is, hereafter, referred to as the flow map. A general format of the vector field with data
parameterization can be found in A.1. In this work, we focus on the x1 parameterization for its direct
connections to the regression model and generative adversarial nets [11].

3 Method

3.1 Energy-based Flow Matching

Confidence Model as the Energy Function. In sampling-based molecular docking, a confidence
model ranks the samples by outputting their corresponding confidence scores. To draw a connection
to confidence models, we can write down the energy as:

E(x̂1) = Dθ(x̂1), x̂1 = fθ,t(x) (7)

where Dθ is the architecture, the internal structure of E(x̂1), and x̂1 is the sample produced by
the flow map fθ. In practice, the energy architecture D could be a separate neural network trained
by generating samples for every training example and using the training annotations to produce
binary labels to distinguish the positive (high accuracy samples) and negative (low accuracy samples)
examples [10]. Then the logits of such a network can be used as the confidence score (energy
function) for an unseen example.

From objective Eq. 5, it becomes evident that only the energy associated with the trajectory sample
xt is pushed down, while the contrastive samples x̂1 generated by the flow model, in contrast to x1,
remain unaffected by this process. The idea of energy-based flow matching is to better shape the loss
landscape, improve the training with contrastive samples x̂1, and encourage reaching the minimum
of the energy function.

Shaping the Loss Landscape with x̂1. We first need to define an energy function E(x̂1) : Rd →
R+, such that high-probability data lies around its minima. Following [45], a simple energy architec-
ture could be the reconstruction error for some function G:

E(x̂1) = ||G(x̂1)− x̂1||2. (8)

Since the conversion from energy to probability could be achieved through a Boltzmann distribution
[31], this energy function aligns with the conditional likelihood function in the context of flow
matching A.2. Assuming G is a function that perfectly maps any x̂1 to x1 on the data manifold, Eq. 8
will induce high energy (larger reconstruction error) for “bad” x̂1 and low energy for “good” x̂1.
Ideally, G could be any neural network that keeps the dimensionality of the input data. Crucially,
following this, during training, the flow map fθ(x, t) receives gradients not only from the conditional
flow matching loss but also from the energy loss Eq. 8 of the contrastive samples.

Sample from the Energy Function. With the energy function devised, we can define an energy-
based density with the Boltzmann distribution:

p(x) =
exp(−E(x))

Z
(9)

where Z is some unknown normalizing constant. Taking the derivative of the log-likelihood with
respect to x yields:

∇x log(p(x)) = −∇xE(x). (10)
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Now, assume that we define a gradient flow vector field:
v(x) = −∇xE(x). (11)

Interestingly, as the energy Eq. 8 is lower bounded by 0, the stability of the flow map is guaranteed
as:

f∞(x) ∈ {x ∈ Rn | ∇xE(x) = 0} =M (12)
whereM is the subset of the equilibrium configuration. This implies starting from any x ∈ Rd, the
gradient flow will converge to some local minima of the energy function E, where the likelihood of
the data is locally maximized.

3.2 Idempotent Flow Map

In general, the energy function defined in Eq. 8 builds G to be a “neural refiner”. To learn the refiner,
we could simply define the objective for G as:

LG = ||G(x̂1)− x1||2. (13)
Intuitively, the refiner G is easier to learn than the flow map f , and thus the flow map could have the
capacity to also refine the mapped sample. This, interestingly, results in learning an idempotent flow
map to its prediction:

fθ,t(x) = fθ,t(fθ,t(x)). (14)
Hence, the energy landscape is shaped by mapping the points off the manifold x̂1 to points on the
data manifold x1 [18]. Relating to sampling the energy minimum, the idempotence of the flow map
is clear from Eq. 12:

f∞(f∞(x)) = f∞(x) (15)
where f∞(x) = f(x,∞) denotes the stationary solution, i.e., iterating the flow map infinitely many
times yields the same result. Under the assumption that our dataset of equilibrium configurations is
contained inM, we would always want to query ft(x) at t =∞. Ideally, after training a model to
learn the idempotent flow map, we would have f∞(x) = x1 for any x. However, imperfections may
remain, in which case:

f∞(x) = x̂ (16)
would land somewhere close to x1, but not exactly there. In this case, an iterative refinement
procedure [35, 15], can also be applied during inference. The vector from x to x̂ = f(x) can be used
as a step direction in an integration scheme, such as Euler’s method. Intuitively, if the magnitude of
the vector is large, the integrator will take a large step in that direction, and vice versa, eventually
leading to stabilization around the final prediction.

Furthermore, enforcing the flow map fθ to be idempotent draws an informative connection to the
structure refinement regression model [17] which recycles the output for iterative refinement. Hence,
in tandem with the condition flow matching loss, we propose our idempotent objective as:

LID(θ) := E
t∼U(0,1)

x∼pt(x|x0,x1)

x̂1∼N (x̂1|fθ,t(x),σ2Id)

[
∥fθ,t(x̂1)− x1∥22

]
(17)

where x̂1 is dynamically sampled from the flow model during training.

3.3 Training and Inference

The idempotent objective function enables the network to refine samples iteratively. Theoretically,
the sample x̂1 could be refined an infinite number of times. However, excessive refinements increase
inference time, a key limitation of sampling-based methods. To mitigate this, we perform only one
refinement per step. Specifically, the predictor-refiner sampler makes a prediction x̂1 and refines
it, resulting in two network function evaluations (NFEs) per step. To better align training with
sampling, we adopt a strategy similar to self-conditioning [7], where the training of the sampler and
refiner is separated. For 50% of the training time, the network undergoes flow matching training.
In the remaining 50%, the network first predicts x̂1 with the gradient detached, and then trains
for the idempotent objective Eq. 17. Empirically, tuning the maximum number of iterations Kmax
helps achieve gradual refinement. Increasing Kmax beyond 2 provides diminishing returns, with
smaller variations observed at Kmax = 2. This approach also reduces memory overhead, as only
M − 1 outputs need to be stored when looping the network M times. Further details are provided in
Algorithms 1 and 2.
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Table 1: SINGLE LIGAND DOCKING. Structure generation (ten samples average for each test
example) comparison of methods on the PDBBind for pocket-level docking.

Sequence Similarity Split Time Split
Method Distance-Pocket Radius-Pocket Distance-Pocket Radius-Pocket

%<2 Med. %<2 Med. %<2 Med. %<2 Med.
Product Space Diffusion 27.2 3.2 16.1 4.0 20.8 3.8 15.2 4.3
HarmonicFlow 30.1 3.1 20.5 3.4 42.8 2.5 28.3 3.2
IDFlow 35.6 2.9 21.0 3.7 44.3 2.4 34.7 3.1

4 Experiments

Table 2: MULTI-LIGAND DOCKING. Structure
generation (ten samples average for each test ex-
ample) comparison of methods on the Binding
MOAD.

Method %<2 %<5 Med.
EigenFold Diffusion 39.7 73.5 2.4

HarmonicFlow 44.4 75.0 2.2
IDFlow 43.8 83.1 2.1

Datasets and Baselines. We train the models
on the PDBBind v2020 dataset [23] for both
the time split and the 30% sequence similarity
split and the Binding MOAD [13] with 30% se-
quence similarity split following [35] for pocket
level docking to evaluate the structure genera-
tion capability of the method. For both the single
and multi-ligand docking scenarios, we consider
HarmonicFlow [35] and task-associated diffu-
sion models [10, 16] as the baselines. We strictly
follow the dataset processing of HarmonicFlow
and hyperparameters for fair comparison. While
the number of steps used for sampling significantly affects model performance, we maintain a con-
sistent sampling budget with HarmonicFlow, using ten sampling steps equivalent to 20 Number of
Function Evaluations (NFEs). All shown results are averaged over three runs. For more experimental
details see Appendix C.

Evaluation Metrics. Following [35, 10], we use the fraction of the test examples that have root
mean squared deviation (RMSD) below 2 or 5 Ångström (% < 2 and % < 5) and the RMSD median
(Med.) for evaluating the docking performance.

Results. We first investigate the method in single ligand docking for structure generation and modes
capturing. From Table 1, the structure generation of IDFlow consistently outperforms HarmonicFlow
and product space diffusion models except for one entry with the same inference time. From Table 4,
the improvements on the top-40, 10 and 5 accuracies are obvious for both the RMSD < 1Å and the
RMSD < 2Å, demonstrating the improved prediction accuracy without loss of mode covering. Table
2 shows the results on multi-ligand docking, where IDFlow maintains the same level of performance
with the HarmonicFlow on RMSD < 2Å and improves 8.1% for RMSD < 5Å.

Ablations. We investigate some of the design choices of IDFlow on the timesplit radius pocket
docking in Table 3. First, we ablate the number iterations Kmax training for idempotency. Just
one iteration improves quite well, and more iterations do not yield big performance gains but less
variation. The timestep information t appears to be important for both the diffusion models and flow
matching, as it explicitly delivers the noise level in the data. We surprisingly find out the performance
does not degrade significantly with t being removed from the model. This may open the opportunity
to bridge together the idea of a universal generator and flow models.

5 Conclusion and Future Work

We present energy-based flow matching, an enhanced training framework for flow matching combined
with an energy-based model for molecular docking, which better shapes the loss landscape with
contrastive samples produced by the flow model. We provide a specific instance of the proposed
framework, IDFlow, which considers the reconstruction error as the energy function and builds the
flow map to predict and refine the sampling trajectory iteratively. Empirical results show improved
performance over HarmonicFlow and task-specific diffusion models for molecular docking. Future
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work could combine the EBMs formulation with biophysically informed energy to generate chemically
plausible structures and apply EBMs as scoring functions in realistic docking scenario.
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A More Discussions

A.1 Vector Field of the Data Parameterization

With the data parameterization of the flow matching, the exact format of the vector field vt(x) could
be diverse as long as the predicted data x̂1 = fθ,t(x) could be reached following this vector field. As
the trajectory sample xt is often constructed as the linear interpolation, the conditional vector field
that generates a single sample at time t is linear in the general format as follows:

ut(x|x1, x0) = A(t)(x− x1) (18)

where A(t) is a time-dependent rescaling coefficient. As the marginal vector field ut(x) is the
convex combination of the conditional vector field (Eq. 8 from [21]), we can directly plug into the
computation:

ut(x) =

∫∫
ut(x|x1, x0)

pt(x|x1, x0)q(x1)p(x0)

pt(x)
dx1dx0

=

∫∫
A(t)(x− x1)

pt(x|x1, x0)q(x1)p(x0)

pt(x)
dx1dx0

= A(t)

∫∫
(x− x1)p(x1, x0|x)dx1dx0

= A(t)

∫
(x− x1)p(x1|x)dx1

= A(t)Ex1∼p(x1|x) [x− x1]

= A(t)(x− Ex1∼p(x1|x)[x1])

where the thrid equality we use the Bayes rule assuming the q(x1) and p(x1) are independent. This
yields a general format of vector field supposing the conditional vector field is linear. In practice, the
flow map fθ,t(x) is trained to predict the data, implicitly learning the expected value of x1 given x.
Hence, the form of the marginal vector field with data parameterization is:

ut(x) = A(t)(x− Ex1∼p(x1|x)[x1])

≈ A(t)(x− fθ,t(x))

With A(t) = − 1
1−t , the marginal vector field trained by the conditional optimal transport is recovered

as:

ut(x) =
fθ,t(x)− x

1− t
(19)

Interestingly, with the learned flow map approximates to be the expectation over p(x1|x), the flow
map’s idempotency is clear as the expectation is an idempotent operator:

fθ,t(fθ,t(x)) = E[Ex1∼p(x1|x)[x1]] = Ex1∼p(x1|x)[x1] (20)

A.2 Conditional Negative likelihood Energy

Conditional flow matching assumes a smooth delta function for the training example x ∼
N (x|x1, σ

2Id):

p(x|x1) ∼ exp

(
− 1

2σ2
(x− x1)

⊤(x− x1)

)
(21)

where x1 is a single sample from the training set. However, the true x1 is unknown during sampling,
and x̂1 = fθ(x, t) is estimated to refine the trajectory of the sampling path. We can approximately
assume the x̂1 distribution follows a similar format:

p(x̂1|x1) ∼ exp

(
− 1

2σ2
(x̂1 − x1)

⊤(x̂1 − x1)

)
(22)

Ideally, each sampling step intends to find an estimate of x̂1 such that it lies in the high-density region
and approximates to be stable around a certain area of the energy function. With the exact energy
format as the negative log-likelihood of Eq. 23, the energy of x̂1 could be simply computed as:

E(x̂1) = −log p(x̂1|x1) =
1

2σ2
(x̂1 − x1)

⊤(x̂1 − x1) (23)
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Algorithm 1 Idempotent Flow Map Training

Require: prior distribution p0, data distribution
p1
while Training do

x0 ∼ p0(x0), x1 ∼ p1(x1)
t ∼ U(0, 1),m ∼ U(0, 1)
µt ← t · x1 + (1− t) · x0

x ∼ N (µt, σ
2I)

if m ≤ 0.5 then
k ∼ randint(1,Kmax)
With torch.no_grad():
x̂1 = fθ,t(x)

x1_list = [ ]
for i = 0, . . . , k do

x̂1 ← fθ,t(x̂1.detach())
x1_list.append(x̂1)

end for
LR ← 1

|x1_list|
∑

x̂1∈x1_list ∥x̂1 − x1∥2
else

LG ← ∥fθ,t(x)− x1∥2
end if
θ ← Update(θ,∇θLG / R)

end while
return fθ

Algorithm 2 Predictor Refiner Sampler

Require: prior distribution p0, number of inte-
gration steps T , and trained function fθ
steps← 1
∆t← 1

T
t← 0
x0 ∼ p0(x0)
xt ← x0

while steps ≤ T − 1 do
x̂1 ← fθ,t(xt)
x̂1 ← fθ,t(x̂1)

xt ← xt +∆t · x̂1−xt

1−t
t← t+∆t
steps← steps + 1

end while
return xt

Furthermore, considering the energy minimum x′ of Eq. 23 is equivalent to the gradient of the energy
function equal to zero, and we could obtain the x′ by a neural network G(x̂1) which could be seen as
a neural refiner that projects the x̂1 to the high density region of the data manifold. The gradient of
the likelihood of x̂1 could be written as:

G(x̂1) = x′ ∇E(x̂1) = −∇log p(x̂1|x1) =
1

σ2
(∇G(x̂1))(G(x̂1)− x1) (24)

Observing Eq. 24, the term could be optimized if the neural refiner G(x̂1) approximates the x1,
which aligns with the proposed energy objective 13:

LG = ||G(x̂1)− x1||2. (25)

A.3 Idempotency and Stability

Idempotency and stability are two fundamental notions over many disciplines, for example, formation
control, dynamical systems and molecular dynamics. It has been recently explored for sampling from
stable distribution [33] or being used as the building block for generative models [29]. Idempotency
helps learn a robust function where additional function evaluations doe not drastically alter the output.
This relates to stability in terms of the loss used during training such that the iteratively generated
output stays on the data manifold, a desirable property for any generative model. Moreover, the
concept of stability could be further expanded into any energy function, combined with flow models.
Existing work [39, 40] proposed to learn a stable vector field to be a Poisson field implicitly governed
by the potential energy induced by the training sample over the augmented space of the data.

B Algorithm Details

Algorithms 1 and 2 are pseudocode for the training and sampling algorithms for the IDFlow.
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C Experimental Details

C.1 Task Formulation and Notation

For the molecular docking task, we represent the protein structure as y ∈ R3×np and the ligand
structure as x ∈ R3×nl , where np and nl are the number of residues of the protein and the number of
atoms of the ligand. The aim is to learn the conditional distribution p(x|y), the docking distribution
of the ligand x given the protein structure y.

Single ligand docking assumes a unique pair of the protein and ligand (x, y), such that the generative
model learns the binding mode of the protein y with a single sample from the condition distribution
p(x|y).
Multi-ligand docking assumes multiple pairs of the protein y and the ligand xi:
(x1, y), (x2, y), ..., (xn, y), where n is the number of ligands for the protein y. The training sig-
nal of multi-ligand docking could be richer with several docking conformation xi provided for
learning the condition distribution p(x|y).

C.2 Datasets

The PDBBind v2020[23] with a total of 19k complexes timesplit is a commonly used benchmark
for molecular docking [34, 24, 10, 44, 26, 8]. The split proposed by [34] consists of 17k complexes
before 2019 for training and validation and 363 complexes after 2019 for testing without the seen
ligand in the training set. The 30% sequence similarity split is constructed from the same dataset but
with the constraint of the chain-wise similarity less than 30%, which is considered a more difficult
split for the timesplit.

BindingMOAD [13] is another curated dataset from the PDB, with a different preprocessing pipeline
from the PDBBind, ending up with 41k complexes. The dataset has been recently explored for
more challenging benchmark construction and multi-ligand docking. Similar to the PDBBind, the
maximum 30% sequence similarity split provides 56649, 1136 and 1288 for training, validation and
testing. Only one biounit for each complex is used for training. The complex with only one contact
(protein residue ligand atom distance less than 4) is further filtered out, retrieving 36203, 734 and
756 training, validation and test examples.

C.3 Pocket Definition

Radius Pocket. The pocket center is the mean position of the protein residues of which the minimum
distance to any ligand atoms is less than 8Å. The radius is computed as the maximum between 5Å and
the ligand radius (half of the largest distance between the ligand atoms) plus the radius pocket buffer
(set to 7Å in all experiments). The pocket residues are selected based on the comparison between the
residue pocket center distance and the radius. The residue pocket center distance is randomly flipped
by the σ = 2.

Distance Pocket. The protein residue ligand atoms distances are extracted by the minimum distance
between the residue and any ligand atom positions. Again, these protein-ligand distances are further
randomly shifted with the σ = 2. The final pocket residues are the ones whose distances are below
14Å.

C.4 Architecture and Hyperparameters.

We maintain the same backbone architecture as [35], Equivariant Tensor Field Networks (TFN
[36]) are leveraged for predicting the ligand atom coordinates. The equivariant TFN refinement
layer maintains an EGNN [28] like message passing paradigm, but the learned path weights are
parametrized via the tensor products by the spherical harmonics of the edge vector and the node
features. There is no higher order representation (>1) being used in the experiment and we do not use
the batch normalization and residual connection for the aggregated messages, but only layernorm
the input features for each layer. We strictly follow the hyperparameter settings in HarmonicFlow
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Table 3: Ablations on timesplit radius pocket docking. "%<2" is the fraction of the prediction that the
root mean squared deviation (RMSD) is less than 2 Ångström. "Meds" refers to the median RMSD.

%<2 Med.
IDFlow 34.7 (0.17) 3.1 (0.09)

number of iterations kmax = 0 (HarmonicFlow) 28.3 3.2
number of iterations kmax = 1 34.2 (2.42) 3.0 (0.05)

no timestep information 34.0 (0.54) 3.0 (0.15)

Table 4: Top-40, 10 and 5 accuracy comparison of methods on the PDBBind splits for pocket level
docking based on different metrics. "%<2" or "%<1" is the fraction of the prediction that the root
mean squared deviation (RMSD) is less than 2 or 1 Ångström. "Meds" refers to the median RMSD.

Sequence Similarity Split Time Split
Distance-Pocket Radius-Pocket Distance-Pocket Radius-Pocket

%<1 %<2 Med. %<1 %<2 Med. %<1 %<2 Med. %<1 %<2 Med.
HarmonicFlow (40) 30.7 63.2 1.5 16.1 46.8 2.1 35.8 66.9 1.3 21.9 52.4 1.9
IDFlow (40) 34.3 64.0 1.4 18.6 48.0 2.1 37.6 67.1 1.2 27.8 53.4 1.8
HarmonicFlow (10) 22.0 53.9 1.8 9.1 36.7 2.4 25.8 58.8 1.6 15.8 45.4 2.2
IDFlow (10) 25.5 56.2 1.7 14.2 40.9 2.4 29.6 60.9 1.5 22.3 47.4 2.2
HarmonicFlow (5) 15.4 47.5 2.1 7.7 31.2 2.8 19.3 55.0 1.7 11.8 42.0 2.5
IDFlow (5) 20.6 52.0 1.9 10.0 34.3 2.6 24.7 57.9 1.6 17.8 44.9 2.4

to ensure a fair comparison. All experiments are conducted on 8 NVIDIA Tesla V100 GPUs. The
detailed setting can be found here1.

D More Results

Table 3 shows the ablation on the design choice of the IDFlow. The experiments are averaged over
three runs, and the value in the parenthesis is the standard deviation. Table 4 shows the top-k accuracy
on the PDBBind of single ligand docking.

1https://github.com/HannesStark/FlowSite
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E Visualizations

Figure 1 exhibits some randomly selected generated molecules compared with the Ground Truth. The
sample is generated by 20 NFEs.

(a) 3pwd (b) 4dgm

(c) 5l98 (d) 5mkx

(e) 6fap (f) 3bl9

Figure 1: Six randomly selected generated complexes on the radius pocket docking on 30% sequence
similarity split. The one in blue is the ground truth, and the one in green is generated from IDFlow.
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