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Abstract

Deep learning architectures such as AlphaFold2, have effectively solved the protein
structure prediction problem, however, they do not rigorously account for confor-
mational variance in structures despite many proteins exhibiting flexible regions
in which a single amino acid sequence may occupy a variety of conformations.
In particular, using confidence metrics such as the pLDDT score, it is not readily
possible to distinguish between regions of the protein structure where the prediction
model is uncertain because the region is out-of-distribution or because the region is
intrinsically flexible. Here, we use a novel approach to estimate protein flexibility
via uncertainty quantification. Specifically, we reformulate the protein structure pre-
diction problem as sampling a backbone function from a Gaussian process which
enables us to cast flexibility estimation as aleatoric uncertainty quantification. We
adapt the AlphaFold2 Structure Module architecture to produce such estimates
of aleatoric uncertainty and compare these to existing proxies for conformational
variance. We demonstrate the utility of our formalisation for approximating protein
flexibility in a prediction framework, and our experiments demonstrate the promise
of our method whilst emphasising the relationship between epistemic and aleatoric
uncertainty in protein structure prediction.

1 Introduction

The majority of protein structure prediction models consider protein structures as single conformations
resulting from a bijective mapping from an amino acid sequence. This results in measures of protein
flexibility1 that are either calculated from prediction errors [1], or in the case of AlphaFold2 [2], are
approximated by the pLDDT scores. While these proxies for flexibility can be empirically useful,
they are unable to differentiate between deviations in structure predictions that arise due to inaccurate
predictions and deviations that arise due to some protein regions being intrinsically flexible and
therefore resulting in ambiguous predictions.

∗Equal contribution and corresponding authors
1For brevity we use the terms ‘flexibility’ and ‘exhibiting multiple conformations’ interchangeably here. Due

to the type of protein data we have used we are in fact concerned with multiple conformations, but our methods
should extend to flexibility if an appropriate dataset, perhaps deriving from molecular dynamics simulations,
were used.
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In this work, we approach the protein structure prediction problem from the perspective of the
established field of uncertainty quantification. We formulate the approximation of protein flexibility
as the estimation of the aleatoric uncertainty of the output of a structure prediction model. We adapt
the architecture of the AlphaFold2 Structure Module [2] as implemented by Abanades et al. [1]
to produce variance estimates alongside the structure predictions. Using deep ensembles [3], we
then estimate the aleatoric uncertainty of the model’s predictions and evaluate the quality of these
predictions by comparing them to the empirical variance observed in our dataset, the crystal structure
B-factors, and AlphaFold2’s pLDDT score. Our results demonstrate the utility of our formalisation
for approximating flexibility in a structure prediction framework, and our experiments indicate
the promise of our method whilst emphasising the relationship between epistemic and aleatoric
uncertainty in protein structure prediction.

2 Background

2.1 Uncertainty Quantification

The field of uncertainty quantification in machine learning aims to estimate how certain a model is
about its predictions. Commonly, these uncertainty estimates are decomposed into two categories
- epistemic and aleatoric [4]. Epistemic uncertainty is often considered ‘reducible’ and refers to
the uncertainty specific to the deep learning model’s parameters, typically due to a lack of training
data. Aleatoric uncertainty is the uncertainty intrinsic to the data itself. Aleatoric uncertainty can
be further subdivided into homoscedastic uncertainty, which is constant across all observations, and
heteroscedastic uncertainty, which is dependent on the data [5]. Here, we are interested in the latter
as proteins exhibit varying degrees of flexibility.

The total uncertainty of a machine learning model can be approximated as the variance of the posterior
predictive distribution and decomposed into its epistemic and aleatoric components [6, 7],

Var[y|x,D] = Varθ∼π(·|D)[E[y|x, θ]]︸ ︷︷ ︸
Epistemic

+Eθ∼π(·|D)[Var[y|x, θ]]︸ ︷︷ ︸
Aleatoric

. (1)

Methods such as deep ensembles provide a simple approach to estimating the terms of this decompo-
sition via the sample estimators of an ensemble’s mean and variance predictions [3]. The output of
each network is modelled as a Gaussian with the mean and variance predicted by the network,

y|x, θ ∼ N (µ(x; θ), σ2(x; θ)). (2)

Estimates of the terms in Equation 1 are given by the sample estimators of the outputs of the ensemble.
For a more extensive overview of uncertainty quantification, we refer the reader to [4, 8, 9].

2.2 Protein Conformations and Flexibility

Rather than existing as single, static structures, many proteins have been experimentally shown to exist
in multiple conformations or to exhibit flexible regions[10]. X-ray crystallography uses the B-factor
to express uncertainty in atomic coordinates, or, in cases where distinct conformations are detected,
these are typically annotated in the PDB entry, or deposited as separate structures [11–14]. Cryo-EM
and nuclear magnetic resonance (NMR) imaging provide alternatives to x-ray crystallography for
structure and flexibility determination. However, these approaches are all experimental and therefore
cannot be used to estimate the flexibility or conformations of a protein structure that are predicted
in-silico.

When predicting the structure of proteins from their sequence, the predicted local distance difference
test (pLDDT) score, introduced as the confidence metric for AlphaFold2’s structure predictions [2],
has been used to quantify conformational variance [15, 16]. Previous studies suggest that low pLDDT
values are linked to flexibility[17, 18], although some have reported that pLDDT does not align with
with molecular dynamics (MD) derived flexibility estimates for intrinsically disordered proteins [18],
nor do they correlate strongly with experimental B-factors [19]. Recently, the prediction of multiple
protein structure conformations has also been achieved by sub-sampling the multiple-sequence
alignments (MSAs) passed through the Evoformer component of the AlphaFold2 architecture [20].
This approach is related to ours, since sub-sampling the MSA of a protein sequence leads to sampling
a distribution of predicted conformations, much like the deep ensemble method we propose here.
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Figure 1: Augmented AlphaFold2 Structure Module architecture with covariance prediction head.

Finally, the root-mean-square fluctuation (RMSF) of MD simulations has also been used as a measure
for protein flexibility, but MD studies are often prohibitively expensive, and, similarly to pLDDT
scores, RMSF does not always correlate with experimental B-factors [18].

3 Methods

3.1 Formulating Protein Structure Prediction for Uncertainty Quantification

We model protein structure coordinates as originating from a Gaussian process to express the origins
of uncertainty in the structure prediction problem. We model the backbone of a protein structure as
a continuous curve fα evaluated at points ti, i = 1 · · ·Nα where Nα is the number of residues in
the protein. Let α denote the amino acid sequence of the protein and let fα : R → R3, t 7→ (x, y, z)
be the function that encodes the protein’s backbone structure. In this paradigm, the objective of a
structure prediction model is to learn the parametric curve as a function of the input amino acid
sequence. We proceed to model fα as a tuple of independent components, fx, fy, fz , each of which
is drawn from a Gaussian process with mean functions mx

α,m
y
α,m

z
α : R → R3 and covariance

function Kα : (R× R) → R,

fα = (fx, fy, fz) | α ∼ GPx(m
x
α,Kα)× GPy(m

y
α,Kα)× GPz(m

z
α,Kα). (3)

This allows us to explicitly define the covariance function Kα, which encodes the variability of
the atomic coordinates of a given amino-acid sequence, and yields the following equation for the
backbone coordinates:

(x, y, z)i = ϵ1 + fα(ti) = ϵ1 + ϵ2 +mα(ti), (4)

where mα = (mx
α,m

y
α,m

z
α), ϵ1 = (ϵ1,1, ϵ1,2, ϵ1,3)

iid∼ N (0, σ2) and ϵ2 = (ϵ2,1, ϵ2,2, ϵ2,3)
iid∼

N (0,Kα(ti, ti)). The σ2 term allows for noise in the evaluation of fα at points ti that does not
originate from conformational variance. We can now use deep ensembles, as is standard in uncertainty
quantification, thereby attaining predictions of the mean structure mα and its covariance Kα + σ2I,
rather than regressing directly to the experimental coordinates fα(ti). Hence, the aleatoric uncertainty
estimates should capture the flexibility of the protein that is encoded in Kα.

3.2 Adapting Alphafold2’s Structure Module

In order to quantify the prediction uncertainty via sampling estimates over a deep ensemble, the
structure prediction model must provide a variance estimate alongside the mean structure prediction.
To achieve this, we adapt the AlphaFold2 Structure Module [2], as implemented by Abanades et al.
[1], and add a variance head which takes as input the original model’s internal node features (Fig. 1).
These features pass through four fully-connected layers and a soft-plus activation function, which
ensures positivity, to yield a final variance estimate. This architecture is similar to the pLDDT module
AlphaFold2 uses, however, where the pLDDT head is trained as a regression to predict experimental
LDDT values, we train our variance head using maximum likelihood.
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Figure 2: Results of flexibility estimation from our aleatoric uncertainty estimates compared to pLDDT values,
B-factors, and the empirical variance of the structure’s conformations in the loops dataset.

Prior work has demonstrated that variance estimates can be trained by minimising the negative log
likelihood of predictions while using a stop gradient to prevent the variance estimates from affecting
the accuracy of the mean predictions [21, 22]. Here we have augmented the FAPE loss term [2] with
a negative log-likelihood term, attaining a loss function for uncertainty quantification (LUQ).

LUQ = LFAPE +
1

2
log |Σ̂(⌊s⌋)|+ c

2
(x̂− x)T Σ̂−1(⌊s⌋)(x̂− x), (5)

where Σ̂ is a diagonal covariance matrix that is a function of the node features, s, with stop-gradient
⌊·⌋. We explore the effect of the independence assumption made by using a diagonal covariance matrix
on the aleatoric uncertainty estimates in App.A.1. The target and predicted backbone coordinates are
given by x, x̂ ∈ RNα×3, and c is a scaling factor from the FAPE loss that regularises the variance
loss term. In this framework the covariance estimate attenuates the error in the predicted coordinates,
enabling the model to learn to predict high variance for highly flexible datapoints. For more details
on the loss function see App.A.2.

We train an ensemble of five models with different seeds to use deep ensembles to produce our
estimates of aleatoric uncertainty. We plot the aleatoric uncertainty estimates as a curve of predicted
flexibility across the loop. Details of the training procedure are provided in App.A.3.

3.3 Dataset

The loops dataset consists of 68,390 amino acid sub-sequences that refer to loop regions that bridge
beta sheets in protein structures [23]. This dataset contains many examples of identical amino-acid
sequences mapping to multiple distinct loop conformations and we therefore use it to examine
and evaluate our method for quantifying aleatoric uncertainty in protein structures. Due to the
computational expense of training large protein structure prediction ensembles we have restricted our
experiments here to loops of sequence length 11. We have characterised the dataset in App.A.4.

4 Results

4.1 Aleatoric Uncertainty as an Estimator of Protein Flexibility

After training the ensemble, we take the mean of the variance predictions to obtain estimates of
aleatoric uncertainty. Table 1 reports the RMSD of the loop predictions, and shows that the prediction
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accuracy varies substantially across the different models in the ensemble. Figure 2 shows examples
of the aleatoric uncertainty calculated from our model compared to the empirical variance from the
dataset, AlphaFold2’s pLDDT score, and the crystal structures’ B-factors. Broadly, the aleatoric un-
certainty follows the shape of the empirical variance (EINPPKGETPL) or pLDDT (DSQRFANEPGN
& SPMDDNGYDIA) in some cases, while not approximating either in others (MGSPFALQNTI,
App.B.1). This suggests that our aleatoric uncertainty estimate can occasionally capture elements
of the variance arising from the data, but that this desired behaviour is inconsistent, implying that
the variance predictions of the deep ensemble could be improved through further optimisation. Our
results also indicate a potential link between the aleatoric uncertainty and AlphaFold2’s pLDDT
score that warrants exploration. In general, the aleatoric uncertainty does not correlate well with the
B-factors, in line with prior work that has identified inconsistencies between conformational variance
metrics (such as pLDDT and RMSF) and B-factors [24].

Since we are initially seeking to validate the use of the maximum likelihood objective and the adapted
architecture, two of the examples (EINPPKGETPL & DSQRFANEPGN) presented in Fig.2 originate
from the training set. This enables us to explore the aleatoric uncertainty estimate attained with our
method while minimising the interference of epistemic uncertainty. It is also worth noting that while
some examples of aleatoric uncertainty correlate well with other metrics for flexibility (Fig. 2a, b,
& c), we also observed examples where the aleatoric uncertainty does not map onto the empirical
variance or the pLDDT scores (Fig. 2d, App.B.1). We hypothesise that this is due to high epistemic
uncertainty masking the aleatoric uncertainty; a phenomenon which has previously been reported by
[25] and which we further explore below.

We use the edit distance of test-set examples to their closest training example as a proxy for the
expected epistemic uncertainty of the model for that test point. We evaluated the quality of the
aleatoric uncertainty estimates against this proxy for the epistemic uncertainty but were not able to
find a significant correlation (Table 3). To better characterise the relationship between epistemic and
aleatoric uncertainty, we reverted to simulations with synthetic data to which epistemic and aleatoric
uncertainty were injected in controlled amounts.

4.2 Simulations Show Dependency on Epistemic Uncertainty

We simulated the effect of epistemic uncertainty on estimates of the aleatoric uncertainty by training
an ensemble of neural networks on a simple regression task. We generated a toy dataset with
heteroscedastic noise and simulated the epistemic uncertainty of the model predictions by varying the
number of training samples. We then assessed the quality of the aleatoric uncertainty estimates by
calculating the error between the estimate and the true variance of the data-generating distribution.
For more details and results of the simulations, please see App.B.2. The Spearman’s rank correlation
coefficient for a two-tailed hypothesis test examining the existence of a monotonic relationship
between epistemic uncertainty and the error of aleatoric uncertainty predictions is 0.5631 with a
p-value of 0.0007 < 0.05 for n = 29. It is therefore highly likely that, in our framework, high
epistemic uncertainty has a detrimental impact on the quality of aleatoric uncertainty estimates.

This finding is supported by our results that, while aleatoric uncertainty estimates appear in some
cases to be well correlated with existing metrics for protein flexibility, the high epistemic uncertainty,
implied by the relatively high RMSD and estimated epistemic uncertainty of predictions of training
set structures (Tables 1, 2), potentially prohibits more consistent flexibility estimates.

5 Discussion

We have proposed a novel method for exploring protein flexibility with structure prediction models
by recasting the prediction of conformational variance as the estimation of the aleatoric uncertainty.
After adapting and training an implementation of the AlphaFold2 Structure Module on our loops
dataset, we found that a select number of our flexibility estimates align well with existing measures
of conformational variance. However, we also identified instances of disagreement, which we
hypothesise is due to high epistemic uncertainty and could potentially be remediated by hyper-
parameter tuning. Promisingly, some models in the ensemble exhibit more accurate mean predictions,
suggesting that the architecture remains sufficiently expressive to accurately predict protein structures
after adding the variance head. Alongside the impact of high epistemic uncertainty on the quality
of aleatoric uncertainty predictions, we have explored the impact of the diagonal covariance matrix
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assumption (App.A.1), showing that the aleatoric uncertainty estimates suffer under the assumption
of independence between neighbouring residues in the covariance matrix; this insight offers another
potential avenue of improvement for our method. In conclusion, we consider the results presented
here as preliminary indicators that approaching protein structure prediction with established methods
from uncertainty quantification holds promise for differentiating prediction errors due to the intrinsic
conformational variance of proteins from errors due to model training and data biases.
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Appendix

Tables

Each Conformation Mean Conformation
Type Train Val Test Train Val Test

Model 1 2.0985 2.7710 2.9211 2.0760 2.7131 2.9107
Model 2 1.0616 2.4403 2.6345 0.9926 2.3987 2.6060
Model 3 1.3830 2.4122 2.6320 1.3282 2.3791 2.6079
Model 4 1.9821 2.8083 2.9911 1.9426 2.7442 2.9775
Model 5 0.8508 2.1904 2.4119 0.7683 2.1904 2.3864

Ensemble 2.841 3.108 3.3419 2.715 3.103 3.3387
Table 1: Table of mean RMSDs over predictions made on loops in the training, validation, and test
set. The ‘Type’ column refers which model(s) are making the predictions. The ‘Ensemble’ row is
the RMSD of the mean prediction made by all 5 models. The ‘Each Conformation’ column uses the
target structure in the dataset as the target when calculating the RMSD. The ‘Mean Conformation’
column uses the mean of all conformations corresponding to the loop as the target when calculating
the RMSD. RMSD values in the table indicate a generally poor performance.

Loop RMSD Epistemic Aleatoric Confs Confs 1.25Å
SPLPGPSGNVE 2.513 10.147 0.3135 3 1
MGSPFALQNTI 2.691 10.147 0.3135 8 2
LDQSEAPVRQN 3.304 10.147 0.3135 7 3
AEHSELQGQKQ 2.527 7.084 0.2794 3 1
CTYPAHYAGGM 2.689 7.084 0.2794 2 1
EINPPKGETPL 3.163 10.147 0.3135 6 1

DSQRFANEPGN 2.625 10.147 0.3135 2 1
Table 2: Table showing the performance of the model in predicting the mean and variance for the
selected points in the training set. It includes the RMSD of the ensemble when compared with the
mean conformation of stored conformations, the mean epistemic and aleatoric uncertainties of the
prediction, and information about the total number of conformations for this loop in the loops dataset
and the number of distinct conformations remaining after combining loops within 1.25Å of one
another. We do not observe the mean aleatoric uncertainty showing higher values for loops with more
distinct conformations at 1.25Å.

Loop Edit Dist RMSD Epistemic Aleatoric Confs Confs 1.25Å
NSWGTTWGEEG 3 2.719 7.508 0.1398 4 1
SPQDDMGYDIA 4 2.437 7.226 0.2732 5 1
KNNNEVGIGAP 7 3.352 12.229 0.2407 6 1

Table 3: Table showing the predictive performance of our model on select points of the test set. The
mean epistemic uncertainty roughly reflects the minimum edit distance of the loops to the loops of
the training set but it is better reflected in the RMSDs of the predictions. As with the training set,
mean aleatoric uncertainty shows no connection to the number of conformations columns.

A Methods

A.1 Covariance Matrix Structure

As the Structure Module makes joint predictions on the three dimensional coordinates of the protein
structure, the network has the capacity to predict a full covariance matrix rather than solely the
diagonal components. The residues within a protein are heavily dependent on both the residues
that neighbour them in the amino acid sequence but also the residues that are close to them in 3D
space [26]. This suggests that consideration of covariance terms could be an important factor in the
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prediction of variance terms. However, consideration of the full covariance matrix is very costly due
to the inversion of the matrix in the loss function of equation 5 [27]. Therefore, despite the capacity
of the model to estimate the covariance terms, we only consider the estimation of the variance terms.

We make the assumption that the backbone function is a draw from the following Gaussian process,

(fx, fy, fz) | α ∼ GP(mx
α, Dα)× GP(my

α, Dα)× GP(mz
α, Dα),

where Dα is a covariance function such that Dα(ti, tj) = δijKα(ti, tj) and δij is the Kronecker
delta.

To investigate the impact of the assumption of a diagonal covariance matrix across protein structure
predictions, we consider a regression problem on a parametric curve where the underlying function
is drawn from three Gaussian processes for each coordinate basis and is evaluated at a number of
sensor locations along the curve, emulating the problem formulation in Section 3.1. We implement
a feedforward neural network to learn the mean and variance along the curve from a dataset of
conformation samples. The model will make joint predictions over each conformation sample,
predicting a mean conformation and a diagonal covariance matrix. We train an ensemble of 10
models in each case to produce estimates of the aleatoric uncertainty.

We compare the quality of the aleatoric estimates given by the ensemble across a range of lengthscale
values for the Radial Basis Function kernel of the Gaussian processes [28]. This is so that we are
able to see how well the aleatoric estimates correspond to the true variance values as the correlation
strength of off-diagonal points in the ground truth covariance matrix varies. We also consider an
‘altered’ RBF kernel to consider the effect of covariance between distant points. It takes the form

k(t1, t2) = RBF(t1, t2) + 0.2|t1 − t2| · 1{|t1 − t2| > π},

where 1 is the indicator function. In both cases, a diagonal matrix is added to the covariance matrix
derived from the kernel to add heteroscadastic noise of the form sin2( t3 ), with the following training
details,

Data: A training example is a sample from the multivariate normal distributions, x ∼ N (µx,Σ), y ∼
N (µy,Σ), z ∼ N (µz,Σ) where µx,i = 5ti

4 cos2(ti), µy,i = 5ti
4 sin2(ti), µz,i = 5

3 cos(ti) for 20
fixed sensor locations, ti=1···20, evenly spaced between −π and π. Each experiment uses 30 training
examples which is 30 samples of (x, y, z). The covariance matrix Σ differs across experiments. Under
the RBF kernel, it takes the form Σij =

1
2l2 exp(−(ti − tj)

2 + 1ti=tj sin(
ti
3 )

2 where the latter term
gives the heteroscedastic variance along the diagonal of the covariance matrix. Under the altered
RBF kernel, the covariance matrix takes the form Σij =

1
2l2 exp(−(ti − tj)

2 + 1|ti−tj |>π
|ti−tj |

5 +

1ti=tj sin(
ti
3 )

2. The lengthscale, l, is also altered across experiments varying between values 0.01
and 2 in intervals as given in Table 5. For the test set, a single sample is used but with the 20 sensor
locations chosen uniformly at random from the range t ∈ [−π, π].

Model: The model is a feedforward network with leaky-relu activations. The trunk of the network
has a single hidden linear layer. The mean head of the network has two additional hidden layers and
the variance head has an additional four hidden layers. The output of the variance head is passed
through a softplus activation.

Training: For each covariance matrix structure, we trained an ensemble of 10 models. They were
trained for 300 epochs using ADAM with a weight decay parameter set to 0.0001. We used cosine
annealing with warm restarts as a learning rate scheduler with a 50 epoch warm up time and a learning
rate range of (0.0001, 0.001). The batch size was set to 1

The predicted aleatoric estimates along the curve are shown in Figure 4 and compared to the known
variance. Table 5 records the mean squared error of the aleatoric uncertainty estimates with the
ground truth variance as described in Equation 8.

Across both kernel types, we see that the aleatoric estimates made on the train set resemble the
ground truth variance more closely than the estimates made on the test set. In the test set, the effect
of the lengthscale parameter does not exhibit a clear trend. However, in the train set there is a clear
trend as the lengthscale varies. In both kernel types, Table 5 shows that larger lengthscale values
in the underlying kernel are associated with worse aleatoric uncertainty predictions as they relate
to variance. In Figure 4, the aleatoric uncertainty estimates made on the test set are more closely
centered around the ground truth variance values. However, closer inspection on the RBF kernel case
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Figure 3: Heatmaps of covariance matrices used to generate the sets of training data. The top row is a
sample of covariance matrices from a Gaussian process with an RBF kernel. The bottom row is a
sum of the covariance matrices from the altered RBF kernel.

Figure 4: Plot comparing the aleatoric estimates made over sensor locations as the RBF lengthscale
varies. The top row gives the results from the RBF kernel and the bottom row for the altered RBF
kernel. The black line is the true variance. In the train set, aleatoric uncertainty estimates are closer
in value to the ground truth variance as the lengthscale decreases but match the shape more closely as
the lengthscale inscreases.
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RBF Kernel Altered RBF Kernel
l Train MSE Test MSE l Train MSE Test MSE

0.01 1.091 4.957 0.01 1.247 4.842
0.05 1.377 3.388 0.05 2.079 4.018
0.1 1.433 5.453 0.1 1.867 6.056
0.3 1.289 2.131 0.3 2.204 3.288
0.5 0.788 3.103 0.5 0.8385 3.997
0.7 1.456 3.170 0.7 1.441 4.115
1 0.719 4.480 1 0.9292 6.447
2 0.558 2.598 2 0.7591 4.226

Mean 1.089 3.66 Mean 1.421 4.624
Table 4: Table containing the mean squared error of predictions by the deep ensemble across
lengthscale values and kernel function types on both the train and test set.

RBF Kernel Altered RBF Kernel
l Train Var MSE Test Var MSE l Train Var MSE Test Var MSE

0.01 0.1011 0.1252 0.01 0.0398 0.1316
0.05 0.1058 0.1796 0.05 0.0417 0.1099
0.1 0.1091 0.3202 0.1 0.0437 0.0796
0.3 0.1072 0.1576 0.3 0.0577 0.1409
0.5 0.1116 0.2193 0.5 0.0900 0.2135
0.7 0.1348 0.1812 0.7 0.1097 0.1888
1 0.1656 0.2510 1 0.1366 0.2006
2 0.2368 0.3527 2 0.1936 0.2623

Mean 0.1340 0.2234 Mean 0.0890 0.1659
Table 5: Results of the experiment comparing the quality of aleatoric estimates across underlying
covariance structures. The table records the mean squared error of the aleatoric uncertainty estimates
against the ground truth variance on both the train and test sets.

show that the shape of the aleatoric uncertainty estimates made for larger lengthscale values more
closely resemble that of the ground truth.

Across covariance matrix structures, results from the altered RBF kernel are often better in their
estimations of ground-truth variance than those of the RBF kernel. In the case of the protein structure
prediction problem, we would anticipate that the true covariance structure will more closely resemble
that of the altered RBF kernel than the standard RBF kernel and with a larger lengthscale. This is
because the atoms in the structure will have strong dependencies on the positions of neighbouring
atoms, causing stronger values in the band of the covariance matrix. They will also be dependent on
certain atoms that are far away in the sequence but close in physical space, causing stronger values in
positions far from the band of the matrix [26]. Our results suggest that the covariance terms from
non-neighbouring atoms will not hinder the ability of the model to produce good aleatoric uncertainty
estimates but the dependencies between neighbouring atoms will reduce the quality of estimates
made with only a diagonal covariance matrix.

A.2 Loss Function Adaptation

In order to estimate the aleatoric uncertainty of protein structure predictions, we alter the architecture
of the Structure Module to give a variance estimate. We describe how we alter the loss function of
the network to produce good variance estimates.

The likelihood-based method proposed by [21] involves modelling the output of a network as a
Gaussian, parameterised by the mean head output, µ(x; θ), and the variance head output, σ(x; θ),
and minimising the negative log likelihood of this predicted distribution. The authors describe the
learning of the heteroscedastic variance as a form of ‘loss attenuation’ as the variance is not learned
to match a labelled variance but rather is learned to account for error in the mean prediction. The
formula is given by
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LNLL =
1

N

N∑
i=1

1

2σ2(xi; θ)
∥yi − µ(xi)∥2 +

1

2
log σ2(xi; θ), (6)

where N is the number of observations, yi is the true label for observation xi, and µ, σ2 are the mean
and variance heads with network parameters, θ.

However, recent works have determined that the method proposed by Kendall and Gal can lead to
a degradation in the quality of mean predictions [29, 22]. By jointly training a network to produce
both a mean and variance output, the network is permitted to explain away a poor performance on
some difficult data points by giving them a large variance and can therefore avoid improving the
predictive performance of the mean head whilst maintaining a small loss. Networks trained in this
manner exhibit a poor performance in mean predictions when compared to networks that predict just
a mean output.

To allow a network to learn a heteroscedastic variance whilst maintaining ‘faithful’ estimates of the
mean, Stirn et al. [22] suggest a separation of the mean head and the variance head by implementing
a stop gradient between the variance head and the trunk of the network thereby allowing the variance
head to take advantage of the features learned by the trunk network but not allowing the network to
‘cheat’ in its mean predictions. Secondly, they recommend scaling the gradient update of the mean
head by the variance estimate to convert the learning procedure to a Newton gradient step as this
removes an additional inversion the covariance matrix.

We adopt this method of variance prediction in our network as it is easy to integrate into the existing
Structure Module network without having to compromise on mean predictive performance. The loss
function that implements these two features takes the form of

Lff =
1

N

N∑
i=1

1

2
∥yi − µ(ftrunk(xi))∥2 − logN (y; ⌊µ(ftrunk(xi))⌋,Σ(⌊ftrunk(xi)⌋)), (7)

where ⌊·⌋ denotes the stop gradient operation that prevents the flow of gradients through the argument
and ftrunk is the trunk of the network that provides input to both the mean and variance heads.

We therefore alter the Structure Module loss function as follows. Throughout training, the model
minimises the FAPE loss

LFAPE =
c

M ·N
∑
ij

min

(
ϵclamp,

√
∥x̂ij − xij∥2 + ϵ

)
,

where xij is the position of atom xj relative to frame Ti, i ranges over the number of backbone
frames which is equal to the number of residues in the protein (N ) and j ranges over the total number
of atoms (M ).. We add on to this a negative log likelihood term to give the loss of Equation 5,

LUQ = LFAPE +
1

2
log |Σ(⌊s⌋)|+ c

2
(x̂− x)TΣ−1(⌊s⌋)(x̂− x).

A.3 Training Details

Data: The models are trained on 90% of the length 11 loops with 30% of the training set used as a
hold out validation set for early stopping. For each loop sequence in the training set, the model is
trained on all associated conformations for that loop meaning that the model will observe multiple
targets for a given sequence input. The test set has been chosen to include loop sequences that are a
range of minimum edit distances ([30]) away from the points in the training and validation sets to
simulate varying degrees of epistemic uncertainty.

Training: For each of the five models in the ensemble, the networks are trained using rectified
RADAM which is a variant of ADAM that is more robust to the choice of learning rate [31]. The
learning rate is adjusted by a cosine annealing with warm restarts scheduler with a 50 epoch warm up
and learning rate values in the range of [0.0001, 0.001]. We train with a batch size of 32. We train for
a maximum of 1000 epochs per training step and use early stopping with a patience of 60 epochs in
the first stage of training and 75 epochs during finetuning. The FAPE loss, bond ideality loss, and
clash loss weightings are all set to 1.
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Feature Description
aa_loop The sequence of amino acids that refer to the loop structure.
n_conformations The number of occurrences of this loop structure in proteins

stored in the PDB.
codes The four letter PDB codes that uniquely identify the proteins

each conformation occurs in e.g 6rpt.
chains The identifiers of the protein chains in which the conforma-

tions occur.
resis The residue numbers identifying the loop in the chain.
n_conformations_.5 The number of distinct conformations remaining after col-

lapsing clusters within a 0.5Å RMSD of one another using
agglomerative clustering.

n_conformations_1.25 The number of distinct conformations remaining after col-
lapsing clusters within a 1.25Å RMSD of one another using
agglomerative clustering.

n_conformations_2 The number of distinct conformations remaining after col-
lapsing clusters within a 2Å RMSD of one another using
agglomerative clustering.

Table 6: Names and descriptions of the features recorded in the loops dataset.

First the mean head of the network is trained with the standard FAPE loss and auxiliary losses and
then the variance head is trained separately. We are able to do this due to the addition of the stop
gradient in the variance loss function. The hyperparameters chosen for these models were chosen
to be the same as the original model in the Structure Module as these values were carefully tuned
to allow the model to make optimal predictions. The exceptions to this are the maximum number
of epochs, which was reduced from 5000 to 1000, and reducing the patience of the model in early
stopping. The reason for such decisions is because we expect that the problem of predicting a loop
structure will be simpler than that of a whole protein as it is a much shorter length. Therefore, no
hyperparameter tuning was performed.

A.4 Loops Dataset

The loops dataset consists of 68,390 amino acid sub-sequences that refer to loop regions that bridge
beta sheets in protein structures. After removing entries with inconsistencies in the data in the form
of missing sections, we have 60,240 total sub-sequences which is a reduction of 8,150 entries from
the initial dataset.

For each subsequence, there exists a number of conformations of the loop that are observed in whole
protein structures. Each conformation is an extract of whole protein structure, differing from one
another only in the anchoring residues (two residues on either side of the residues common to all
conformations). Figure 5 demonstrates an example of a set of conformations that refer to the same
subsequence of amino acids within different proteins. As can be seen in Figure 6, the number of
conformations for a given loop amino acid sequence is heavily positively skewed. The number of
conformations per sequence ranges from one to 8031. The proportion of loop amino acid sequences
that have five conformations or fewer is over a half at 54.3%, therefore there will be a limited number
of conformations available for many loops. In total, there are 1,267,554 conformations.

A number of features in the loops dataset are concerned with the number of distinct conformations
remaining after combining conformations within an RMSD threshold. These values provide us with
a baseline indication of loop flexibility as we interpret the loop structures that retain a larger number
of conformations at larger thresholds as having more conformational diversity and therefore more
flexibility.

B Appendix Results

B.1 Further Results of Flexibility Estimation

The main body of the text contains examples of estimations of protein structure flexibility estimations
that correspond with pLDDT values or empirical. variance estimates. Here, we provide examples of
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Figure 5: Example of the two conformations stored for the loop with amino acid sequence DNTQN-
DANTKE. The loops are highlighted in red. Images are generated by PyMOL [? ].

Figure 6: Count plot of how many conformations exist for a given loop amino acid sequence in the
loops dataset. The red vertical lines denote the minimum and maximum log number of conformations
associated with a sequence.

estimates of flexibility estimates in Figures 7, 8 that do not correlate with existing flexibility measures
nor the empirical variance.
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Figure 7: Figures of first set of examples of flexibility estimates made by model that do not imitate
alternate flexibility estimation methods.
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Figure 8: Figures of second set of examples of flexibility estimates made by model that do not imitate
alternate flexibility estimation methods.

B.2 Impact of Epistemic Uncertainty

Heteroscedastic aleatoric uncertainty estimates are made dependent on a data input, as such if the
model has a poor understanding on how the mean function behaves at this input it is likely the case
that the aleatoric uncertainty estimates will not be truly reflective of the noise in the underlying data.
We expect that high epistemic uncertainty will affect the quality of the aleatoric uncertainty estimates
and so the epistemic uncertainty of a prediction should be considered when evaluating how well
flexibility relates to aleatoric uncertainty.
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Figure 9: Line plot denoting the trend of the squared error of the estimated aleatoric uncertainty and
value of the true variance function, averaged across test points, against the number of training points in
the simple regression task. The blue dotted line is the line of best fit. Fewer training points indicates a
higher epistemic uncertainty. We observe a trend of reduced quality of aleatoric uncertainty estimates
as the epistemic uncertainty increase. The red dotted lines indicate where outliers are removed. At
115 train points, the MSE was 1.1291 and at 15 train points the MSE was 0.7783.

We perform a two-tailed hypothesis test to determine if there exists a relationship between epistemic
uncertainty and the quality of the aleatoric uncertainty estimates. We perform a simple regression
task with an ensemble of neural networks on a toy dataset with heteroscedastic noise. We vary
the epistemic uncertainty by varying the number of training samples and assess the quality of the
estimated aleatoric uncertainty through the squared error of the estimate and the ground-truth variance
function.

MSE(Σ̂,Σ) =
1

N

N∑
i=1

(σ̂i − σi)
2, (8)

where Σ = {σi}Ni=1 is the ground truth variance at each of the N training points and Σ̂ are the
aleatoric uncertainty estimates calculated from the variance predictions of the ensemble of models.

Data: The data is sampled from the function f(x) = sin(x2) + x cos(2x) + ϵ, where ϵ ∼
N (0, sin2(x) + x

8 + 0.01). The distribution of the data therefore has an increasing amount of
variance in the noise the further from the origin. The number of training points differs across the 29
experiment runs, ranging from n = 10 to n = 150 in increments of 5. The test set consists of 150
samples from the function.

Model: The model is a feedforward network with 5 hidden layers and relu activations in the trunk of
the network and an extra hidden layer in the variance head of the network. The output of the fifth
hidden layer is passed to the mean head and the variance head. The mean head consists of a single
linear layer. The variance head consists of two linear layers where the output is passed through a
softplus activation to ensure positivity.

Training: We trained an ensemble of 100 models per experiment. Each were trained independently
with different seeds. The training algorithm we used was stochastic gradient descent to minimise the
loss function given in Equation 7 with a learning rate of 0.01 and a batch size of 20 (or 10 in the case
of 10 training points) over 800 epochs.

As we cannot make an assumption of normality on the quality of the aleatoric uncertainty estimate
and the number of training samples, we use the Spearman’s rank correlation coefficient as the test
statistic for a one-tailed test.

H0 : The mean squared error of the aleatoric uncertainty and number of
training points are not monotonically related.

H1 : The mean squared error of the aleatoric uncertainty and number of
training points have a positive monotonic relationship.
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The mean squared error between aleatoric uncertainty estimates and ground truth variance are plotted
in Figure 9 with the two outlier values removed. The correlation coefficient for this test (including
the outliers) is 0.5631 with corresponds to a p-value of 0.0007 for n = 29. Therefore at the 0.1%
significance level, there is strong evidence to suggest a positive correlation. This can be clearly seen
in Figure 10 where the aleatoric uncertainty estimated for test set predictions are plotted along the
bottom row. The aleatoric uncertainty estimates better match the trend in ground truth variance as the
number of training samples increase. Near the origin, the estimates indicate small variance with the
values growing as the x values increase in magnitude.
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Figure 10: The predictive performance of the model in the simple regression task as the number of
training points vary. The plots indicated the mean prediction (blue line) and the true mean (black
line) with shaded regions giving the aleatoric uncertainty. As epistemic uncertainty increases, the
aleatoric uncertainty estimates become a poorer estimate of ground truth variance.
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