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Abstract

Fusion oncoproteins, a class of chimeric proteins arising from chromosomal translo-
cations, are major drivers of various cancers, particularly in children. These proteins
are intrinsically disordered, large, and lack well-defined druggable pockets, mak-
ing them highly challenging therapeutic targets for both small molecule-based
and structure-based approaches. Protein language models (pLMs) have recently
emerged as powerful tools for capturing protein sequence features, enabling down-
stream applications such as disorder prediction, binding site identification, and
therapeutic design. However, existing pLMs, including ESM-2 and ProtT5, have
not been trained on fusion oncoprotein sequences, limiting their effectiveness
for this class of proteins. In this work, we introduce FusOn-pLM, a fine-tuned
pLM specifically trained on a newly-curated, comprehensive set of fusion onco-
protein sequences, FusOn-DB. FusOn-pLM employs a novel cosine-scheduled
masked language modeling (MLM) strategy, dynamically varying the masking
rate from 15% to 40% during training, to balance feature extraction and represen-
tation quality. Our model demonstrates improved performance against baseline
embeddings on fusion-specific tasks, including fusion oncoprotein localization and
puncta formation propensity, as well as strong prediction of intrinsically disordered
residues and properties. Furthermore, as a case study of its biological relevance,
we show that FusOn-pLM is uniquely capable of predicting drug-resistant mu-
tations in fusion oncoproteins, offering a framework for therapeutic design that
anticipates resistance mechanisms. By leveraging these capabilities, FusOn-pLM
provides biologically relevant representations for advancing therapeutic discovery
in fusion-driven cancers.
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1 Introduction

Fusion oncoproteins arise from chromosomal rearrangements that fuse segments of two distinct genes
(Figure 1A).(1) The resulting mutants contain unrelated functional domains connected by long regions
of disorder.(2) This flexible configuration promotes constitutive activation or aberrant regulation
of the fusion proteins, driving oncogenic transformation and tumor development.(3) Thousands of
unique fusion oncoproteins have been discovered by sequencing patient tumors, and several common
culprits such as EWSR1::FLI1 in Ewing’s sarcoma,(4) PAX3::FOXO1 in alveolar rhabdomyosarcoma
(ARMS)(5), SS18::SSX1 in synovial sarcoma (6), and EML4::ALK proteins in non-small-cell
lung cancer (7) are well characterized in the literature. However, even the best understood fusion
oncoproteins have proven to be elusive drug targets due to their structural instability and absence
of defined binding pockets.(2) For small molecules that are able to bind fusion oncoproteins, such
as EWSR1::FLI1,(8; 9) these compounds do not achieve strict fusion specificity, binding to one
of their head or tail protein counterparts that are often critical regulators of cellular homeostasis.
As such, biologics, such as antibodies, miniproteins, and peptides, represent attractive therapeutic
alternatives, but necessitate advanced design approaches for specific targeting to these undruggable
proteins.(10; 11; 12; 13)

Recently, structure-based prediction and design models, such as AlphaFold and RFDiffusion,(14; 15;
16) have accelerated the design of biologics targeting pathogenic proteins. These tools, by default,
fail to accurately capture the structure of numerous conformationally unstable proteins, limiting their
usefulness for fusion oncoprotein targeting.(17) Meanwhile, protein language models (pLMs), such
as ESM-2 and ProtT5, have been trained on millions of protein sequences, from the exceedingly
stable to the intrinsically disordered.(18; 19) They capture physicochemical, structural, and functional
properties of proteins from their sequence alone, and have even been extended to design novel
proteins (20; 21) and binders.(22; 23) However, these models were not trained on fusion oncoprotein
sequences, which are functionally and structurally distinct from their wild-type counterparts due to
their altered binding sites and unique breakpoint junctions.(24)

To fill this critical gap, we fine-tune the state-of-the-art ESM-2 pLM on over 44,414 fusion oncoprotein
sequences collected from the FusionPDB and FOdb databases, collectively termed the new FusOn-
DB database.(2; 25) Training on FusOn-DB data, we unfreeze all of the weights of the final eight
layers of the ESM-2-650M model and fine-tune these parameters using a masked language modeling
(MLM) head. To enhance the model’s ability to learn the unique properties of fusion oncoproteins,
we introduce a novel cosine-scheduled masking strategy, dynamically varying the masking rate
from 15% to 40% during training. This approach enables our top-performing model, FusOn-pLM,
to capture the distinct structural and functional features of fusion oncoproteins. As evidence, our
results demonstrate that FusOn-pLM outperforms baseline embeddings on diverse fusion-specific
tasks, including puncta formation propensity and the prediction of intrinsic disorder. Moreover, we
showcase its utility in identifying drug-resistant mutations in fusion oncoproteins, highlighting its
biological relevance and potential for advancing therapeutic design.

2 Results

2.1 Fusion oncoproteins comprise a distinct and diverse sequence dataset

ESM-2 was pretrained on 65 million sequences from UniRef50, a database which includes over 9,000
wild-type proteins known to act as the head or tail components of fusion oncoproteins.(26) However,
ESM-2 was not trained on the fusions themselves (Figure 1B).(18) By collecting fusion oncoprotein
sequences from the FusionPDB and FOdb databases,(2; 25) two complementary resources that
provide experimentally validated and computationally predicted fusion proteins with clinical or
biological relevance, we assembled FusOn-DB, a comprehensive and non-redundant dataset of
44,414 fusion oncoprotein sequences. Running BLAST between FusOn-DB and SwissProt(27)
revealed a wide distribution of sequence homology. On average, fusion oncoproteins shared 71.0%
identity with the top-aligning SwissProt sequence, which corresponded to either the head or tail
protein in 87% of cases. Over 12,000 fusion oncoproteins had <60% maximum identity, and over
5,000 had <50% maximum identity.

Fusion oncoproteins are also characterized by a high level of structural disorder. AlphaFold2 struc-
tures of four highly-studied fusion oncoproteins (PAX3::FOXO1, EWSR1::FLI1, EML4::ALK, and
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Figure 1: Overview of fusion oncoproteins (FOs). A FOs are formed by chromosomal rearrangements
between two independent genes, the 5’ head gene and 3’ tail gene. B ESM-2 training data included
the wild-type head and tail proteins involved in FOs, but not FOs themselves. FOs were compared
to SwissProt, a representative subset of ESM-2’s training data, via BLAST. The best alignments
for each FO are shown (% identity = total identities / length of FO sequence). C AlphaFold2
structures of four well-studied fusion oncoproteins: PAX3::FOXO1, EWSR1::FLI1, EML4::ALK,
and SS18::SSX1. Structures are colored by composition (red = head, blue = tail) and pLDDT,
AlphaFold2’s primary confidence metric. Each FO has multiple known breakpoints, producing
different amino acid sequences. Breakpoint regions (rectangle), per-residue pLDDTs (bar coloring),
and average pLDDTs (colored circle) are shown for each sequence. D The percentage of disordered
residues per sequence for FOs and their respective heads and tails. Average disorder content is 45.9%
for FOs, 33.7% for head proteins, and 32.7% for tail proteins. Only FOs with AlphaFold2 structures
available on FusionPDB are included.

SS18::SSX1) largely exhibit low (50-70) and very low (< 50) confidence pLDDT scores, indicat-
ing extensive intrinsic disorder (Figure 1C). These structural trends are consistent across various
sequences for the same fusion genes, arising from different breakpoints (Figure 1C). To quantify the
difference in disorder between fusion oncoproteins and wild-type proteins, we used a well-validated
threshold to assign disorder labels (pLDDT < 68.8 = disordered)(17) to each residue in a set of
fusion oncoproteins. Fusion oncoproteins were 45.9% disordered on average, while head proteins
were 33.7% disordered and tail proteins were 32.7% disordered (Figure 1D). Similarly to fusion
oncoproteins, the gold-standard disorder dataset Disorder-NOX(28) had a greater proportion of near-
fully disordered proteins than fusion heads and tails (Supplementary Figure S1). In contrast, fusion
oncoproteins had a more right-skewed distribution (Supplementary Figure S1). In total, these findings
highlight the distinct sequence and structural characteristics of fusion oncoproteins, underscoring the
need for better representations tailored to their properties.

2.2 Cosine-scheduled masking enables accurate fusion oncoprotein sequence recovery

Having curated a diverse dataset of fusion oncoproteins, we sought to fine-tune the standard ESM-2-
650M model via an MLM objective (Figure 2A).(18) This classic training approach forces the model
to reconstruct masked tokens from sequence context, refining representations to emphasize unique
physicochemical properties of fusion oncoproteins. Fixed-rate masking at 15% is the established
standard in most BERT-based MLM architectures,(18; 29) but fusion oncoproteins’ intrinsic com-
plexity prompted us to explore higher and variable masking rates. Recent findings from Wettig et al.,
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have demonstrated that increasing masking rates (up to 40%) improves performance by forcing the
model to rely more heavily on sequence context for token reconstruction.(30) Additionally, varying
the masking rate during training balances representation learning (improved by lower masking rates)
with reconstruction quality (improved by higher masking rates).(31) Motivated by these findings,
we fine-tuned the final eight layers of ESM-2-650M using a cosine scheduler to dynamically adjust
the masking rate from 15% to 40% across each training epoch (Figure 2A), hypothesizing that
this approach would maximize model performance by gradually increasing the difficulty of the
reconstruction task.

Our results strongly validated this hypothesis. When evaluated on a 15% masked, held-out test set
from FusOn-DB, our fine-tuned model consistently outperformed both fixed-rate masking strategies
and the non-fine-tuned ESM-2-650M baseline (Figure 2B). ESM-2-650M, which uses a static 15%
masking rate during pre-training,(18) performed poorly, with a loss of 1.83 and a pseudo-perplexity of
6.24. As a note, pseudo-perplexity (pPL) is a metric adapted from language modeling to evaluate how
well a model predicts masked tokens, with lower values indicating better reconstruction performance
and overall sequence comprehension. While far better, fine-tuning FusOn-pLM with fixed masking
rates of 15%, 20%, and 25% produced progressively higher loss and pPL values, reflecting the
difficulty of optimizing both sequence reconstruction and representation learning with static masking.
In contrast, cosine-scheduled masking achieved better performance across all tested ranges, with the
best results observed for a masking range of 15%-40% (loss: 1.29; pPL: 3.62). Further exploration of
different adjusted-rate masking schedulers, including log-linear and stepwise strategies, demonstrated
that the cosine scheduler still remained optimal, achieving the lowest loss and pPL values (1.28 and
3.61, respectively) (Figure 2B).

2.3 FusOn-pLM generates fusion oncoprotein-relevant representations

To determine if FusOn-pLM produces relevant embeddings, we sought to evaluate its performance
on downstream fusion oncoprotein-specific tasks. We first assessed the embeddings’ ability to
accurately predict the formation and localization of puncta, which are critical in driving cancer
pathology.(2) Many fusion oncoproteins have been shown to form puncta via phase separation, and
these condensates may localize to the nucleus and/or cytoplasm (Figure 3A).(2) Experimental data
describing the puncta formation and localization of 178 fusion oncoproteins were used to train three
FusOn-pLM-Puncta models, consisting of FusOn-pLM embeddings fed into a gradient boosting
(XGBoost) classifier (Figure 3B). For puncta formation, FusOn-pLM embeddings outperform ESM-2-
650M, ProtT5, and FOdb physicochemical embeddings on four relevant classification metrics across
the entire held-out test dataset (Figure 3C). We observed similar results when predicting localization
to the nucleus, the primary location of fusion oncoproteins (Figure 3D).(3) While manually-curated
FOdb embeddings perform strongly on cytoplasm localization prediction, FusOn-pLM embeddings
prove most effective on critical metrics, such as AUROC (Figure 3E). In total, these results indicate
that FusOn-pLM learns representations capturing key properties encoded in fusion oncoprotein
sequences.

2.4 FusOn-pLM can accurately predict disordered content in wild-type and fusion
oncoproteins

Given that fusions are structurally disordered, we hypothesized that FusOn-pLM’s embeddings may
encode information pertinent to the properties of intrinsically disordered regions (IDRs). Specifically,
we sought to predict: 1. Asphericity, which quantifies a protein’s ensemble shape and molecular
conformation, 2. End-to-end radius (Re), the average distance between the N-terminal and C-terminal
residue, 3. Radius of gyration (Rg), the average distance between a protein’s residues and its center
of mass, and 4. Polymer scaling exponent, which describes an IDR’s behavior when solvated in
water.(32) Individual FusOn-pLM-IDR regressors were trained on non-fusion IDR sequences for
each property, using multi-layer perceptron (MLP) heads to predict the property values directly
from FusOn-pLM embeddings (Figure 4A). We demonstrate that FusOn-pLM-IDR models achieve a
high coefficient of determination (R2) on all four properties, indicating a strong fit (Figure 4B). We
also find that FusOn-pLM and ESM-2-650M embeddings achieve nearly equivalent performance,
signaling that FusOn-pLM did not overfit on fusion oncoproteins and lose ESM-2’s intrinsic ability
to represent a wide range of proteins (Supplementary Figure S2).
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Figure 2: FusOn-pLM A Model pipeline. Data preparation: Fusion oncoprotein sequences (length
L) undergo random masking, where each amino acid has equal likelihood of selection. The masking
rate increases from 15% to 40% throughout each epoch according to a cosine scheduler. The masked
sequence is fed as input and the original sequence as label into the model: 33-layer ESM-2-650M
with an MLM head. The final eight layers are unfrozen for fine-tuning. Output: the MLM head
outputs an attempted reconstruction of the original sequence, which is compared with the label to
calculate loss. FusOn-pLM embeddings, of shape [L, 1280], are extracted from the final layer of the
ESM-2-650M encoder stack. B Test set loss and perplexity (pPL) for various masking strategies.
Fixed-rate masking is tested at three rates, and adjusted-rate masking is tested in five ranges. At the
top-performing range (15%-40%), three schedulers are tested (cosine, log-linear, stepwise).

Next, we sought to assess FusOn-pLM’s ability to identify IDR regions within protein sequences.
The FusOn-pLM-Diso model was trained to predict per-residue probabilities of disorder directly
from FusOn-pLM embeddings (Figure 4C). When evaluated on the Disorder-NOX dataset used in
the CAID2 competition,(33) FusOn-pLM achieved an AUROC of 0.825. Compared with a parallel
architecture trained on ESM-2 embeddings (ESM-2-650M-Diso) and fourteen CAID2 competitors,
FusOn-pLM-Diso ranked in the top 5 of all models (Figure 4D).(28) We then questioned whether
FusOn-pLM embeddings could accurately distinguish between structured and disordered residues in
fusion oncoproteins, specifically. On a set of proteins from FusOn-pLM’s test set, FusOn-pLM-Diso
achieved average accuracy, precision, recall, F1, and AUROC metrics all above 0.9. We also observed
a strong correlation (R2 = 0.83) between the disorder percentages predicted by FusOn-pLM-Diso and
that of AlphaFold-pLDDT (Figure 4E), further supporting the notion that FusOn-pLM embeddings
capture the disorder properties of fusion oncoproteins. When visualizing the per-residue disorder
probabilities for six well-studied fusion oncoproteins, we observe differential coloring between
disordered and structured residues. We establish that FusOn-pLM correctly identifies structure in
the α-helix and β-sheet-rich regions, coloring these areas dark blue (Figure 4F). Overall, our results
suggest that FusOn-pLM accurately encodes disorder-related information in its embeddings. Given
that fusion oncoproteins are characterized by their disordered regions, we reason that FusOn-pLM
embeddings more effectively represent fusion oncoproteins.
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Figure 3: FusOn-pLM embedding benchmarks on puncta prediction tasks. A Certain FOs form puncta
(condensates) via phase separation. Puncta may localize to the nucleus, cytoplasm, or both. B Three
XGBoost classifiers are trained on FusOn-pLM-embedded FOs. One predicts formation of puncta
(puncta propensity); one predicts formation of nuclear puncta (nucleus localization); one predicts
formation of cytoplasmic puncta (cytoplasm localization). C-E Performance on a held-out test set
when predictors are trained on FusOn-pLM, ESM-2-650M, ProtT5-XL-U50, and FOdb embeddings.

2.5 FusOn-pLM embeddings enable zero-shot discovery of relevant mutations

Fusion oncoproteins themselves are mutants, but they also have the potential to acquire additional
mutations which can alter their structure, function, and druggability.(34) Beyond property and
disorder prediction, we sought to establish the biological utility and relevance of FusOn-pLM by
performing zero-shot discovery via its MLM head, which can sequentially unmask each position in
an input sequence, outputting residue probabilities per unmasked position (Figure 5A). As with any
pLM, within evolutionarily conserved domains, the logits corresponding to the original residue are
much higher than for any alternate residue. For example, in the TF::Kinase fusion TRIM24::RET,
FusOn-pLM correctly identifies TRIM24’s zinc finger domains and RET’s kinase domain as highly
conserved (Figure 5B). FusOn-pLM also identifies that the EWSR1 activation domain and FLI1
DNA-binding domain in EWSR1::FLI1 are unlikely to mutate (Figure 5B). In PAX3::FOXO1, the
DNA-binding domains of PAX3 are highly conserved, but the truncated DNA-binding domain of
FOXO1 (25/75 amino acids) is less strongly conserved (Figure 5B), corroborated by studies showing
FOXO1’s DNA binding activity is not critical for fusion function.(35; 36) This result indicates that
FusOn-pLM has implicitly captured the function of fusion oncoproteins, which is further strengthened
by the observation of clear differences between TF::TF and Kinase::Kinase fusions in its latent space
(Supplementary S3A).

Although FusOn-pLM may not predict that change is likely within a conserved domain, its logits
still provide rank-ordered, possible mutations within these regions. This feature holds promise for
discovering potential drug resistance mutations, as small molecule drugs are designed to interact with
well-structured, conserved binding pockets like kinase active sites.(37) Fusion oncoprotein mutations
causing drug resistance have been identified in a small number of studies on kinase-containing
fusions.(38; 39; 40) We sought to determine whether FusOn-pLM prioritizes the resistance-causing
mutations discovered in patients with fusion-driven cancers. In EML4::ALK, a set of 14 mutation
sites were linked to resistance to at least one of five drugs: Crizotinib, Ceritinib, Alectinib, Brigatinib,
and Lorlatinib.(38) FusOn-pLM successfully predicted at least one true resistance mutation among
the top three mutation logits for 12/14 sites (Figure 5C). In BCR::ABL, whose sequence is nearly
twice as long as EML4::ALK, a set of 28 mutation sites were linked to imatinib resistance.(39) FusOn-
pLM recovered drug resistance mutations in 13 of these locations (Figure 5C). Finally, we selected
ETV6::NTRK3 as a case study for recovering known drug resistance mutations and investigating
potential mutations away from the active site. FusOn-pLM successfully prioritized two resistance
mutations in the NTRK3 kinase domain,(40) assigned high conservation probability throughout the
kinase domain, and predicted the most volatile positions to be in the disordered region from head
protein ETV6 (Figure 5D). In total, these results highlight FusOn-pLM’s potential as a biologically-
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Figure 4: FusOn-pLM prediction of IDR properties and regions. A FusOn-pLM-IDR models predict
asphericity (A), end-to-end radius (Re), radius of gyration (Rg), and polymer scaling exponent
(PS) by feeding FusOn-pLM embeddings through an MLP classification head. B FusOn-pLM-IDR
predictions vs. true values. The coefficient of determination (R2) between predictions and labels
was calculated for each model to assess goodness of fit. C FusOn-pLM-Diso utilizes a Transformer
architecture to predict per-residue disorder labels from FusOn-pLM embeddings. D Disorder predictor
performance in CAID2 competition when trained on FusOn-pLM vs. ESM-2-650M embeddings.(33)
E FusOn-pLM-Diso performance on test set fusion oncoproteins, based on AlphaFold-pLDDT-
derived disorder labels. The coefficient of determination (R2) between predictions and labels was
calculated for each model to assess goodness of fit. F Visualization of FusOn-pLM embedding
predictions of disorder propensity on AlphaFold2-predicted structure. Disorder probabilities are
shaded according to the legend for interpolation.

relevant tool for predicting resistance mutations both within conserved domains and in disordered
regions critical to therapeutic outcomes.

3 Discussion

In this work, we introduce FusOn-pLM, an ESM-2-based pLM fine-tuned to generate fusion
oncoprotein-specific embeddings. We further provide a newly-curated, comprehensive dataset,
FusOn-DB, consisting of over 44,000 annotated fusion oncoprotein sequences. To our knowledge, no
pLM has explicitly sought to learn the unique characteristics of fusion oncoproteins, which differ
from most proteins due to their highly disordered nature and altered structural and functional proper-
ties. Our benchmarking results establish that via a novel cosine-scheduled MLM training strategy,
FusOn-pLM embeddings outperform those of the original ESM-2-650M model,(18) the ProtT5
model,(19) as well baseline FOdb descriptor embeddings,(2) on fusion oncoprotein-related tasks,
while retaining distinct representations of fusion proteins from their head and tail counterparts (Sup-
plementary Figure S3B). We further demonstrate that by training on fusion oncoprotein sequences,
which represent a large class of IDR-containing proteins, FusOn-pLM embeddings rank highly on the
CAID-2 benchmark for IDR detection(33) and strongly predict IDR properties themselves. Finally,
as a demonstration of the model’s biological relevance, we show that FusOn-pLM uniquely enables
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Figure 5: Zero-shot mutation prediction. A FusOn-pLM performs zero-shot mutation discovery
via its MLM head through sequential unmasking of individual residues. Potential mutations are
ranked by their logit values. B FusOn-pLM logits for the longest EWSR1::FLI1, PAX3::FOXO1, and
TRIM24::RET sequences in FusOn-DB. Yellow regions are considered highly conserved domains. C
Recovery of mutations found to cause drug resistance in patients with EML4::AK and BCR::ABL1-
driven cancers. D Case study on kinase fusion ETV6::NTRK3 (647 amino acids), which drives various
cancers. FusOn-pLM predictions of NTRK3 kinase domain mutations identified in ETV6::NTRK3+
cancer patients with drug resistance are shown in the table. Based on logit values, disordered residues
from the head protein ETV6 are indicated.

the prediction of current and future drug-resistant mutations in fusion oncoproteins, highlighting its
potential for informing therapeutic strategies and anticipating resistance mechanisms.

While FusOn-pLM represents an important advancement, there are several limitations to address.
First, despite leveraging over 44,000 fusion oncoprotein sequences, the diversity of the FusOn-DB
dataset may not fully capture all fusion variants, particularly rare or less well-characterized fusions.
Additional data, particularly from emerging databases and clinical studies, would further enhance the
model’s generalizability. Second, due to GPU memory constraints, proteins longer than 2,000 amino
acids were excluded during training. While such cases are rare among known fusion oncoproteins, this
limitation may exclude certain outliers with repetitive domains or extensive intrinsically disordered
regions. Future optimizations in tokenization or memory-efficient architectures could enable the
inclusion of these sequences, ensuring comprehensive coverage of fusion oncoprotein diversity. Third,
while FusOn-pLM provides strong predictions for intrinsic disorder and drug-resistant mutations,
its ability to predict driver mutations or to connect sequence embeddings with regulatory elements
such as enhancers or transcription factors remains unexplored.(34) Future efforts could involve
developing models that integrate FusOn-pLM embeddings with regulatory sequence data to elucidate
mechanisms underlying oncogenesis.(41) Most importantly, experimental validation of FusOn-pLM’s
predictions, including drug resistance mechanisms and therapeutic design tasks, will be essential to
confirm its utility in practical settings.

Recently, our lab has trained ESM-2-based models to generate peptides provided only the sequence
of the target protein, facilitating the design of peptide-E3 ubiquitin ligase fusions for the proteasomal
degradation of diverse protein substrates.(22; 23; 42) As our main objective is to enable the degrada-
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tion of fusion oncoproteins, our next steps will be to replace ESM-2 embeddings in these models
with FusOn-pLM embeddings, enabling fusion-specific degrader design. Since post-translational
modifications (PTMs) are also well known to affect the oncogenic activity of fusion oncoproteins
(43; 44; 45), we plan to retrain FusOn-pLM with our recent PTM-Mamba pLM,(46) which effectively
tokenizes PTMs, enabling both fusion- and PTM-specific therapeutic design. Finally, by leveraging
recent advancements in gene delivery, such as lipid nanoparticles (LNPs) and adeno-associated viral
(AAV) vectors(47; 48), we envision that fusion-specific biologics may eventually serve as safe and
efficacious therapeutics for fusion-positive cancer patients. Overall, the results of our study motivate
the use of FusOn-pLM embeddings for downstream fusion oncoprotein design tasks, serving as a
major step toward this goal.
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A Supplemental material

A.1 Methods

A.1.1 Model Training Set Curation

Model training data was curated from FusionPDB and FOdb to create FusOn-DB, a dataset of
44,414 fusion oncoprotein sequences representing 16,364 unique head::tail fusions. FusionPDB
contributed 41,456 unique sequences,(25) including AlphaFold2 predictions for 3.5K proteins, while
FOdb added 4,537 unique sequences derived largely from patient data.(2) After removing duplicates,
sequences longer than 2,000 amino acids were excluded, leaving 42,141 sequences for training.
To create train-validation-test splits with low sequence homology, sequences were clustered using
MMSeqs2 with a 30% sequence identity and 80% coverage threshold.(49) The test set included
250 sequences: 195 with experimental puncta data from FOdb and sequences for four well-studied
fusions (EWSR1::FLI1, PAX3::FOXO1, BCR::ABL1, and EML4::ALK). Clusters overlapping these
sequences were manually assigned to the test set, with the remaining clusters split into training
(33,719 sequences, 80.01%), validation (4,214 sequences, 10.00%), and testing (4,208 sequences,
9.99%) sets.

A.1.2 BLAST and Breakpoint Mapping

To estimate sequence homology between FusOn-DB and SwissProt, local blastp (v2.16.0) was used.
Head and tail gene names from FOdb and FusionPDB were mapped to UniProt IDs using the UniProt
ID Mapping tool. Of the 44,414 fusion sequences, 44,257 had both head and tail components mapped,
and 157 had one unmapped component (43 head, 114 tail). Both SwissProt and TrEMBL IDs were
stored. For each fusion oncoprotein, three alignments were extracted: the top overall alignment,
the top alignment corresponding to the head gene, and the top alignment corresponding to the tail
gene. Alignments included all isoforms. Maximum percent identity was calculated as the number
of identical amino acids in the alignment divided by the length of the fusion sequence. BLAST
alignments were also used to determine breakpoints by identifying the indices corresponding to the
top head and tail alignments. Overlapping regions were labeled as breakpoint regions, and specific
loci were manually annotated where applicable for visualization purposes.

A.1.3 Benchmarking Dataset Curation

To evaluate FusOn-pLM, datasets were curated for three benchmarking tasks: puncta formation
and localization, IDR ensemble dimensions, and intrinsic disorder prediction. Data for puncta
formation and localization were collected from FOdb,(2) which includes 178 fusion oncoproteins
with experimentally validated results. Train-test splits from FOdb were used, with 149 sequences
for training and 29 for testing across three tasks: puncta formation propensity, nuclear localization,
and cytoplasmic localization. Class distributions were maintained as reported in FOdb.(2) For IDR
ensemble dimensions, 47,114 IDR sequences from synthetic and natural proteins were sourced from
a published dataset.(32) Labels included asphericity, end-to-end radius (Re), radius of gyration (Rg),
and polymer scaling exponent. Sequences were clustered using MMSeqs2 with a minimum sequence
identity of 30% and split into training (80%), validation (10%), and testing (10%) sets.(49) Data
distributions were normalized as needed, and sequences with multiple labels for the same property
were averaged. Final dataset sizes were 47,114 for asphericity, 42,868 for Re, 22,912 for Rg, and
40,637 for the scaling exponent. For disorder prediction, training data included 5,273 sequences
from IDP-CRF(50) and 545 sequences from flDPnn after cleaning and deduplication.(51) The testing
dataset comprised 210 gold-standard sequences from the CAID2 Disorder-NOX dataset with per-
residue annotations indicating disorder (1) or structure (0).(28; 33) FusOn-pLM-Diso was trained on
the combined dataset and benchmarked on Disorder-NOX. To analyze disorder in fusion oncoproteins,
pseudo-labels were generated using AlphaFold-pLDDT scores, where residues with pLDDT < 68.8
were labeled as disordered.(17) Structures for 524 fusion oncoproteins in the FusOn-pLM test set were
obtained from FusionPDB.(25) The BeautifulSoup package in python was used to scrape FusionPDB
for structure download links.
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A.1.4 Embedding Exploration Dataset Curation

FusOn-pLM embeddings of transcription factor (TF) and kinase fusions were visualized in 2D plots.
To efficiently determine which fusion oncoproteins possessed TF heads and tails or kinase heads and
tails, a categorized list of fusion head and tail genes was consulted.(52) 524 fusion oncoproteins from
FusOn-DB (364 TF::TF and 231 Kinase::Kinase) were identified.

A.2 Model Architecture and Training

FusOn-pLM is based on ESM-2-650M, a 33-layer transformer model pre-trained on UniRef50,
and was fine-tuned to generate fusion oncoprotein-specific representations. To adapt ESM-2-650M
for this task without overfitting, the final eight layers of the model were selectively fine-tuned.
Specifically, the key, query, and value weight matrices of the self-attention mechanism in these layers
were unfrozen, while earlier layers remained fixed. The multi-head self-attention mechanism is
parameterized such that the attention output is computed as a weighted sum of values V , where the
weights are derived from the scaled dot-product of queries: Q = Wqh and keys: K = Wkh. For
fine-tuning, the learnable parameters Wq , Wk, and Wv in the last eight layers were updated, enabling
task-specific adaptation to fusion oncoproteins while preserving the general-purpose representations
learned during pre-training.

Specifically, a cosine-scheduled masking strategy was employed during training to dynamically vary
the masking rate.

Let x = (x1, x2, . . . , xn) be the input amino acid sequence of length n. Define M as the set of
masked positions such that |M | = ⌈r ·n⌉, where the masking rate r varies within each training epoch
according to a cosine schedule. The masking rate at step t within an epoch of T steps is given by:

rt = rmin +
1

2
(rmax − rmin)(1− cos(

tπ

T
)) (1)

where rmin = 0.15 and rmax = 0.40. At the start of each epoch, rt is reset to rmin, increasing to
rmax and cycling back to rmin at the beginning of the next epoch.

Masked positions are selected uniformly at random from the set {1, 2, . . . , n} without replacement.
Mathematically, the selection of M is described as:

M ∼ Uniform({1, 2, . . . , n}, ⌈r · n⌉) (2)

All selected positions are replaced with a special mask token. The MLM objective is computed as:

LMLM = −
∑
i∈M

logP (xi|x\M) (3)

where xi is the true amino acid at position i, and x\M represents the sequence with masked tokens
excluded. A visualization of the masking strategy is shown in Figure 1.

FusOn-pLM was trained on one NVIDIA H100 GPU with 80 GB of VRAM each for 30 epochs with
batch size of 8 and learning rate of 3e-4. The Adam optimizer was utilized with no weight decay.
Only fusion oncoproteins of length 2000 or shorter were used for training; short sequences were
padded to this maximal length.

A.2.1 Fusion Oncoprotein Property Benchmarks

Embedding performance on predicting the propensity of puncta formation, as well as predicting if
puncta form in the nucleus or cytoplasm, were evaluated. Here, sequences from FOdb with conclusive
experimental data on puncta formation were utilized for pLM embedding evaluation.(2) FOdb tested
195 total FOs for puncta formation, but only used the 178 with conclusive results to train the FO-
Puncta ML model. Puncta formation and localization predictions were treated as a binary class,
where label 0 or 1 represented a lack or presence of puncta formation in a given area. FusOn-pLM
embeddings were compared against three others: 1) Base wild-type ESM-2-650M embeddings, 2)
ProtT5-XL-UniRef50 embeddings,(19) and 3) FOdb embeddings,(2) which are 25 physicochemical
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features manually curated by FOdb for only the 195 proteins. The standard binary cross-entropy loss
function was minimized for each task using the XGBoost model with 50 trees via scikit-learn(53).
The binary cross-entropy loss is defined as:

BCE(y, ŷ) = − (y log(ŷ) + (1− y) log(1− ŷ)) (4)

A.2.2 Disorder Property Benchmark

Disorder properties were evaluated by training regression models that used FusOn-pLM embeddings
of IDRs, to predict four ensemble features: asphericity, Re, Rg, and polymer scaling exponent.(32)
For each property, a separate FusOn-pLM-IDR regression model was trained. These models fed
FusOn-pLM embeddings through a multi-layer perceptron (MLP) network with three fully connected
layers (Figure 4E). The input layer performed dimensionality reduction to hidden dimension 640 and
passed the output through a ReLU activation function, followed by layer normalization and dropout
regularization with a probability of 0.2. This structure was repeated for two more iterations, shrinking
the hidden dimension to 320 and finally culminating in a single neuron: the predicted value of the
property. Each model was trained to minimize the mean square error (MSE), and early stopping was
implemented to prevent overfitting. The MSE loss function is defined by:

MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2 (5)

Models were evaluated on a held-out test set by predicting each property given the sequence embed-
ding alone. The coefficient of determination (R2) between predictions and labels was calculated for
each model to assess goodness of fit. In order to maximize R2, a hyperparameter screen across two
batch sizes (32, 64) and five learning rates (1e-5, 3e-4, 1e-4, 3e-3, 1e-3) was performed. The true
values and predicted values were plotted in Matplotlib, with an ideal fit line included for reference.
The entire process was repeated using ESM-2-650M embeddings rather than FusOn-pLM embeddings
(Supplementary Figure S2).

A.2.3 CAID Benchmark

FusOn-pLM’s ability to predict intrinsic disorder was evaluated using a per-residue disorder prediction
benchmark based on the CAID2 Disorder-NOX dataset.(28; 33) Binary labels indicating whether
each residue is disordered (1) or structured (0) were used to train FusOn-pLM-Diso, a per-residue
disorder predictor. The predictor employs a multi-head self-attention Transformer architecture,
minimizing binary cross-entropy loss. Hyperparameter optimization was performed for the number
of attention heads (5, 8, 10), Transformer layers (2, 4, 6), and dropout rates (0.2, 0.5). Models were
trained for 2 epochs with a learning rate of 5e-5, and optimal hyperparameters were selected by
maximizing AUROC. An equivalent model, ESM-2-650M-Diso, was trained using ESM-2-650M
embeddings for comparison. Both models were trained and evaluated on the CAID2 Disorder-NOX
dataset,(28; 33) with per-residue predictions used for benchmarking. Predicted per-residue disorder
probabilities were computed for each input sequence, and binary predictions were made using
thresholds selected to optimize classification performance metrics. To extend the analysis to fusion
oncoproteins, per-residue disorder predictions were made for sequences with available AlphaFold2
structures.(14) Percentage disorder was calculated by dividing the number of predicted disordered
residues by sequence length. Additionally, predicted per-residue disorder probabilities were mapped
onto 3D protein structures for visualization. AlphaFold2’s pLDDT metric was used as a reference for
structural disorder to aid in the assessment of predicted regions.(14)

A.3 Embedding Exploration

To explore how FusOn-pLM embeddings capture the physicochemical and functional properties
of fusion oncoproteins, we first conducted a dimensionality reduction analysis on both fusion
oncoprotein embeddings and/or their head and tail proteins using Uniform Manifold Approximation
and Projection for Dimension Reduction (UMAP)(54) via the umap module. The FusOn-pLM
embeddings of six highly-studied fusion oncoproteins (EWSR1::FLI1, PAX3::FOXO1, BCR::ABL1,
CIC::DUX4, SS18::SSX1, and EML4::ALK) and their respective head and tail proteins (derived

16



from the BLAST against SwissProt) were transformed by UMAP and plotted (Supplementary Figure
S4A). Additionally, 364 transcription factor (TF), where both head and tail were TFs, and 231 kinase
fusions, where both head and tail were kinases, were embedded and plotted in UMAP coordinates
(Supplementary Figure S4B).

A.3.1 Zero-Shot Mutation Prediction

Zero-shot mutation prediction was performed on a set of fusion oncoproteins. For each protein, the
sequence was input to FusOn-pLM with its MLM head L times, where L is the protein length. During
each iteration, a single <mask> token was introduced at a different position in the sequence, and only
this position was unmasked. The raw logits for each of the twenty amino acids at the masked position
were recorded. These logits were ranked in descending order, creating a list of the most to least likely
amino acids predicted at that position. The top three predicted amino acids, based on their logits,
were considered the “top 3 mutations.”

Heatmaps of the logits for the original amino acid at each position were constructed for representative
fusion oncoproteins: EWSR1::FLI1, PAX3::FOXO1, and TRIM24::RET. Functional domains were
identified using UniProt annotations for the reviewed SwissProt accession corresponding to the
head and tail genes. Residue positions for these domains were converted from their coordinates on
the original head or tail protein to their corresponding positions on the fusion protein using string
indexing in Python. A binary conservation label was applied to logits, with values < 0.7 designated
as non-conserved (0) and values > 0.7 as conserved (1).

Sequences for EML4::ALK and BCR::ABL1 were generously provided by the authors of Elshatlawy,
et al.,(38) and O’Hare, et al.,(39) and were screened through the zero-shot mutation pipeline. Positions
corresponding to known drug resistance mutations, as reported in the literature, were evaluated to
determine whether one of the top three predicted amino acids matched a reported mutation (“hit”)
or did not (“miss”). For positions where the original amino acid was among the top three predicted
tokens, an additional token was included in the analysis. Structural models for these sequences were
folded in AlphaFold2 and visualized using PyMOL.

Potential mutations in ETV6::NTRK3 were also predicted using the zero-shot prediction pipeline.(40)
Literature-reported mutations in NTRK3 coordinates were converted to the corresponding positions
in ETV6::NTRK3 coordinates. For example, NTRK3 G623R and G696A became ETV6::NTRK3
G504A and G431R. These positions were evaluated as “hit” or “miss” based on whether the top
three predicted mutations included the correct token. Structural predictions were obtained from
FusionPDB and visualized in PyMOL. Additionally, the top five mutations were identified as those
with the smallest logits for the original amino acid.
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Figure S1: Disorder distribution of CAID2 Disorder-NOX set (210 amino acid sequences). Percentage
disordered is defined as the number of residues labeled 1 (disordered), divided by total sequence
length.

18



Figure S2: ESM-2-650M-IDR performance on IDR property prediction benchmarking task. Details
on data curation and model training for this benchmark can be found in the Methods section of the
main manuscript file.
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Figure S3: Exploration of FusOn-pLM embeddings for fusion oncoproteins. A FusOn-pLM em-
beddings of the head, tail, and fusion oncoprotein for EWSR1::FLI1, PAX3::FOXO1, BCR::ABL1,
CIC::DUX4, SS18::SSX1, and EML4::ALK. B FusOn-pLM embeddings of transcription factor (TF)
and kinase fusions. TF::TF fusions have TFs as both head and tail; Kinase::Kinase fusions have
kinases as both head and tail.
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Figure S4: Composition of the FusOn-pLM train, validation and test sets. A Distribution of sequence
lengths. B Distribution of Shannon Entropy scores, which indicate sequence diversity. C Clusters for
each dataset broken down by cluster size. Benchmark clusters were manually chosen for the test set,
while other test clusters were randomly assigned to the test set. D Relative frequency of each amino
acid across datasets.
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