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Abstract

Generative AI has the potential to revolutionize drug discovery. Yet, despite recent
advances in deep learning, existing models cannot generate molecules that satisfy
all desired physicochemical properties. Herein, we describe IDOLpro, a novel
generative chemistry AI combining diffusion with multi-objective optimization
for structure-based drug design. Differentiable scoring functions guide the latent
variables of the diffusion model to explore uncharted chemical space and generate
novel ligands in silico, optimizing a plurality of physicochemical properties. We
demonstrate our platform’s effectiveness by generating ligands with optimized
binding affinities (measured by Vina score) and synthetic accessibility on two
benchmark sets. IDOLpro produces ligands with binding affinities over 10%-20%
higher than the next best state-of-the-art method on each test set, producing more
drug-like molecules with generally better synthetic accessibility scores than other
methods. We do a head-to-head comparison of IDOLpro against a classic virtual
screen of a large database of drug-like molecules. We show that IDOLpro can
generate molecules for a range of important disease-related targets with better
binding affinity and synthetic accessibility than any molecule found in the vir-
tual screen while being over 100× faster and less expensive to run. On a test
set of experimental complexes, IDOLpro is the first to produce molecules with
better binding affinities than the experimentally observed ligands. IDOLpro can
accommodate other scoring functions (e.g. ADME-Tox) to accelerate hit-finding,
hit-to-lead, and lead optimization for drug discovery.

Introduction

The central goal of structure-based drug design (SBDD) is to develop ligands with high binding
affinities for a given protein pocket [4]. SBDD is an inverse design problem where the desired
properties are known, but designing a molecule to achieve these properties is challenging. Inverse
design problems, common in materials [82, 53, 10], chemistry [54, 21, 66], and life sciences [34, 77,
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72], involve two main steps: sampling chemical space, and scoring compounds based on their ability
to meet the desired properties. In drug discovery, chemical space is typically sampled by evaluating
large databases of drug-like molecules, such as ZINC [27], Enamine [59], or GDB [52]. Despite
these databases containing hundreds of billions of molecules, they represent only a fraction of the
estimated 1020 − 1060 drug-like molecules in chemical space [49].

Recent literature has introduced several generative deep learning (DL) models to replace the vir-
tual screening of large databases [41, 48, 38, 23, 57, 35]. These models generate molecules with
lower average Vina docking scores [69] compared to molecules found via virtual screening while
demonstrating greater efficiency. In addition, they can produce molecules not found in existing
databases [35]. However, these models can produce unphysical structures [8, 76], or ligands with
poor synthetic accessibility [19]. These problems can be addressed by pairing generative models with
a feedback loop that conditions generation on measured physicochemical indicators [22, 21, 34]. Con-
ditional generation is becoming a common practice in the drug-discovery literature [35, 57, 13], and
can be performed efficiently by making use of gradient information from property predictors [72, 34].

In this work we present IDOLpro (Inverse Design of Optimal Ligands for Protein pockets), a
generative chemistry AI to produce optimized and chemically feasible ligands for a given protein
pocket by guiding a state-of-the-art diffusion model. Specifically, we modify the latent variables of
the generative model to optimize one or more objectives of interest simultaneously. The objectives
considered evaluate properties of the generated ligands. In this report, we consider binding affinity
(measured with Vina score) and synthetic accessibility. Our framework is highly modular and can
easily incorporate alternative generators and additional scores. All metrics are written in Pytorch [47]
and are fully differentiable with respect to the latent variables, allowing for the use of gradient-based
optimization strategies to design optimal ligands.
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Figure 1: Visual overview. A: Random latent vectors are defined and the reverse diffusion is run for
T → thz. B: The rest of the reverse diffusion process is completed and a ligand is generated (with
coordinates and atomic numbers). C: The ligand is scored by evaluating the binding affinity,
synthesizability, or both. D: The ligand score is differentiated with respect to the latent vector z0t , and
z1t is defined by taking a single optimization step.

IDOLpro optimizes ligands by iteratively adjusting the predictions of a model that directly generates
molecules into a given protein pocket. We achieve this by modifying the latent vectors of the
generative model using gradients from property predictors. Once optimal ligands are generated, their
binding poses are further refined through structural optimization within the pocket. The structural
optimization uses the same differentiable scores for evaluating and adjusting the ligands’ coordinates
with gradients from the property predictors. A visual overview of is shown in Fig. 1.
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In this report, we use DiffSBDD [57] as the baseline generative method for predicting ligands within
a protein pocket. We use a specific variant of the model, DiffSBDD-Cond, which we found was
able to generate ligands within the protein pocket without clashes more reliably than the alternative,
DiffSBDD-inpaint. We assess the ability of our framework to discover novel ligands with improved
binding affinity and synthetic accessibility. To estimate binding affinity, we have developed a torch-
based version of Vina [69] that we call torchvina. When doing structural refinement we also use
the ANI2x model [12]. To estimate synthesizability, we train an equivariant neural network [58]
model [58] to predict the synthetic accessibility (SA) score reported from RDKit [1] and first proposed
in Ref. [14], which we refer to as torchSA. Further details about our methods can be found in the
Supplementary Information [30].

Datasets: We assess the performance of our platform on three different tests sets containing protein-
ligands pairs – a subset of CrossDocked [16], a subset of the Binding MOAD (Mother of all
Databases) [25], and on a test set first proposed in Ref. [17] consisting of disease-related proteins,
which we refer to as the RGA test set. The CrossDocked test set contains 100 pocket-ligand pairs
derived via re-docking ligands to non-cognate receptors with smina [32], and has been used to validate
the performance of tools in several other papers [41, 48], including DiffSBDD [57]. The Binding
MOAD contains 130 high resolution (<2.5 Å) experimentally derived pocket-ligand pairs extracted
from the Protein Data Bank (PDB), and was also used to assess the performance of DiffSBDD.
The RGA test set contains 10 experimentally derived disease-related protein targets with associated
ligands. Targets in this test set include G-protein coupling receptors (GPCRs), kinases from the
DUD-E dataset [43], and the SARS-CoV-2 main protease [80].
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Figure 2: Performance of DL tools on two benchmark test sets. The scatter plot shows the average
Vina and SA score for each method for targets in CrossDocked (left), and the Binding MOAD (right).
IDOLpro is at the bottom left of each scatter plot, showing it can co-optimize Vina and SA for
generated ligands.

Results

Comparison to deep learning: We compare our full pipeline, which includes both latent vector
optimization and structural refinement, to other deep learning tools on the CrossDocked and Binding
MOAD test sets. For each protein pocket, we use our platform to generate 100 optimized ligands.
In addition to Vina score, top-10% Vina score, and SA score, we also report QED (quantitative
estimate of drug-likeness) [6]. These metrics are evaluated across six other DL tools in the literature:
3D-SBDD [41], Pocket2Mol [48], GraphBP [38], TargetDiff [23], DiffSBDD-Cond, and DiffSBDD-
inpaint [57] whose results are taken from Ref. [57] and shown for comparison with our worflow in
Table S4. The performance of the models on Vina and SA is visualized in Fig. 2.

For CrossDocked, IDOLpro achieves improved Vina scores relative to other DL tools, with a 0.71
kcal/mol improvement in average Vina score and 1.03 kcal/mol improvement in top-10% Vina score
compared to the next best tool in the literature, DiffSBDD-inpaint. Despite not optimizing for it
directly, we find that IDOLpro achieves the best QED on the two benchmarks. IDOLpro ranks
second for producing molecules with good SA scores, showing the ability of our tool to perform
multi-objective optimization. Despite needing to run an entire optimization procedure for each
ligand, IDOLpro is computationally tractable, achieving run times competitive with two other tools –
TargetDiff and Pocket2Mol, while being faster than 3D-SBDD.
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Method Vina [kcal/mol] Vina10% [kcal/mol] SA QED

C
ro

ss
D

oc
ke

d

Test Set −6.87± 2.32 - 3.45± 1.26 0.48± 0.20

3D-SBDD [41] −5.89± 1.91 −7.29± 2.34 3.93± 1.26 0.50± 0.17
Pocket2Mol [48] −7.06± 2.80 −8.71± 3.18 3.23± 1.08 0.57± 0.16

GraphBP [38] −4.72± 4.03 −7.17± 1.40 7.24± 0.81 0.50± 0.12
TargetDiff [23] −7.32± 2.47 −9.67± 2.55 4.74± 1.17 0.48± 0.20

DiffSBDD-cond [57] −6.95± 2.06 −9.12± 2.16 4.80± 1.17 0.47± 0.21
DiffSBDD-inpaint [57] −7.33± 2.56 −9.93± 2.59 5.01± 1.08 0.47± 0.18

IDOLpro −8.04± 2.55 −10.96± 3.02 3.41± 0.70 0.63± 0.06

M
O

A
D

Test Set −8.41± 2.03 - 3.77± 1.08 0.52± 0.17

GraphBP [38] −4.84± 2.24 −6.63± 0.95 7.21± 0.81 0.51± 0.11
DiffSBDD-cond [57] −7.17± 1.89 −9.18± 2.23 4.89± 1.08 0.44± 0.20

DiffSBDD-inpaint [57] −7.31± 4.03 −9.84± 2.18 4.47± 1.08 0.54± 0.21
IDOLpro −8.74± 2.59 −11.23± 3.12 3.32± 0.66 0.63± 0.08

Table 1: Evaluation of DL tools on targets from the CrossDocked and Binding MOAD datasets. The
average, and standard deviation of each metric across the protein pockets in each dataset is reported.
The top performing model on each metric is bolded in the corresponding column. Numbers for other
models are taken from Ref. [57].

Figure 3: Comparison of our platform to virtually screening ZINC250K. Left: The distribution of
Vina scores for generated and screened ligands for EGFR, an important oncology target (PDB ID
2rgp). Right: The distribution of Vina scores for generated and screened ligands for the SARS-Cov-2
main protease (PDB ID 7l11).

Method Nligands Time [h] Cost [$]

IDOLpro 47.20± 49.73 0.86± 0.71 0.87± 0.72
Virtual Screen 250, 000 160.90± 24.12 109.41± 16.40

Table 2: Comparison of using our platform to find improved ligands relative to a virtual screen of
ZINC250K. We note the average number of ligands, time, and cost it takes for our platform to find a
ligand with both better Vina and SA than the best ligand from ZINC250K.

For the Binding MOAD test set, the advantage of IDOLpro is more pronounced, with a 1.43 kcal/mol
improvement in average Vina score, and 1.40 kcal/mol improvement in top-10% Vina score compared
to DiffSBDD-inpaint. In particular, IDOLpro is the first DL tool to generate molecules with a
better average Vina score than those of the reference molecules in the Binding MOAD test set. This
is noteworthy, because unlike molecules in CrossDocked, molecules in the Binding MOAD were
derived through experiment. Out of the four methods compared, IDOLpro also achieves the best
SA, improving upon the next best method by 1.15, while also achieving the best QED. The time to
generate a single ligand for a protein pocket in the Binding MOAD test set is slower than for the
CrossDocked test set, reflecting DiffSBDD’s slowdown in generating molecules for targets in this
test set.

IDOLpro is able to find ligands that improve upon both the Vina and SA scores relative to the
reference ligand for 99/100 targets in the CrossDocked test set, and 126/130 targets for the Binding
MOAD test set. In all of these cases we generate molecules with significantly better SA scores than
the reference, but fail to find a molecule with a better Vina score. We believe this could be solved by
re-weighting the optimization objective to more heavily favour Vina score. Overall our results show
that IDOLpro can effectively co-optimize multiple objectives, generating ligands with state-of-the-art
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Method Vina [kcal/mol] Vina10% [kcal/mol] SA SA10%

Scaffolds -4.65 ± 2.09 - 3.06 ± 1.40 -
Test Set -5.58 ± 2.32 - 3.67 ± 1.23 -

IDOLpro -7.17 ± 2.36 -8.96 ± 2.57 4.12 ± 1.10 2.90 ± 1.12
Table 3: Results for scaffold fixing on the 71 crossdocked data points with identifiable scaffolds
using RDKit’s Bemis-Murcko scaffold.

Vina and synthetic accessibility scores on two test sets. Improving other metrics is straightforward,
simply requiring a differentiable score for evaluating the desired metric.

Comparison to virtual screening: We compare IDOLpro’s ability to generate promising ligands
against the virtual screening of the ZINC250K database, a collection of 250,000 commercially
available compounds [22]. Using the 10 protein pockets from the RGA test set, we assess how rapidly
we can generate a ligand with both superior binding affinity (Vina score) and synthetic accessibility
(SA score) compared to the best ligand identified from the ZINC250K screening. To do the screening,
we use QuickVina2 [3] to dock molecules to each of the 10 target protein pockets on an AWS
compute-optimized instance with 8 CPU cores. We then use IDOLpro to generate optimized ligands,
making note of the number of ligands, time, and cost. Results are shown in Table 2, where cost is
based on the AWS pricing for the requested instances.

Screening ZINC250K using QuickVina2 takes an average of ≈ 161 hours per protein pocket, while
IDOLpro is able to find a ligand with a better Vina and SA score than the virtual screen in under an
hour (≈ 52 minutes) on average. This translates to ≈ 187× speedup in terms of time, and ≈ 126×
reduction in cost. For 4/10 cases, IDOLpro is able to find a ligand with better Vina and SA score
within the first 10 ligands generated, and for 9/10 cases within the first 100 ligands generated. For
a single case (PDB ID 3eml) surpassing the performance of the virtual screen requires generating
152 ligands, taking 2.5 hours. This translates into a > 60× speedup in terms of time, and > 40×
reduction in cost.

In general, for a given protein pocket, IDOLpro generates ligands with significantly better binding
affinities than those found by virtually screening ZINC250K. In Fig. 3, we plot the distribution of
Vina scores for both the generated ligands, and those found when screening ZINC250K for 2 of the
targets from the RGA test set: 2rgp, a protein who’s over-expression has been associated with human
tumour growth [74], and 7l11 – the SARS-CoV-2 main protease [79].

Lead optimization: In addition to de novo generation, IDOLpro supports lead optimization by
refining known ligands. This process involves fixing a large part of the molecule (the scaffold) while
optimizing the remaining portion [26, 7]. Using DiffSBDD [57], we apply an inpainting method to
incorporate the scaffold into the generation process by fixing certain atoms of the reference ligand.
To test the framework’s capability, we use protein pockets from the CrossDocked test set. For each
reference ligand, RDKit is used to identify the Bemis-Murcko scaffold [5]. Targets are removed if
no scaffold is found, if the scaffold makes up more than 90% of the ligand, or if it contains atoms
unsupported by the ANI2x model [12]. The lead optimization results for the remaining 71 protein-
scaffold pairs are shown in Table 3 and are compared to the original ligands and their scaffolds. We
find that the average Vina scores of the optimized ligands greatly improve upon the seed scaffolds
(2.52 kcal/mol) and the reference ligands (1.59 kcal/mol) from the test set. Although the average SA
is higher, both the top-10% SA score and the top-10% Vina are significantly improved.

Conclusion

We developed a platform that generates optimized ligands for specific protein pockets by constructing
a computational graph linking the latent variables of a diffusion model to key drug discovery metrics.
Through gradient-based optimization, it improves Vina and synthetic accessibility (SA) scores
simultaneously. The platform achieves the lowest Vina scores compared to other leading machine
learning methods, with significantly improved the SA and QED metrics on both the CrossDocked and
Binding MOAD test sets. It excels in hit-finding by identifying molecules with superior Vina and SA
scores in less time and at lower cost compared to traditional virtual screening, and also supports lead
optimization. Future plans include integrating additional metrics like toxicity and advanced binding
affinity metrics such as free energy perturbation (FEP).
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Supplementary Information

S.1 Methods

S.1.1 Generator Module

When optimizing latent vectors, we utilize a state-of-the-art denoising diffusion probabilistic model
(DDPM) [24], DiffSBDD [57], for generating novel ligands with high binding affinity. DDPMs
generate samples from a target distribution by learning the reverse of a noising process. Gaussian
random noise is iteratively injected into samples from the target distribution until no information
from the original sample remains. During generation the model reverses this process, transforming
random noise into samples from the target distribution. In particular, a diffusion model generates
samples by denoising a random initial latent vector for T steps. The initial latent vector is drawn
from a normal distribution,

zT ∼ N (0, I).

Afterwards, the model generates consecutive latent vectors by predicting the noise at time t, ϵθ(zt, t),
where θ are the model weights. The noise is removed from zt in order to generate zt−1. z0 is the
final prediction of the model.

DiffSBDD is an SE(3)-equivariant [18] 3D-conditional DDPM which respects translation, rotation,
and permutation symmetries. DiffSBDD was trained to create ligands with high binding affinity given
a target protein pocket. In DiffSBDD, data samples consist of protein pocket and ligand point clouds
(atomic numbers and coordinates), i.e., z = [r,h] where r ∈ RN×3 is a tensor of atomic coordinates,
and h ∈ RN×10 is a tensor of atomic probabilities over the atom types which the model can generate.
Within the model, each zt is converted to a graph, and processed by an EGNN [55] to produce a
prediction of ϵθ(zt, t). DiffSBDD contains two different models for 3D pocket conditioning – a
conditional DDPM that receives a fixed pocket representation as the context in each denoising step,
and a model that is trained to approximate the joint distribution of ligand-protein pocket pairs and
is combined with a modified sampling procedure, inpainting [64, 40], at inference time to yield
conditional samples of ligands given a fixed protein pocket. In this work, we focus only on the
conditional DDPM for ligand generation. Our framework requires that generated ligands do not
overlap with the target protein pocket, as the ligands are later docked using structural optimization.
We found that the conditional DDPM model is the only model consistently capable of generating
ligands satisfying this constraint.

DiffSBDD was trained on a subset of the CrossDocked [16], and the Binding MOAD [25] datasets.
For training, Ref. [57] used the same train/test splits as in Ref. [41] and Ref. [48], resulting in 100,000
complexes for training, and 100 protein pockets for testing. Ref. [57] filtered the database to contain
only molecules with atom types compatible with their model, and removed corrupted entries, resulting
in 40,344 complexes for training, and 130 protein pockets for testing.

DiffSBDD was shown to achieve state-of-the-art performance on both test sets. In particular, DiffS-
BDD achieved the best average, and best top-10% Vina score when compared with other state-of-the-
art models in the literature – 3D-SBDD [41], Pocket2Mol[48], GraphBP [38], and TargetDiff [23].
We note, that although DiffSBDD is used as our baseline model in this report, our framework is not
limited to the use of this specific model – any other generative model which makes use of latent
vectors as intermediate representations during generation can take its place.

S.1.2 Ligand Validity Checks

When generating ligands using DiffSBDD, we perform several chemical and structural checks to
ensure that the generated ligand is valid. A number of these checks are done using RDKit [1]. These
include verifying that hydrogens can be added to the ligand and assigned a Cartesian coordinate
(using the addCoords option in Chem.AddHs), that the ligand is not fragmented, and that the ligand
can be sanitized. All of these except for the valency check can also be done within DiffSBDD [56].

In addition, we have four more checks to ensure the structural validity of the ligand. These four
checks are necessary to be able to run structural refinement with IDOLpro, which makes use of the
ANI2x model [12]. Structural refinement is described in the Structural Refinement Section S.1.5. We
first make sure that the ligand contains only atoms compatible with ANI2x. DiffSBDD can generate
ligands with four atom types that are incompatible with ANI2x – B, P, Br, and I. We also make sure
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that the bond lengths in the ligand are correct by referring to covalent radii, and that the ligand does
not overlap with the protein pocket. This is done via ASE’s [33] (Atomic Simulation Environment)
NeighborList class. Lastly, We make sure that the atoms do not have significant overlap within the
ligand itself. This is done via pymatgen’s [46] Molecule class.

S.1.3 Scoring Module

After generating a set of ligands, we pass them to a scoring module. In this work, we include a
custom torch-based Vina score [69] which we refer to as torchvina, an equivariant neural network
trained to predict the synthetic accessibility of molecules with 3D information [14] which we refer to
as torchSA, the scoring module from DiffDock [11], and the ANI2x model [12]. These objectives
are all written using Pytorch [47] with differentiable operations and hence can be differentiated
automatically using autograd.

torchvina We re-implement the Vina force field [69] using Pytorch to allow for automatic differenti-
ation with respect to the latent parameters of the generator. Our work is not the first to produce a
Pytorch-based version of Vina to facilitate automatic differentiation, a similar implementation was
presented by Ref. [71]. Our motivation for implementing a differentiable Vina score is that docking
with Vina was shown to outperform state-of-the-art ML models such as DiffDock [11] when stricter
chemical and physical validity checks were enforced on docked molecules, or when these procedures
were evaluated on a dataset composed of examples distinct from the ML models’ training data [8].

The Vina force field is composed of a weighted sum of atomic interactions. Steric, hydrophobic, and
hydrogen bonding interactions are calculated and weighted according to a nonlinear fit to structural
data [69]. The final score is re-weighted by the number of rotatable bonds to account for entropic
penalties [42]. The Vina score is composed of a sum of intramolecular and intermolecular terms,
both of which are integrated into our implementation. Although not used in the study, we have added
the ability to score molecules with the Vinardo score [50], a re-weighted version of the Vina score
which was shown to outperform the Vina scores for docking and virtual screening on a number of tests.

torchSA To have an evaluator model capable of estimating synthesizability, we train an equivariant
neural network to predict the synthetic accessibility (SA) score. SA score was first proposed by
Ref. [14], ranges from 1 (easy to make) and 10 (very difficult to make), and shown to be effective for
biasing generative pipelines towards synthesizable molecules [19, 60]. Moreover, it was used directly
in DiffSBDD to measure the performance of the pipeline [57]. To be able to guide latent parameters
in DiffSBDD towards generating ligands with high synthesizability required designing a model
that can handle the outputs of DiffSBDD in a differentiable manner. In particular, we constructed
a machine learning model that can take in atomic point clouds, z = [r,h]. We accomplish this
by constructing a dataset of atomic point clouds of ligands labelled with SA score. To allow for
predictions on probability distributions of atom types, we encode atom types as one-hot vectors. For
more details, we refer the reader to Section S.3.

ANI2x ANI2x is a neural network ensemble model that is part of the ANI suite of models [20].
The ANI models are trained on quantum chemistry calculations (at the density functional theory
level) and they predict the total energy of a target system. The ANI models are trained on millions of
organic molecules and are accurate across different domains [61, 62, 12, 63]. In addition, they have
been shown to outperform many common force fields in terms of accuracy [15]. The ANI models
make use of atomic environment descriptors, which probe their local environment, as input vectors.
An individual ANI model contains multiple neural networks, each specialized for a specific atom
type, predicting the energy contributed by atoms of that type in the molecular system. The total
energy of the system is obtained by performing a summation over the atomic contributions [61].
The ANI2x model is an ensemble model consisting of 8 individual ANI models. Each sub-model
is trained on a different fold of the ANI2x dataset, composed of gas-phase molecules containing
seven different atom types – H, C, N, O, F, Cl, and S [12]. These seven atom types cover ≈ 90% of
drug-like molecules, making ANI2x a suitable ML model for usage in our framework.
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S.1.4 Latent Vector Optimization

The main optimization in IDOLpro occurs via the modification of latent vectors used by the generator
to generate novel ligands. We do this by repeatedly evaluating generated ligands with an objective
composed of a set of differentiable scores, calculating the gradient of the objective with respect to the
latent vectors (facilitated by automatic differentiation with Pytorch [47]), and modifying the latent
vectors via a gradient-based optimizer.

When optimizing latent vectors in DiffSBDD, we do not modify the initial latent vectors used by
the model. Instead, we define an optimization horizon, thz. First latent vectors are generated up to
the optimization horizon zT , . . . , zthz . This latent vector is saved, and the remaining latent vectors,
zthz−1, . . . , z0, are generated. The gradient of the objective with respect to zthz is evaluated, and zthz

is modified using the Adam optimizer [31]. When re-generating ligands, rather than starting from zT ,
only latent vectors proceeding the optimization horizon are generated, i.e., zthz−1, . . . , z0.

In this work, we focus on using two combinations of evaluators: torchvina on its own, and torchvina
in combination with torchSA. We use the Adam optimizer with a learning rate of 0.1, β1 = 0.5
and β2 = 0.999 to modify latent vectors. We perform hyperparameter optimization to choose the
optimization horizon, described in Section S.4.2.

S.1.5 Structural Refinement

Structural refinement, in the form of local coordinate optimization, proceeds similarly to latent
vector optimization. The scoring module is used to repeatedly evaluate ligands, and the derivatives
concerning the ligand’s coordinates are used to modify the ligand’s coordinates with a gradient-based
optimizer. We use the L-BFGS optimizer in Pytorch [47] to perform coordinate optimization. Our
optimization algorithm is implemented with Pytorch and is parallelizable on a GPU. In this work, we
only use one combination of evaluators to perform coordinate optimization: torchvina and ANI2x.
We discuss the selection of different inter and intra-molecular forces in Section S.4.3.

S.2 Additional experiments

S.2.1 Validating latent vector optimization

To assess the ability of our platform to augment the performance of the baseline model via the
optimization of latent vectors, we run IDOLpro to optimize torchvina and torchSA, and analyze its
capability to improve the Vina and SA scores relative to DiffSBDD-Cond. For each of the protein
pockets in the CrossDocked and Binding MOAD test sets, we generate 100 optimized ligands using
IDOLpro. We calculate the Vina and SA scores of ligands before and after latent vector optimization
with IDOLpro. We report the average Vina and SA scores, and the top-10% Vina and SA scores
for each method on each test set. We also report the average percentage of synthesizable molecules
generated. In this work, we define a ligand as synthesizable if it achieves an SA score of less than
3.5. Although the inventors of the SA score suggest 6 as the cutoff for synthesizability, a number of
papers have found SA scores between 3.5 and 6 to be ambiguous [19, 67]. A cutoff of 3.5 was also
used to determine synthesizability in Ref. [75].

The results are shown in Table S1. We find that IDOLpro generates ligands with better Vina and
SA scores than DiffSBDD-cond, yielding molecules with ≈ 20% better Vina scores and ≈ 21%
better SA scores on the CrossDocked dataset, and ≈ 26% better Vina scores and ≈ 21% better SA
scores on the Binding MOAD dataset. Furthermore, IDOLpro yields more than double the amount
of synthesizable ligands compared with DiffSBDD-cond for each dataset (51.2 % vs 23.5 % and
56.9 % vs 22.6 %). Overall, IDOLpro is able to co-optimize Vina and SA, producing molecules
with significantly better binding affinities and synthetic accessibility when compared to the baseline
model, DiffSBDD-cond.

S.2.2 Comparisons to DL and non-DL methods

Lastly, we compare IDOLpro to various non-deep learning-based methods in the literature. These
methods include genetic algorithms [44, 28, 65, 17], reinforcement learning [81, 2, 45, 29], and an
MCMC method [73]. We evaluate these methods across the 10 protein pockets in the RGA test set.
For each target, as was done in Ref. [17], we generate 1000 ligands with IDOLpro and calculate the
average top-100, top-10, and top-1 Vina score. We also record the average SA and QED of molecules,
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Dataset Method Vina [kcal/mol] SA Synth [%]

CrossDocked DiffSBDD-cond [57] −5.37± 1.93 4.30± 0.50 23.5± 15.5
IDOLpro −6.47± 2.10 3.41± 0.70 51.2± 22.7

MOAD DiffSBDD-cond [57] −5.38± 2.55 4.18± 0.50 26.5± 17.8
IDOLpro −6.77± 2.24 3.32± 0.66 56.9± 22.6

Table S1: Performance of IDOLpro when used to optimize torchvina and torchSA relative to the
baseline model, DiffSBDD-cond on the CrossDocked and Binding MOAD test sets. The average
Vina score, SA score, and the average percent of synthesizable molecules are reported.

Method Vinatop-100 [kcal/mol] Vinatop-10 [kcal/mol] Vinatop-1 [kcal/mol] SA
MARS [73] −7.76± 0.61 −8.8± 0.71 −9.26± 0.79 2.69± 0.08

MolDQN [81] −6.29± 0.40 −7.04± 0.49 −7.50± 0.40 5.83± 0.18
GEGL [2] −9.06± 0.92 −9.91± 0.99 −10.45± 1.04 2.99± 0.05

REINVENT [45] −10.81± 0.44 −11.23± 0.63 −12.01± 0.83 2.60± 0.12
RationaleRL [29] −9.23± 0.92 −10.83± 0.86 −11.64± 1.10 2.92± 0.13

GA+D [44] −8.69± 0.45 −9.29± 0.58 −9.83± 0.32 3.45± 0.12
Graph-GA [28] −10.48± 0.86 −11.70± 0.93 −12.30± 1.91 3.50± 0.37

Autogrow 4.0 [65] −11.37± 0.40 −12.21± 0.62 −12.47± 0.84 2.50± 0.05
RGA [17] −11.87± 0.17 −12.56± 0.29 −12.89± 0.47 2.47± 0.05
IDOLpro −14.59± 1.51 −16.26± 1.66 −17.35± 2.10 3.77± 0.33

Table S2: Comparison of IDOLpro to various score and sample-based methods on 10 disease-related
protein targets. The average top-100, top-10, and top-1 Vina scores across the targets are reported,
along with the average SA. The top-performing model on each metric is bolded in the corresponding
column. Numbers for other methods are taken from Ref. [17].

Method QED Diversity
MARS [73] 0.71± 0.01 0.88± 0.00

MolDQN [81] 0.17± 0.02 0.88± 0.01
GEGL [2] 0.64± 0.01 0.85± 0.00

REINVENT [45] 0.45± 0.06 0.86± 0.01
RationaleRL [29] 0.32± 0.02 0.72± 0.03

GA+D [44] 0.70± 0.02 0.87± 0.01
Graph-GA [28] 0.46± 0.07 0.81± 0.04

Autogrow 4.0 [65] 0.75± 0.02 0.85± 0.01
RGA [17] 0.74± 0.04 0.86± 0.02
IDOLpro 0.64± 0.06 0.72± 0.04

Table S3: Comparison of IDOLpro to various score and sample-based methods on 10 disease-related
protein targets for QED and diversity. The top-performing model on each metric is bolded in the
corresponding column. Numbers for other methods are taken from Ref. [17].

along with the average diversity per protein pocket. Numbers for other methods are taken from
Ref [17]. Results are shown in Table S2 and Table S3.

IDOLpro greatly outperforms non-DL techniques in terms of Vina score, improving on the next
best method by ≈ 23%, ≈ 29%, and ≈ 35% in terms of average top-100, top-10, and top-1 Vina
score respectively. Unlike when compared to other DL methods, IDOLpro ranks behind most of
these methods in terms of average SA, ranking 9th out of the 10 methods compared. IDOLpro is
middle-of-the-pack in terms of QED, ranking 5th out of the 10 methods compared. This shows
that IDOLpro, and deep learning methods in general, have a ways to go before they can produce
molecules with the same synthesizability and drug-likeness as other advanced non-DL methods in the
literature. This is an ongoing area of research [19, 8], and is an aspect that we would like to improve
in IDOLpro.

S.3 More details of the SA model

To train the SA model, we prepare a dataset consisting of all molecules with structural information in
ChemBL [78] (2,409,270 structures), and ligands used to train DiffSBDD [57] on CrossDocked2020
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Method Diversity Time [s/ligand]
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3D-SBDD [41] 0.74± 0.09 328.13± 245.43
Pocket2Mol [48] 0.74± 0.15 41.79± 36.84

GraphBP [38] 0.84± 0.01 0.17± 0.02
TargetDiff [23] 0.72± 0.09 ∼ 57.22

DiffSBDD-cond [57] 0.73± 0.07 2.27± 0.86
DiffSBDD-inpaint [57] 0.76± 0.05 2.67± 1.22

IDOLpro 0.79± 0.07 58.80± 32.97

M
O

A
D

GraphBP [38] 0.83± 0.01 0.23± 0.03
DiffSBDD-cond [57] 0.71± 0.08 5.61± 1.42

DiffSBDD-inpaint [57] 0.74± 0.05 6.17± 2.08
IDOLpro 0.77± 0.07 82.30± 45.07

Table S4: Evaluation of DL tools on targets from the CrossDocked and Binding MOAD datasets for
diversity and time. The average, along with the standard deviation of each metric across the protein
pockets in each dataset is reported. The top performing model on each metric is bolded in the
corresponding column. Numbers for other models are taken from Ref. [57]. Time is based on
running DiffSBDD-cond on our hardware, and adjusting the times reported in Ref. [57] accordingly.
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Figure S1: Training and validation curves for training PaiNN to predict the SA score on 3D atomic
point clouds. The MSE at each epoch is plotted for the training set, the ChemBL validation set, the
DiffSBDD validation set, and the CrossDocked validation set.

[16] (183,468 structures). Although the SA score is fully determined by the chemical graph of a
molecule, we keep molecules with different conformations from CrossDocked2020 to aid the model
in learning the redundancy of pose in determining the SA score. To improve the model’s performance
on ligands produced by DiffSBDD, we generate nearly 1,000,000 (877,284) ligands with DiffSBDD
which are included in the training data. We generate several ligands for each of the protein pockets
in the DiffSBDD training set and then filter them using the same validity checks described in the
Methods section. We put a higher emphasis on modelling ligands from CrossDocked2020 and
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DiffSBDD, sampling from one of these datasets during training with a 5× higher likelihood than
ChEMBL.

We train the polarizable atomic interaction neural network [58] (PaiNN) from the Open Catalyst
Project [9, 68] to predict the SA score given the atomic coordinates and atom types. To allow PaiNN
to make predictions on atom types coming out of DiffSBDD, we encode atom types as one-hot vectors.
We first optimize the hyperparameters of the model using Ray Tune [36]. The hyperparameters
chosen were num_rbf = 64, num_layers = 4, max_neighbor = 30, cutoff = 8.0, hidden_channels =
256. We use a 95%/5% training/validation split for each dataset. The model is trained for 100 epochs
to minimize the MSE loss with the AdamW optimizer [39] with a learning rate of 5× 10−4. Training
and validation curves are plotted in Fig. S1.

S.4 Hyperparameter Tuning

PDB ID Ligand ID
2ah9 cto
5lvq p2l
5g3n u8d
1u0f g6p
4bnw fxe
4i91 cpz
2ati ihu

2hw1 lj9
1bvr geq
1zyu k2q

Table S5: Validation set used to choose hyper-parameters in IDOLpro. All proteins from the test set
of LiGAN [51] were used, and a single protein pocket for each protein was selected at random.

We perform several hyperparameter tuning experiments to fine-tune the performance of our pipeline.
To avoid overfitting on our two benchmark sets, we perform all experiments using a non-overlapping
validation set. This validation set is composed of 10 targets taken from the test set of LiGAN [51],
which was used to validate the performance of several other works in the literature [38, 37]. For each
of these ten targets, a single pocket is randomly selected to be included in the validation set. The set
of receptor-ligand combinations used in these experiments is included in Table S5. We generate 20
ligands per pocket for each experiment. Each experiment is run on an NVIDIA A10G GPU with 24
GB of GPU memory.

S.4.1 Accelerating Diffusion

diffusion steps Vina [kcal / mol] SA QED Time [s]

5 −6.25± 2.08 3.72± 0.46 0.53± 0.10 60.60± 49.75
50 −6.72± 2.45 3.92± 0.58 0.54± 0.10 196.96± 102.97

Table S6: Results when reducing the number of rollout steps from 50 to 5. The average Vina, SA,
and QED across the validation set is reported.

In DiffSBDD, the models are trained to generate ligands over 500 reverse diffusion steps according
to some noise schedule. At each time step an equivariant network takes in the noised coordinates
and atom types, as well as the time step, and returns a denoised representation of the atoms and
coordinates [57]. One can reduce the number of reverse diffusion steps by skipping time steps in the
noise schedule.

In IDOLpro, the majority of the reverse diffusion process is run to generate zthz
, i.e., to seed the

initial latent vectors. When optimizing zthz
, the rollout of zthz

, . . . , z0 needs to be repeated many
times. We run an experiment to determine whether we can reduce the number of steps during this
final rollout 10-fold without a significant degradation in performance. We run an experiment with the
smallest horizon considered thz = 50. Results are shown in table Table S6. Running the rollout with
reduced diffusion steps results in over a 3× speedup, with a slight decrease in average Vina score (<
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0.5 kcal /mol), while preserving average SA and QED. We adopt this setting in our pipeline for this
reason.

S.4.2 Tuning Optimization Horizon

We tune the value of the optimization horizon, thz , to optimize both the Vina and SA scores of
generated molecules. We consider thz ∈ 50, 100, 200. For each setting of the optimization horizon,
we track the difference in Vina score, SA score, and QED. Results are reported in Table S7. Based
on these results we set the optimization horizon to 200, since that setting resulted in by far the best
difference in Vina score and QED, albeit a slightly worse improvement in SA score relative to setting
thz = 100.

thz ∆ Vina ∆ SA ∆ QED
50 -1.21 -0.34 -0.028
100 -1.17 -0.82 0.004
200 -1.84 -0.76 0.048

Table S7: Results when varying the optimization horizon thz in IDOLpro. The difference in Vina,
SA, and QED for the final optimized ligands produced by IDOLpro relative to the initial ligands
produced by DiffSBDD are reported.

S.4.3 Structural Refinement with Torchvina and ANI2x

Here we discuss how we tune the performance of our structural refinement procedure. We consider
various combinations of intra-molecular and inter-molecular forces derived from the torchvina and
ANI2x [12] potentials. We use the following parameters in the L-BFGS optimization algorithm:
max_iter=100, tolerance_grad=10−3, and line_search_fn=“strong_wolfe". For each experiment, we
keep track of the average Vina score, the top%10 Vina score, the average time taken to optimize
each ligand, and the percent of valid structures that are output by the procedure based on our validity
checks. We tabulate these results and include the same metrics when QuickVina [3] is used for
docking for comparison. QuickVina was used to dock structures after generation in DiffSBDD [57].

When analyzing the reason for invalid molecules, we find that a large number of failed cases are
due to atoms becoming too far during the structural relaxation, causing the molecule to become
disconnected. To remedy this, we add an L1 penalty for violating the bonds in the molecule produced
by IDOLpro. To do so, we use ASE’s [33] natural cutoffs. We find that setting a weight of 0.01 on
this L1 penalty results in the best balance of Vina score and validity.

Method Torchvina ANI2x L1 bond penalty Vina [kcal/mol] Vina10% [kcal/mol]
QVina - - - -8.51 -9.51

IDOLpro Inter+Intra Inter+Intra ✗ -9.26 -10.35
IDOLpro Inter+Intra Intra ✗ -9.33 -10.41
IDOLpro Inter Inter+Intra ✗ -9.38 -10.53
IDOLpro Inter Intra ✗ -9.53 -10.70
IDOLpro Inter Intra ✓ -9.39 -10.68

Table S8: Results when running structural refinement various combinations of inter-molecular and
intra-molecular forces derived from the Vina and ANI2x potentials. We also make note of whether an
L1 penalty for encforcing bonds was used. For each experiment, we note the Vina score, top-10 Vina
score.

S.4.4 Stopping Criteria, Backtracking, and Decaying Learning Rate

We use per-parameter options in Pytorch [47] to allow for individualized learning rates for different
ligands. For each ligand, we optimize it with Adam with the chosen hyperparameters. We optimize
each latent vector for 10-200 optimization steps. Often, during latent vector optimization, a ligand
will be pushed to a part of latent space such that it becomes invalid. In such a case, we attempt to
generate a ligand 10 times with the given latent vector. If after 10 attempts, reverse diffusion has
not produced a valid ligand, we backtrack to the previous latent vector in the optimization trajectory,
reduce the learning rate by a factor of 10, and restart the optimization. If at another point in the
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Method Torchvina ANI2x L1 bond penalty Validity [%] Time [s]
QVina - - - 95.0 75.0

IDOLpro Inter+Intra Inter+Intra ✗ 80.1 19.34
IDOLpro Inter+Intra Intra ✗ 77.2 22.49
IDOLpro Inter Inter+Intra ✗ 82.1 18.53
IDOLpro Inter Intra ✗ 81.6 23.90
IDOLpro Inter Intra ✓ 86.6 24.45

Table S9: Results when running structural refinement various combinations of inter-molecular and
intra-molecular forces derived from the Vina and ANI2x potentials. We make note of whether an L1
penalty for encforcing bonds was used, the percent of valid structures produced with the combination
of potentials. Validity checks are performed according to the checks described in Section Validity
Checks S.1.2.

optimization, with the reduced learning rate, another latent vector fails to generate a valid ligand over
10 attempts, the optimization of that trajectory is stopped.

S.5 An Additional Scoring Function: DiffDock

We include the scoring module from DiffDock [11] in our evaluator module. DiffDock is composed
of two modules, a docking module and a scoring module, which together can dock ligands to a
target protein without pocket information. The DiffDock docking module was trained to predict the
experimental binding pose of ligands in the PDBBind dataset [70]. The DiffDock scoring module was
trained on experimental data where the goal of the model was to classify whether or not a candidate
ligand is < 2 Å of the experimental binding pose. DiffDock docks ligands by producing many
binding poses for a target ligand with the docking module, and returning these poses as a ranked
list using the scoring module. The node from the final classification layer of the scoring network,
indicating the likelihood that a docked ligand is < 2 Å from an experimentally derived binding pose,
can be used as a scoring function.

DiffDock was shown to have state-of-the-art performance on a blind docking task for protein-ligand
pairs extracted from the PDBBind dataset, significantly outperforming other state-of-the-art ML-based
docking procedures [11].

S.6 Visualization of Latent Vectors

Figure S2: Latent vector visualizations of IDOLpro when generating ligands for 14gs. The points are
coloured by Vina score (darker implies lower scores), and a green star marks the end of the
optimization trajectory.
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