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Abstract

Glycans are the most complex biological sequence, with monosaccharides forming
extended, non-linear sequences. As post-translational modifications, they modulate
protein structure, function, and interactions. Due to their diversity and complexity,
predictive models of glycan properties and functions are still insufficient.
Graph Neural Networks (GNNs) are deep learning models designed to process
and analyze graph-structured data. These architectures leverage the connectivity
and relational information in graphs to learn effective representations of nodes,
edges, and entire graphs. Iteratively aggregating information from neighboring
nodes, GNNs capture complex patterns within graph data, making them particularly
well-suited for tasks such as link prediction or graph classification across domains.
This work presents a new model architecture based on combinatorial complexes and
higher-order message passing to extract features from glycan structures into a latent
space representation. The architecture is evaluated on an improved GlycanML
benchmark suite, establishing a new state-of-the-art performance. We envision that
these improvements will spur further advances in computational glycosciences and
reveal the roles of glycans in biology.

1 Introduction

Glycans are complex carbohydrate structures composed of covalently connected monosaccharides
forming branching oligosaccharide trees [1]. Glycans play crucial roles in numerous biological
processes, from regulating the immune response to mediating host-pathogen interactions [2, 3]. As
post-translational modifications, glycans are also key for modulating protein structure, function,
and interactions. Especially understanding glycan-protein interactions has recently shed light onto
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Dataset Name Class. # Mono per
Glycan

# Atoms per
Glycan

#train/#val/#test

Immunogenicity Binary 6.30 97.54 825/230/113
Glycosylation 3-class 7.59 115.97 1,134/317/163
Tax. Domain 5-label 7.13 91.43 11,378/3,170/1,579
Tax. Kingdom 15-label 7.13 91.43 11,378/3,170/1,579
Tax. Phylum 43-label 7.13 91.43 11,378/3,170/1,579
Tax. Class 78-label 7.13 91.43 11,378/3,170/1,579
Tax. Order 170-label 7.13 91.43 11,378/3,170/1,579
Tax. Family 265-label 7.13 91.43 11,378/3,170/1,579
Tax. Genus 394-label 7.13 91.43 11,378/3,170/1,579
Tax. Species 569-label 7.13 91.43 11,378/3,170/1,579

Table 1: Benchmark task description.

receptors for SARS-CoV-2 [4], immune checkpoints in cancer [5], or erythrocyte invasion by malaria-
causing parasites [6].

Traditional approaches to glycan analysis have relied on hand-crafted features or simple molecular
descriptors, which often fail to capture the full structural complexity of these molecules. Recent
advances in machine learning, particularly in graph neural networks (GNNs), have shown promise in
addressing these limitations [7, 8]. GNNs can naturally represent the branched, non-linear structure
of glycans and learn relevant features directly from unprocessed data.

Despite these advances, existing GNN models for glycan analysis often struggle to simultaneously
capture both the atomic-level details and the higher-order structural information of glycans. Models
focusing on atomic-level representations [9] may miss important topological features, while those
operating on a coarser, monosaccharide level [8] may overlook crucial atomic interactions.

To address these challenges, we present GIFFLAR (Glycan Informed Foundational Framework
for Learning Abstract Representations), a novel GNN architecture specifically designed for glycan
representation learning. GIFFLAR leverages combinatorial complexes [10] to represent glycans
at multiple levels of abstraction—atoms, bonds, and monosaccharides—within a single, unified
framework. This multi-level representation, combined with higher-order message passing, enables
the model to learn rich, hierarchical features that capture both local and global structural information.

We evaluate GIFFLAR on an expanded and curated version of the GlycanML benchmark suite [11],
encompassing a diverse set of glycan property prediction tasks. Our experiments demonstrate that
GIFFLAR consistently outperforms existing methods across all tasks, including traditional machine
learning approaches and state-of-the-art GNN models.

The rest of this paper is organized as follows: Section 2 discusses related work in glycan analysis and
graph neural networks. Section 3 describes our experimental setup, including data preparation and
model architecture. Section 4 presents our evaluation results and ablation studies. Finally, Section 5
discusses our findings and outlines limitations and future work directions. The necessary background
on combinatorial complexes and higher-order message passing can be found in Appendix A.

2 Related Work

GlycanML In 2024, Xu et al. proposed to use existing benchmark datasets curated by our group to
assess the performance of models for glycan property prediction [11]. This data was mainly taken
from the 2021 version of SugarBase [12], and GlyConnect [13] for the glycosylation classification. In
2024, glycowork v1.3 was released [14], and the included data extends the taxonomy datasets beyond
the coverage of GlycanML, comprising 40% new glycans in our extended benchmark datasets here.
For the presented work, we thus created a dataset comprising eight taxonomy classification tasks
from glycowork and two classification tasks for glycosylation and immunogenicity from GlycanML.
As our model requires atomic graphs, we filtered the ten datasets for those fully specified glycans
that could be translated from IUPAC to SMILES using GlyLES [15].
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This previous work showed that the RGCN (Relational Graph Convolutional Network) [16] was the
best on the single-task datasets. Therefore, we implemented this architecture as one of the baselines
and the only one using the same heterogeneous graph architecture our new model will use. All
models in this study were retrained on the same dataset of glycans, using the same data split across
all models.

SweetNet The standard model to predict properties of glycans is SweetNet, which operates on a
topological level, i. e., the tree of monomers [8]. As one of the first glycan-focused geometric deep
learning models, it uses a GNN architecture for feature extraction and a simple MLP as the prediction
head. Burkholz et al. showed the superiority of their approach over simple baselines. In downstream
experiments, they showed that SweetNet can identify/extract essential features of glycans. In separate
work, Lundstrøm et al. used SweetNet as an encoder for glycans in a lectin-glycan interaction
prediction model [17] and Kellman et al. used it as an encoder to predict glycosylation potential at a
protein glycosite [18].

GNNGLY After GlyLES was published, Alkuhlani et al. presented GNNGLY, a GCN-based model
for glycan property prediction based on atomic structures computed with GlyLES [9]. This model
was trained on the original taxonomy classification data from SugarBase. They showed improvement
over simple baselines and comparable results to SweetNet. However, the study raises several concerns
as it is not reproducible in our hands, and SweetNet was not retrained for the initial study. The latter
is necessary for comparability, as the initial dataset for training SweetNet and GNNGLY was the
same. Due to structural ambiguities, GlyLES could not convert all IUPAC-condensed strings of this
dataset to SMILES, and the usable data for training and evaluating GNNGLY is different from the
one used initially for SweetNet. Due to the lack of code and the insufficient architecture description
for GNNGLY, we had to implement the model as best as possible.

GLAMOUR To our knowledge, GLAMOUR is the only published model incorporating atomic
and macromolecular (topological) structures of molecules into one model [19]. Since it applies to
any class of multimeric molecules, it has been tested for glycan property prediction. GLAMOUR
operates on a topological level like SweetNet, with nodes representing monomeric units and edges
representing their covalent connections. The atomic structures of the monomers and their connections
are used to compute fingerprints as the initial features of the nodes and edges. GLAMOUR offers
five GNN architectures as the backend of the model. However, we could not apply GAT and GCN
to monosaccharides. Among the other three, namely MPNN, Weave, and AttentiveFP, the MPNN
performed best (see Appendix B). Therefore, we used this as the baseline.

3 Experiments

3.1 Data Preparation

In total, we trained nine models on four representations of glycans. Simple baselines, namely Random
Forests [20], Support Vector Machines [21], Gradient Boosting [22], and Multilayer Perceptrons [23],
on atom-level Morgan Fingerprints, GNNGLY on atom-level homogeneous graphs, SweetNet and
GLAMOUR on topology-level homogeneous graphs, and RGCN and GIFFLAR on heterogeneous
graphs. Because all models except SweetNet require atomic graphs as input, we translated all IUPAC-
condensed notations to SMILES using GlyLES [15] and filtered for those glycans for which GlyLES
could compute SMILES strings. We then computed atomic graphs from these SMILES strings using
RDKit. This ensured that all models were trained (see Appendix D) and evaluated using the same
data. The data was split randomly, and all models were trained on the same split.

Similar to GlycanML, we trained the Immunology and Glycosylation datasets as binary and three-
class, single-label classification tasks, respectively. In Alkuhlani et al. and Xu et al. [9, 11], training
taxonomy classification as a multi-class, single-label problem led to accuracy measurements that are
hard to interpret because a perfect model would not achieve an accuracy of 1, since the same glycan
may be conserved across multiple taxonomic groups. Therefore, we changed the task for taxonomy
predictions to a multi-label classification. This also reduced the dataset sizes, as each glycan was now
only present once with all its labels instead of once per label.
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The heterogeneous graphs for RGCN and GIFFLAR have three node types: atoms, bonds, and
monosaccharides, corresponding to 0-cells, 1-cells, and 2-cells, respectively, as detailed in Appendix
A. They are connected based on neighborhoods as defined in Equations 5 and 7 (in Appendix A), for
intra-rank and inter-rank neighborhoods, respectively.

3.2 Model Architecture

For GIFFLAR, we used an architecture similar to Graph Isomorphism Networks [24] and instantiated
equation 9 as

hl+1
x =

∑
Nk∈N

θlk

(1 + ϵ) · hl
x +

∑
y∈Nk

hl
y

 , with (1)

N = {B0,0, B1,1, B2,2, N ↓
0,1, N

↓
1,2} (2)

and θlk consisting of a fully connected layer, a parameterized ReLU activation function, dropout with
p = 0.2, and batch normalization. The modules share the architecture across l and k but not the
weights. The readout for the final graph embedding is a simple mean over all nodes. We explored
other approaches, which did not result in higher performance (see Appendix C). The classification
head is a simple, two-layered feed-forward network (FFN) with a parameterized ReLU activation
function and a dropout layer (p = 0.2). The final model takes 128-dimensional node features as input.
We use fixed, random embeddings per node class, e.g., C or O for atom nodes. The feature vectors
are scaled up to 1024-dimensional embeddings in the hidden layers. As a result, the model has 35.1M
trainable parameters.

All reported performance in this work is computed on the validation set. These performances were
used to compare models and justify architectural decisions. Every model is biased toward the data
that influenced its development [25]. Therefore, we use a separate holdout dataset to report the
state-of-the-art performance on unseen data for the best model chosen on the validation set.

4 Evaluation

Combinatorial complexes present a natural choice to represent glycans as graph objects, combining
their atomic representation and topological structure. We evaluated the performance of the models
using accuracy, Area Under the Receiver Operating Characteristics (AUROC) curve, and Matthews
Correlation Coefficient on all ten datasets. The three metrics cannot immediately be aggregated and
compared, as a gain of .1 in accuracy differs from gaining .1 in AUROC and this varies between
datasets. Therefore, we applied Min-Max normalization to all metrics to bring them to a comparable
scale. This resulted in 30 performance metrics per model (10 datasets ×3 metrics between 0 and
1). We then combined the scores (algorithm 1), as no model was strictly best in all 30 metrics. This
allowed us to assign a scalar performance metric to each model as the sum of its 30 normalized
performances to identify the best model on average.

Algorithm 1: Computation of Accumulated, Normalized Performance

Input: Performance Tensor P ∈ RM×D×M

M is the number of metrics, D is the number of datasets, and M is the number of models.
for m inM do

for d in D do
dmin ← minP [m, d, :]
dmax ← maxP [m, d, :]

P [m, d, :]← P [m,d,:]−dmin

dmax−dmin

end
end
output← [

∑
P [:, :,m] for m in M ]

return output

In early experiments, we investigated the influence of model depth on performance. We found that
an 8-layered GIFFLAR model performed best, on average, on downstream tasks (see Figure 1A).
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Figure 1: Averaged normalized performances (ANPs) for different model comparisons. The ANPs are
calculated over all models within one subplot. Elements with the same color refer to the same model.
A: ANPs for the GIFFLAR model with 1024 feature dimensions with different depths. B: ANPs
comparing RGCN with 128 feature dimensions (leftmost in each group) to two GIFFLAR models
with 128 (middle) and 1024 feature dimensions (rightmost), respectively. The bars are grouped by
added positional encodings (PEs). C: ANPs comparing GIFFLAR to the eight baselines.

Frac. Immun. Glycos. D K P C O F G S

full .8145 .9655 .9531 .9214 .8481 .7877 .6464 .6236 .5381 .4943
OOD 1 .6902 .9247 .9198 .7952 .7234 .5507 .5192 .4381 .4043

Table 2: Matthews Correlation Coefficient of the final GIFFLAR architecture on the test set, estab-
lishing a new SOTA. Performances on the full test set and on only out-of-distribution (OOD) glycans
are shown. Performances of all models on the validation set can be found in Table A1.

We also investigated how node feature dimensions and positional encodings (PEs) impacted model
performance. We tested 128-dimensional and 1024-dimensional random features combined with
RandomWalk PEs and Laplacian PEs. Neither individual nor combined PEs consistently improved
model performance (see Figure 1B). Further, we observed almost equal performance of 128- and
1024-dimensional feature vectors. Following the principle of Occam’s Razor, we thus favored 128-
dimensional features, which were then scaled up to 1024 dimensions within the GNN layers. In
Figure A3, we report a comparison of the unnormalized scores.

After determining the optimal model architecture, we compared this model to retrained baselines based
on Morgan 1024-bit Fingerprints (Random Forests, Support Vector Machines, GradientBoosting, and
a Feedforward Neural Network), homogeneous graphs (GNNGLY on an atomic level, and SweetNet
and GLAMOUR on a topological level), and RGCN on heterogeneous graphs. Here, again, our
new GIFFLAR architecture showed superior performance, being the best-in-class model despite a
lower number of trainable parameters (see Figure 1C and Tables A2 and A1). The fingerprint-based
baselines appear very strong, which is a common phenomenon observed in the field [26].

Table 2 shows the performance of GIFFLAR on the held-out test set, i. e., data that did not influence
the model development. The out-of-distribution (OOD) data performance may vary from this, as
shown in [27]. Therefore, we report the performance of the OOD fraction of the test set separately.
In Appendix B.1, we describe which glycans we considered OOD. Notably, the variance of the
OOD-MCC is relatively high for the Immunogenicity and Glycosylation datasets, as the test set only
contained 31 and 12 OOD samples, respectively. The test sets of the taxonomy datasets contained
over 400 OOD samples and are, therefore, more stable.

5 Discussion, Conclusion, Limitations, and Future Work

Here, we presented GIFFLAR, a novel graph neural network architecture designed specifically for
glycan representation learning. By leveraging combinatorial complexes and higher-order message
passing, GIFFLAR achieves state-of-the-art performance across a wide range of glycan property
prediction tasks. GIFFLAR consistently outperforms existing methods, including traditional ma-
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chine learning approaches using Morgan fingerprints, homogeneous graph neural networks such
as GNNGLY, SweetNet, and GLAMOUR, and heterogeneous graph models such as RGCN. The
superior performance of GIFFLAR can likely be attributed to its ability to capture both atomic-level
structure and topological information of glycans simultaneously. Due to its superior performance,
we expect that GIFFLAR will become the new foundation in computational glycobiology and yield
improvements in relevant downstream tasks. Another advantage of GIFFLAR over the baselines
is that the feature extractor can be trained end-to-end specifically for a task, e. g., in lectin-glycan
interaction prediction.

Using combinatorial complexes allows GIFFLAR to represent glycans at multiple levels of ab-
straction—atoms, bonds, and monosaccharides—in a single, unified framework. This multi-level
representation, combined with higher-order message passing, enables the model to learn rich, hierar-
chical features crucial for accurate glycan property prediction. While we focused on glycans in this
work, the principles behind GIFFLAR could be extended and adapted to other complex biomolecules,
such as metabolites or lipids. Exploring these applications could further broaden the impact of our
approach.

GIFFLAR achieves high predictive performance, yet interpreting its learned representations remains
challenging. Developing techniques to visualize and explain model predictions would be valuable
for glycobiologists and could lead to new insights into glycan structure-function relationships. We
further anticipate that future work could explore the value of pre-training such models on larger sets
of unlabeled data, similar to established procedures in protein representation learning.

In conclusion, GIFFLAR presents a significant advance in glycan representation learning, demonstrat-
ing the power of combining combinatorial complexes with higher-order message passing in graph
neural networks. As glycomics continues to grow in importance within the life sciences, we envision
that GIFFLAR and its future extensions will play a crucial role in unlocking the full potential of
glycan-related research and applications. An example application of GIFFLAR as a trainable feature
extractor for glycans is the field of lectin-glycan interaction prediction.
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Figure A1: Lactose in three abstractions. Figure A shows the chemical formula, and Figure B shows
the graph of atoms (GOA). Figure C shows the combinatorial complex and cells of all ranks. 0-cells in
blue represent the atoms; 1-cells in orange are bonds between atoms, and 2-cells in green show whole
monosaccharides. Figure D shows an inspirational and motivational Gifflar, a Swedish cinnamon roll.

A Theory

This section will explain how we interpret glycans as graphs and use combinatorial complexes and
higher-order message passing to compute their topology-aware embeddings.

Combinatorial Complexes Combinatorial complexes (CCs) are the abstract superclass of simpli-
cial complexes, cellular complexes, and more. As they are central to our work, we will precisely define
CCs following the definition of Eitan et al. [28]. Definitions of simplicial and cellular complexes are
given in [29, 30].

Definition A.1. A combinatorial complex (CC) is a tuple (S,X , f) where S is a set, X ⊆ P(S) \ ∅
is a subset of its powerset P(S), and f := X 7→ Z+

0 is a function with the following properties:

∀s ∈ S. {s} ∈ X (3)
∀x, y ∈ X . x ⊂ y =⇒ f(x) < f(y), i. e., f is order-preserving. (4)

The elements of S correspond to a graph’s nodes (or vertices); elements of X are called cells.
Different cell ranks are based on the organization level within the combinatorial complex. In a
general CC, all cells of rank i form the i-skeleton, denoted as Xi. For our work, nodes are 0-cells
(representing atoms), edges between nodes are 1-cells (representing bonds), and 2-cells are collections
of edges (representing monomers).

Neighborhood functions Within and between ranks of a CC, C = (S,X , f), one can define a
neighborhood function N := X 7→ P(X ). For x ∈ Xi, the four neighborhood functions relevant to
our work are:

Bi,j(x) = {y ∈ Xi | ∃z ∈ Xj s.t. x, y ⊆ z} (5)
Ci,j(x) = {y ∈ Xi | ∃z ∈ Xj s.t. z ⊆ x, y} (6)

N ↓
i,j(x) = {y ∈ Xj | x ⊆ y} (7)

N ↑
i,j(x) = {y ∈ Xj | y ⊆ x} (8)

where i and j are different ranks of a CC. Equations 5 and 6 define neighborhoods within rank i over
shared cells with higher (Eq. 5) and lower (Eq. 6) ranks, respectively. Conversely, Equations 7 and 8
define neighborhoods between ranks, where (Eq. 7) is the set of higher-rank neighbors and (Eq. 8) is
the set of lower-rank neighbors. Figure A1 visualizes all definitions and relations on the example of
lactose.

Higher-order message passing Using the neighborhoods on CCs defined above, we can define a
message-passing scheme on CCs following Hajij et al. [10].

Definition A.2. Let N = {N1, . . . ,Nn} be a set of neighborhood functions defined on a CC X ,
e. g., N = {B0,1, C1,0,N ↓

0,1,N
↑
1,0}. Furthermore, hl

x is the embedding of cell x ∈ X in layer
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Figure A2: A: Comparison of different backbone architectures in GLAMOUR compared on all 10
datasets. B: Comparison of different pooling methods in GIFFLAR as described in B. This was
conducted only on the Immunogenicity and Taxonomy-Domain datasets for runtime reasons.

l ∈ {0, . . . , L}. Higher-order message passing on X is defined via this update rule:

hl+1
x = σ

hl
x,
⊗

Nk∈N

⊕
y∈Nk

θlNk

(
hl
x,h

l
y

) (9)

Here, σ is a non-linear activation function, θlNk
is a layer-specific differentiable function, e. g.,

neural networks, and
⊗

and
⊕

are permutation-invariant aggregation functions gathering inter-
neighborhoods and intra-neighborhoods, respectively.

For the final readout into a single embedding representing X , the readout function is defined as
follows:

hout = σ

(
l⊗

i=0

⊕
x∈C

θi
(
hL
x

))
(10)

with l being the number of ranks in X and L the number of layers to compute. Everything else is as
defined for Equation 9.

Positional Encodings In graphs, node features can be computed based on their connectivity and
neighborhoods within the graph. Therefore, one can compute so-called Positional Encodings. In this
work, we experimented with two types of PEs: RandomWalk PEs and Laplacian PEs. k-dimensional
RandomWalk PEs are computed from a k-step random walk through the graph, starting from each
node. After each step i, the number of walkers in a node is extracted as a i-th feature for the positional
encoding [31]. k-dimensional Laplacian PEs are defined as the first k dimensions of the eigenvectors
of the graph’s Laplacian with randomly assigned signs [32].

B Further Ablation Studies

As Mohapatra et al. do not name one backbone architecture as the best among the five provided,
we compared the usable ones. The provided implementation does not allow applying GCN— and
GAT-based models to graphs representing monomeric molecules. In Figure A2A, we compared the
Weave, MPNN, and AttentiveFP models, among which the MPNN performed best and was selected
as the GLAMOUR backbone for the baseline model in this work.

Figure A2B compares different pooling mechanisms for the GIFFLAR model with 128-dimensional
feature vectors. Here, we only compared the models on the Glycosylation, Immunogenicity, and
Domain datasets to reduce runtime. The six modes we compared were:

• Global Mean: Computing the mean over all embeddings in layer L regardless of their cell
rank.
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Figure A3: Reevaluation of Figures 1 and A2 without the normalization in Algorithm 1.

• Local Mean: First, compute the mean over all embeddings in Layer L within each cell rank
and then take the mean over the three rank means.

• weighted Local Mean: Same as Local Mean, but multiply each cell rank with a learnable
weight before summation.

• Global Attention: Computing the Soft Attention over all embeddings in layer L regardless
of their cell rank.

• Local Attention: First, compute the Soft Attention over all embeddings in Layer L within
each cell rank and then take the mean over the three rank means.

• weighted Local Attention: Same as Local Attention, but multiply each cell rank with a
learnable weight before summation.

Surprisingly, attention-free pooling functions generally performed better than attention-based ones in
this analysis. Further, global poolings were better than local or weighted local methods. We conclude
that global mean pooling seems to constitute the most performant pooling operation for GIFFLAR.

B.1 Out-Of-Distribution Glycans

To compute the similarity between glycans, we used the annotate module from glycowork [33] to
compute fingerprints for each glycan based on their monosaccharide and disaccharide motifs. We
then defined OOD glycans as those glycans in the test set that had a fingerprint with a Tanimoto
similarity of below 0.75, compared to the closest glycan in the training or validation split.

C Model Comparison

To investigate the impact of Algorithm 1 on the performance comparison in Figures 1 and A2, we
report the same plot but unnormalized in Figure A3 (except for MCC, which was transformed by
x 7→ x+1

2 to be in the interval [0,1]). Compared to Figures 1 and A2, the ordering of the models by
performance does not change significantly, but the differences between the models shrink.
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Model Immun. Glycos. D K P C O F G S

Morgan Fingerprint (1024-bit)
RF .8223 .9648 .9129 .8749 .8010 .7094 .5546 .4944 .4613 .4439
SVM .8034 .9648 .8793 .8403 .7466 .6398 .4588 .4369 .4137 .3880
XGB .8302 .9824 .8718 .8348 .7393 .6282 .4705 .4420 .3870 .3467
MLP .8481 .8704 .9106 .8763 .8033 .7206 .5413 .5097 .4708 .4282

Homogeneous Graphs
GNNGLY .5328 .7611 .7717 .7747 .6609 .4685 .0156 .0150 .0151 .0154
SweetNet .7590 .8784 .8841 .7704 .6232 .5288 .0156 .1872 .0151 .1175
GLAMOUR .9212 .9767 .9111 .8704 .7864 .6857 .4998 .4785 .4320 .4407

Heterogeneous Graphs
RGCN .6954 .0000 .8810 .8409 .7211 .4039 .2288 .0314 .2530 .0194
GIFFLAR .8930 .9883 .9298 .9011 .8278 .7714 .6118 .5795 .5391 .4898

Table A1: Comparison of Matthews Correlation Coefficient of GIFFLAR to the seven baselines. Bold
values mark the best performances on a certain dataset. The single-letter column names refer to the
taxonomic levels of D–domain, K–kingdom, P–phylum, C–class, O–order, F–family, G–genus, and
S–species. We will also use these in all other tables.

Model Training time ∅ # nodes per graph # param.

Morgan Fingerprint (1024-bit)
RF 0.1 min – –
SVM 2.2 min – –
XGB 1.7 min – –
MLP 11.7 min – 527K

Homogeneous Graphs
GNNGLY 20.5 min 91 8M
SweetNet 22.7 min 13 37.2M
GLAMOUR 9.5 min 7 18.2M

Heterogeneous Graphs
RGCNRW 55.3 min 195 41.9M
GIFFLAR 45.0 min 195 35.1M

Table A2: Measurements of models on Domain Dataset (as an exemplary dataset).

We report Matthews Correlation Coefficients (MCC) for the final models and baselines to give more
perspective on the model performances (Table A1). For the multi-label datasets, the MCC was
computed per label and then averaged over the labels unweighted.

D Training Details

Table A2 lists some core measurements of the models we compare. We used the Domain prediction
from the taxonomy collection as an example dataset. The table’s average number of nodes per graph
is computed on the training set. The first three models (RF, SVM, and XGB) were trained using
scikit-learn v1.5.1 [34] on a regular CPU. The deep learning models were trained using PyTorch v2.3.1
[35], PyTorch Geometric v2.5.3 [36], and PyTorch Lightning v2.3.2 [37] on an NVIDIA GeForce
RTX 3090 with 24GB GPU RAM. All metrics for all models were computed using TorchMetrics
v1.4.0 [38].

The code and the data splits are available on github.com/BojarLab/GIFFLAR.
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