
IgBlend: Unifying 3D Structure and Sequence for
Antibody LLMs

Cedric Malherbe Talip Uçar

Centre for AI, DS&AI, BioPharmaceuticals R&D, AstraZeneca
{cedric.malherbe, talip.ucar}@astrazeneca.com

Abstract

Large language models (LLMs) trained on antibody sequences have shown signifi-
cant potential in the rapidly advancing field of machine learning-assisted antibody
engineering and drug discovery. However, current state-of-the-art antibody LLMs
often overlook structural information, which could enable the model to more ef-
fectively learn the functional properties of antibodies by providing richer, more
informative data. In response to this limitation, we introduce IgBlend, which
integrates both the 3D coordinates of backbone atoms (C-alpha, N, and C) and
antibody sequences. Our model is trained on a diverse dataset containing over 4
million unique structures and more than 200 million unique sequences, including
heavy and light chains as well as nanobodies. We rigorously evaluate IgBlend us-
ing established benchmarks such as complementarity-determining region (CDR)
editing and affinity scoring and demonstrate that IgBlend consistently outperforms
current state-of-the-art models across all benchmarks. Furthermore, experimental
validation shows that the model’s log probabilities correlate well with measured
binding affinities.

1 Introduction

Antibodies are key components of the adaptive immune system, capable of recognizing and neutraliz-
ing a wide range of pathogens, including viruses, bacteria, and other foreign invaders. Their ability
to bind specific targets with high affinity makes them essential tools in therapeutic development.
Recent advancements in natural language processing (NLP) have led to the creation of foundational
language models that can learn from and modify antibody sequences [Olsen et al., 2022b, 2024,
Prihoda et al., 2022]. Moreover, the three-dimensional (3D) structure of an antibody is closely linked
to its specificity, affinity, and interaction with antigens. Therefore, capturing the relationship between
sequence and structure is crucial for tasks such as affinity maturation, de novo antibody design, and
optimizing antibody-antigen interactions for therapeutic applications. While current language models
excel at either sequence-to-sequence or structure-to-sequence (inverse folding) tasks, relying on only
one of these modalities at the input limits their capability and flexibility in more complex antibody
engineering tasks [Olsen et al., 2022b, 2024, Prihoda et al., 2022, Høie et al., 2023]. In this paper,
we introduce IgBlend, a multi-modal model designed to incorporate both sequence and structural
information for antibody engineering. Our approach can utilize either sequence, structure, or both,
enabling the model to not only sample sequences that can fold to the same parental backbone but
also generate more diverse sequences, providing greater flexibility in designing antibody sequences.
Moreover, by utilizing both experimentally resolved structures [Dunbar et al., 2014] and synthetic
data generated through structure prediction models [Abanades et al., 2023b, Ruffolo et al., 2023],
we aim to improve model performance on key antibody engineering tasks. Our contributions can be
summarized as follows:
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• We introduce IgBlend, a model that learns antibody representations from either sequence,
structure or sequence-structure pairs when structural data is available.

• We present a pre-training strategy with multiple sub-objectives as well as a procedure for
training and dataset processing, all of which can broadly be applied to other multi-modal
training settings.

• We empirically demonstrate that integrating structural information, even when synthetically
generated, significantly improves the performance of large models across a wide range of
benchmarks.

• We show that IgBlend ’s log probabilities correlate well with measured binding affinities.

To save space, we differ the background, notations and related works to the Appendix.

2 Methods

2.1 Model architecture

The proposed architecture, IgBlend, is illustrated in Fig 1 and consists of three primary components:
a structure encoder that handles the backbone coordinates of the antibody, a sequence encoder that
processes the amino acid sequence, and a multi-modal trunk that processes the combined structural
and sequential representations. Below, we provide a detailed description of these key components.

Structure encoder. The structure encoder generates an abstract representation vector for each set
of coordinates xi ∈ R3×3 from the full sequence of coordinates x = (x1, . . . , xn) ∈ R3×3×n. This
representation (a 512-dimensional embedding) encapsulates the geometry of the global backbone
structure. The architecture comprises four GVP-GNN (Graph Neural Network Geometric Vector
Perceptron) layers [Jing et al., 2020], followed by two generic Transformer encoder layers [Vaswani
et al., 2017]. This design is invariant to rotation and translation of the input coordinates and has
been demonstrated to effectively capture protein geometries in various learning tasks [Jing et al.,
2020], including structure-to-sequence models such as ESM-inverse folding [Hsu et al., 2022] and
AntiFold [Høie et al., 2023]. The input to the encoder is the series of residue coordinates x, and a
local reference frame is established for each amino acid, following the approach used in AlphaFold2
[Jumper et al., 2021]. A change of basis is then performed according to this local reference frame,
rotating the vector features from the GVP-GNN outputs into the local reference frames of each amino
acid. Finally, the output of the GVP is processed through two Transformer blocks, producing a
512-dimensional embedding for each residue. Notably, each or all sets of coordinates can be masked
using the ∗ token.

Sequence encoder. In parallel to the structure encoder, the sequence encoder generates a vector
representation (i.e., embedding of size 512) for each amino acid si ∈ A in the full sequence
s = (s1, . . . , sn). The architecture consists of a one-hot encoding embedding followed by two blocks
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Figure 1: Architecture of the Ig-
Blendmodel. It takes as input both:
a series of amino acids (top) and
a series of 3D coordinates (bot-
tom). The symbol * denotes either a
masked amino acid or a masked set
of coordinates. Note that the model
can process each modality indepen-
dently by setting all the tokens of
one modality to mask. Se denotes
the sequence embedding (i.e. look-
up table), T denotes a transformer
block, Pe denotes the sinusoidal po-
sition embedding. The sequence
encoder is displayed of the bottom
left, the structure encoder on the bot-
tom left and on the right the multi-
modality processor.
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of a standard Transformer model [Vaswani et al., 2017]. This architecture has already been shown to
learn relevant information from antibody sequences in [Olsen et al., 2022b] and [Olsen et al., 2024].
Specifically, the module utilizes sinusoidal positional embeddings, a SwiGLU activation function
[Shazeer, 2020], and has an embedding dimension of 512. Additionally, any amino acid within the
sequence can be masked using the masked token ∗.

Multi-modality encoder. The fusion layer processes both modalities in two steps. First, it combines
the abstract representations from the sequence and structure encoders by concatenating them along
the embedding dimension, forming a single vector of size 1024 for each residue. It then processes
the concatenated modalities through a series of four Transformer blocks using a SwiGLU activation
function.

Classification head. Finally, the classification head consists of a multi-layer perceptron (MLP)
followed by a softmax function and processes the multi-modal representation to generate a probability
distribution over amino acid types at each position. Further details on the architecture can be found
in Appendix B.

2.2 Datasets and pre-training objectives

The model was trained on more than 4M structures and and more than 200M sequences as detailed in
Appendix C. To train the multi-modal IgBlend, we use a balanced representation of heavy and light
chains. We employed a specialized masked language modeling objective capable of handling both
sequential and structural data by minimizing the sum of three losses based on cross-entropy:

Lmulti-modal := Lseq2seq + Lseq+struct2seq + Lstruct2seq

where Lseq2seq denotes a sequence to sequence objective, Lseq+struct2seq denotes a sequence plus
structure to sequence objective and Lstruct2seq denotes the structure to sequence task. Hence, the model
learns to perform all these tasks in parrallel. For completeness, all the individual losses are fully
described in Appendix D.

3 Empirical results

In this section, we evaluate the impact of incorporating structural information into the pre-training of
antibody LLMs. Our evaluation focuses on two tasks: (i) editing CDRs, and (ii) scoring sequences
for HER2 binding. We compare the performance of IgBlend with five existing open-source antibody
and nanobody language models, including AbLang [Olsen et al., 2022b], AbLang2 [Olsen et al.,
2024], AntiBERTy [Ruffolo et al., 2021], Sapiens [Prihoda et al., 2022], Nanobert [Hadsund et al.,
2024], which is a nanobody specific LLM, and two inverse folding models, including AntiFold [Høie
et al., 2023] and ESM-IF [Hsu et al., 2022].

3.1 Editing Complementarity-determining region (CDR)

First, we focused on the task of editing/recovering the CDR regions of a single chain, which is of
particular importance in the process of optimizing antibodies for affinity. In this task, one of the
CDR region is randomly fully masked, i.e., we select a mask Ms ∈ {CDR1, CDR2, CDR3}, and
the models are asked to predict the masked residues within that fully masked CDR. To investigate
the impact of different modalitites set as input, each model recovers the sequence as follows: ŝ =
Model(s/Ms

) for seq-only models, ŝ = Model(s/Ms
,x) for structure guided sequential models

and ŝ = Model(x) for inverse folding models. We evaluated the models using the same inputs for
seq-only, structure guided and inverse folding models over the 1.000 sequences sampled from the
test using Equation (1) for each chain type, unseen during the training of IgBlend, and we recorded
the percentage of successfully recovered residues. The results can be found in Figure 2 with all
models being evaluated on the same masked sequences. To further investigate the models’ ability to
design sequences that can fold into the same backbone conformation, we conducted a consistency
check between generated sequences and their structure x. To do so, we kept the best models in each
category for comparison: AbLang2 for heavy/light chains, Nanobert for nanobodies and AntiFold for
inverse folding. We then sampled 500 sequences per chain type from the test distribution and asked
the model to recover a masked CDR region. Then, for each of recovered sequence ŝ, we computed its
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structural approximation x̂ = IgFold(ŝ) using IgFold with PyRosetta refinement. Finally, given a
recovered sequence and structure pair (ŝ, x̂), the ground truth (s,x) and the masked CDR region Ms,
we computed the Levenshtein({si, i ∈ Ms}, {ŝi, i ∈ Ms}) distance between sequences to measure
diversity as well as the RMSD({xi, i ∈ Ms}, {x̂i, i ∈ Ms}) between the original and predicted
structures as a proxy for the structural similarity for the masked region. Results are also collected in
Figure 2 and extended results can be found in Appendix. A few key observations emerged:

• First, similar to the previous experiments, the top-performing sequence-only models
(AbLang, AbLang2, AntiBERTy, IgBlend) exhibited comparable performance across the
different CDR regions. It is noteworthy, however, that IgBlend displays an accuracy of more
than 9% above the best performing model on nanobodies. We also consistently observe
that incorporating more information as input improves the performance of IgBlend for all
chain types (i.e. IgBlend(Seq+Struct Guided)>IgBlend(Seq+Masked Struct)>IgBlend(Seq-
only)). Moreover, incorporating structural information alongside the masked sequence
(IgBlend(seq+struct guidance)) considerably improves the performance over the best seq-
only models (i.e. 11.8% on CDR3-H, 6.74% on CDR3-L and 15.43 on CDR3-N)

• Second, we observe that IgBlend (Struct Guided)—which uses both sequential information
(sMs

) and structural information (xMx
)—performs more similarly to IgBlend (inverse

folding), which uses only structure x, than to IgBlend (seq-only), which uses only sequence
sMs

. This suggests that when re-editing entire CDR regions, IgBlend relies more on
structural information than on sequential information.

• In terms of structural similarity, we note that IgBlend (structure guided) achieves the highest
percentage of structures within the lowest RMSD bin for each chain type, even surpassing
the best inverse folding models. Specifically, IgBlend records 37%, 46%, and 51% for
H-CDR3, L-CDR3, and N-CDR3, respectively, compared to AntiFold’s 32%, 5%, and 26%.
This indicates that, in addition to outperforming sequential models, IgBlend (seq+Struct
guided) generates sequences with greater structural accuracy than AntiFold.

Mode Model Heavy Light Nanobody
CDR1 CDR2 CDR3 CDR1 CDR2 CDR3 CDR1 CDR2 CDR3

Sequence Only

AbLang 82.97 80.53 41.68 72.21 69.27 67.47 43.73 45.09 20.90
AbLang2 82.85 80.31 41.62 72.94 69.66 68.03 43.05 41.43 20.16
Antiberty 82.90 80.37 41.23 72.64 69.20 68.61 40.48 47.76 23.12
Sapiens 81.44 77.13 38.45 71.18 67.22 63.03 44.25 39.99 19.79
Nanobert 57.33 40.00 24.02 10.16 08.53 07.22 60.49 61.09 29.08
IgBlend 83.15 80.33 41.84 73.14 69.79 68.70 62.58 63.81 29.53

Inverse Folding
AntiFold 75.41 70.99 36.97 57.05 58.98 49.12 44.70 44.92 22.02
ESM-IF 49.90 44.19 19.65 33.68 43.70 31.46 30.74 39.98 15.34
IgBlend 86.18 84.44 52.69 76.69 82.03 73.9 69.72 72.58 43.77

Seq + Masked Struct IgBlend 84.00 80.61 43.37 74.00 73.10 70.61 65.93 64.75 32.28
Seq + Struct Guided IgBlend 87.27 85.04 53.65 77.08 83.59 75.44 71.40 73.52 44.96
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Figure 2: CDR in-filling results: One CDR region (CDR1, CDR2, or CDR3) is fully masked, and
the model attempts to recover it. Top: The table shows the average percentage of correctly recovered
residues for heavy chain (H), light chain (L) and nanobodies (N). Bottom: The graphs display the
Levenshtein distances and RMSE in the masked CDR3 regions for each chain type.
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Figure 3: Trastuzumab-HER2 H-CDR3 editing on zero-shot dataset. Each model scores sequences
using their log-likelihood on HCDR3. The scatter plot displays the log-probability (score) of each
sequence on the x-axis and the − log(KD) values on the y-axis. Additionally, the density of the point
cloud is displayed.

3.2 Human epidermal growth factor receptor (HER2): H-CDR3 design

Finally, we assessed IgBlend’s ability to score sequences for H-CDR3 design using experimental data.
We utilized the dataset published by Shanehsazzadeh et al. [2023], where a machine learning model
is used to re-design H-CDR3 sequences targeting HER2. Specifically, they chose the therapeutic
antibody trastuzumab, which targets HER2, as a template and re-designed the heavy chain’s CDR3,
conditioned on the modeled HCDRs were conditioned on the HER2 antigen backbone structure
derived from PDB:1N8Z (Chain C), trastuzumab framework sequences, and the trastuzumab-HER2
epitope. The KD values for the generated sequences were then measured using a Fluorescence-
activated Cell Sorting (FACS)-based ACE assay. To evaluate the ability of antibody language models
to pre-screen sequences likely to show binding affinity, we scored the generated sequences in the zero-
shot dataset (maintaining the same H-CDR3 length as trastuzumab) by calculating their log-likelihood
in the HCDR3 region with both AbLang2 and IgBlend (seq-only). To determine if incorporating
structural information improves scoring, we also evaluated the sequences using IgBlend (inverse
folding), where trastuzumab’s backbone structure x approximated using IgFold was provided as
input, guiding the model to favor sequences with structures similar to trastuzumab and AntiFold.
The − log(KD) values against the likelihood scores from each model are displayed in Figure 3 as
well as the Spearman correlation and Kendall tau. Note also that additional results computed on the
associated control dataset can be found in Appendix E.2.

• First, it is evident that sequence-only models, such as AbLang2 and IgBlend (seq-only),
offer limited utility in predicting which sequences are likely to have strong binding affinities.
This can be attributed to the fact that these models are trained on sequence data alone, with
no explicit information about conformational states that would favor binding to HER2. As a
result, they tend to generate biologically plausible sequences without prioritizing binding
affinity (since much of the training set is derived from the OAS dataset, which lacks binding
information).

• In contrast, structure-guided models such as IgBlend (inverse folding) and AntiFold demon-
strate a stronger positive correlation between binding affinity and scoring, indicating their
greater accuracy in identifying high-affinity sequences. IgBlend (inverse folding), which
relies solely on backbone structure, further emphasizes the critical role of structural context
in guiding models toward more favorable binding configurations.

This contrast highlights that while sequence-only models are effective at generating biologically
viable sequences, structure-based models are superior for evaluating binding affinity, emphasizing
the need to integrate structural data for more accurate predictions in H-CDR3 design.

4 Conclusion and future work

In this study, we explored the impact of incorporating structural information into antibody LLMs to
improve their performance. We outlined the pre-training objectives and compared our model against
existing sequence-based and inverse folding models, providing empirical evidence that structural
guidance consistently improves performance across all benchmarks. However, we note that these
performance gains come at the expense of reduced sequence diversity. Additionally, we showed that
log-likelihood can effectively be used to rank sequences for binding affinity, with structure-based
models showing a higher correlation with experimentally validated data. In future work, we aim to
incorporate side-chain information and expand the structural datasets to enhance model accuracy.
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A Background, related work and notations

Background on antibodies. In humans, antibodies are classified into five isotypes: IgA, IgD, IgE,
IgG, and IgM. This work primarily focuses on IgG antibodies, which are Y-shaped glycoproteins
produced by B-cells (see Figure 4), as well as nanobodies, which are antibody fragments consisting of
a single monomeric variable domain. Henceforth, "antibody" will specifically refer to IgG antibodies.
Antibodies consist of distinct regions that play specific roles in the immune response. The Fab
(fragment antigen-binding) region, composed of both variable (V) and constant (C) domains from
the heavy and light chains, is primarily responsible for antigen binding. Within this region, the
antigen-binding site is formed by the variable domains — VH for the heavy chain and VL for the light
chain — which determine the specificity of the antibody and enable it to recognize and bind to specific
antigens. The Fv (fragment variable) region is the smallest functional unit of an antibody that can
still bind to an antigen. It consists solely of the variable domains (VH and VL) of the heavy and light
chains, without the constant domains. Within the variable domains, there are two key distinct regions:
the framework regions and the complementarity-determining regions (CDRs). The framework regions
provide structural support, maintaining the overall shape of the variable domains, while the CDRs,
comprising three loops on both the VH and VL chains, are directly involved in binding to the antigen.
These CDRs are crucial for the precise recognition and interaction with specific antigens. While
the Fv region is essential for the initial recognition and binding of antigens, it lacks the effector
functions present in the full antibody. The Fab region, being larger and more complex due to the
inclusion of both variable and constant domains, is generally more stable and has a higher affinity
for antigens. The Fv region, on the other hand, is simpler and more easily engineered for various
applications, such as in the development of single-chain variable fragment (scFv) antibodies. The
base of the Y-shaped antibody, known as the Fc (fragment crystallizable) region, is involved in
regulating immune responses. It interacts with proteins and cell receptors, ensuring that the antibody
generates an appropriate immune response. Moreover, nanobodies, which are small, single-domain
antibodies derived from heavy-chain-only antibodies found in certain animals such as camels and
llamas, are even more compact than traditional Fv regions. They retain full antigen-binding capacity
while offering advantages such as increased stability and easier production, making them valuable
tools in both therapeutic and diagnostic applications.

Related work. In recent years, significant efforts have been made to develop antibody foundation
models by adapting approaches from natural language processing (NLP). For instance, AbLang
[Olsen et al., 2022b], a BERT-like model [Devlin et al., 2018], is specifically trained on sequences
from the immunoglobulin protein superfamily. It has proven useful in various tasks, such as restoring
missing residues, analyzing affinity maturation trajectories, and identifying paratope residues—those
involved in antigen recognition. Similarly, AntiBERTy [Ruffolo et al., 2021] is another BERT-
based model designed for antibody-related applications, while Sapiens [Prihoda et al., 2022] is
a specialized language model tailored for immunoglobulins. Recent research has also addressed
challenges like germline bias and optimized predictions for non-germline residues [Olsen et al., 2024].
Collectively, these models have advanced our understanding of antibody diversity, maturation, and
binding properties, significantly impacting the field of drug discovery and demonstrating the potential
of language models in antibody research. In parallel and concurrently following the advancements
of AlphaFold [Jumper et al., 2021], recent work has focused on inferring protein structure from
sequences only, leading to models like ImmuneBuilder [Abanades et al., 2023b] and IgFold [Ruffolo
et al., 2023]. These models have made it possible to generate high quality inferred structures on a
large scale, a feat previously limited by the scarcity of structural data. Conversely, structural systems
that can generate a sequences from structure only such as ESM-IF [Hsu et al., 2022] and [Høie et al.,
2023] have also been developed. Due to the success of structural systems, there has been a growing
interest in the recent years in directly incorporating the knowledge about the protein structure into
protein LLMs to increase their capacities. For instance, ProtT5 [Heinzinger et al., 2023], SaProt [Su
et al., 2023], MULAN [Frolova et al., 2024] and ESM3 [Hayes et al., 2024] are early protein models
that incorporate the structural information through the use of structural tokens learned independently
of the overall system or by plugging a structural adapted. However, to the best of our knowledge, the
questions on how to design such systems for antibodies and on the potential benefits are still open
and there is currently no antibody LLM that integrates both structural and sequential information. In
this paper, we follow this route and show that we can directly learn a joint representation of both the
structure and sequence in the pre-training phase of antibodies LLMs. As a result, we show that such
systems improve on both structural and sequential only antibodies models.
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Figure 4: (a) Antibody structure with antigen binding (Fab), crystallizable (Fc), and variable (Fv)
regions, (b) Zoom over the variable region which contains an heavy and a light chain, CDRs regions
are displayed in magenta, (C) Modalities that we exploit in this paper for antibody modeling.

Notations. For any single unpaired chain (heavy, light or nanobody), we denote the backbone
structure and sequence of the chain with n residues as follows:

structure: x := (x1, . . . , xn) ∈ R3×3×n and sequence: s := (s1, . . . , sn) ∈ An

where xi ∈ R3×3 represents the 3D coordinates of the C-alpha, N, and C atoms of the ith residue,
while si ∈ A := [A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V, *] specifies the amino acid
type corresponding to the ith residue, where i ∈ {1, . . . , n}. For consistency in notation, we will
also use ∗ to denote the unknown token for both structure and sequence tokens, acknowledging a
slight abuse of notation. Moreover, we stress that this work solely focuses on unpaired sequences and
leaves the fine-tuning on purely paired sequences for future work. Throughout the rest of this paper,
we will also use P, E and I to represent the standard probability, expectation and indication function
taking values in {0, 1}, respectively. To compute the differences between two sequences (s, ŝ) ∈
A|s| of the same length, we will use the normalized Levenshtein distance: Levenshtein(s, ŝ) =

(1/|s|) ·
∑|s|

i=1 I{si ̸= ŝi}. To compute differences between two backbone structures (x, x̂) ∈
R3×3×|x|, we will also use the Root Mean Square Deviation (RMSD) defined as RMSD(x, x̂) =

argminR∈Ω3,t∈R3(1/3|x|) ·
∑

i≤|x|,j≤3∥x
j
i − R∗x̂j

i − t∗∥22)1/2 where R∗ ∈ R3×3 and t∗ ∈ R3

respectively denote the optimal rotation matrix and translation after finding the optimal rigid alignment
with the Kabsch algorithm [Kabsch, 1976] between the backbone structures where Ω3 ⊂ R3×3

denotes the set of 3D rotations and ∥·∥2 denotes the standard Euclidean distance.

B Architectural details

We collect here the full details of the IgBlendarchitecture used in the paper, discribed in Table 1.

C Data preparation

Data source. To create a model capable of processing both sequential and structural information,
we needed to address the significant asymmetry in the availability of data across these modalities
(204M sequences and 3M structures as shown in Table 2). Therefore, we compiled two datasets: (1)
a structural dataset Dstruct, which includes structures paired with their corresponding sequences, and
(2) a sequential dataset Dseq, which consists solely of sequence data. These datasets were derived
from four primary sources: SAbDab [Dunbar et al., 2014], which contains experimentally determined
structures using techniques like electron crystallography and X-ray diffraction; PLAbDab [Abanades
et al., 2023a], which provides sequences derived from patents; OAS datasets [Olsen et al., 2022a],
which compile and annotate immune repertoires; and INDI, which contains sequences of nanobodies.
Given the relatively small number of experimentally determined structures (e.g., only about 2,000
samples from SAbDab as shown in Table 2), we expanded our structural dataset by incorporating
inferred structures. In addition to the inferred structures already present in the PLAbDab dataset
(folded with ImmuneBuilder), we generated additional structures from the OAS paired, unpaired and
INDI. The paired sequences from OAS were folded with ImmuneBuilder [Abanades et al., 2023b]
and a clustered version of the unpaired OAS and INDI dataset were folded using IgFold [Ruffolo et al.,
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Structure module value
gvp_eps 0.0001
gvp_node_hidden_dim_scalar 512
gvp_node_hidden_dim_vector 256
gvp_num_encoder_layers 4
gvp_dropout 0.1
gvp_encoder_embed_dim 512
transformer_encoder_layers 2
encoder_embed_dim 512
transformer_dropout 0.1
encoder_attention_heads 8
encoder_ffn_embed_dim 1024
Sequence Module
d_model 512
dropout 0.1
layer_norm_eps 0.0001
nhead 8
activation SwiGLU
dim_feedforward 512
layer_norm_eps 0.0001
Multi-modal encoder
d_model 1024
num_layers 4
n_head 16
dim_feedforward 1024
activation SwiGLU
prediction_head
d_model 1024
activation GELU

Table 1: Hyper-parameters of IgBlend.

2023]. This process resulted in approximately 4 million unique structures. For the sequential dataset,
we extracted data from four repertoires: OAS paired, OAS unpaired, PLAbDab paired, PLAbDab
unpaired and INDI.

Modality Heavy sequences Light sequences Heavy structures Light structures
OAS paired 1 804 122 443 129 1 418 312 535 130
OAS unpaired 156 314 998 34 464 420 1 057 850 643 647
PLAbDab paired 51 740 45 620 47 554 42 021
PLAbDab unpaired 139 706 89 743 - -
INDI (nanobodies) 11 231 660 - 895 008 -
SAbDab - - 2 056 2 024
Total 169 542 226 35 042 912 3 420 780 1 222 822

Table 2: Number of unique samples per modalities and chain types after the first pre-processing step.

Data processing. For each of the datasets Dstruct and Dseq, we begin by removing all duplicates,
defined as pairs of data with identical sequences. Next, only the data that meet the following criteria
are retained: (1) no unknown residues, (2) no missing residues, and (3) no shorter than expected
IMGT regions [Ehrenmann et al., 2010], as determined by running ANARCI [Dunbar and Deane,
2016]. After these cleaning steps, we are left with two datasets: Dstruct = {(s,x)1, . . . , (s,x)|Dstruct|},
which contains pairs of sequences and structures, and Dseq = {(s, ∗)1, . . . , (s, ∗)|Dseq|}, which
contains only sequential information. These datasets are then further divided into heavy, light
and nanobodies chain samples, resulting in Dstruct = Dstruct,H ∪ Dstruct,L ∪ Dstruct,N and Dseq =
Dseq,H ∪ Dseq,L ∪ Dseq,N. The number of unique samples remaining in each dataset is summarized in
Table 2. Due to the significant imbalance in the number of samples across modalities, as noted in Table
2, we implemented a new sampling scheme to rebalance the data. For each modality M ∈ {seq, struct}
and each chain type C ∈ {L, H, N}, we clustered the datasets DM,C using MMseqs2 [Steinegger
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and Söding, 2017], clustering over the full sequences with the parameters "−cov-mode 1", "−c 0.8",
and "−min_seq_id 0.8" for the sequential datasets and over the concatenated CDR regions with the
parameter "−min_seq_id 0.9" for the structure datasets. This process resulted in a union of ncluster
clustered samples DM,C =

⋃ncluster
i=1 CM,C(i) for each modality and chain type. Based on these clusters,

we defined the distributions P(Dstruct) and P(Dseq) over each dataset modality as follows: first, we
sample a chain type C with equal probability: P(C = H) = P(C = L) = P(C = N) = 1/3, then we
select a sample within the corresponding dataset DC,M according to the size of its corresponding
cluster:

P(s, x)|M,C =

{
1/|CM,C(is)| if (s, x) ∈ DM,C

0 otherwise
(1)

where is denotes the index of the cluster containing s, and |CM,C(is)| indicates the size of its
corresponding cluster. This clustering-based distribution approach allows us to preserve the entire
dataset while re-weighting each cluster to enhance diversity in the training set. Additionally, during
the clustering process, 10 of the clusters are reserved for validation and another 10 for testing. The
reserved clusters are entirely excluded from the training set and have less than 0.8 sequence identity
with the training data, forcing the validation and test sets to be too dissimilar from the training set.

D Pre-training objectives

To train the multi-modal IgBlend, we use the data distribution defined by Equation (1), ensuring
a balanced representation of heavy and light chains across the two datasets, Dseq and Dstruct. We
employ a specialized masked language modeling objective capable of handling both sequential and
structural data. The model parameters, θ, are optimized by minimizing the sum of three losses based
on cross-entropy:

Lmulti-modal := Lseq2seq + Lseq+struct2seq + Lstruct2seq (2)
where:



Lseq2seq = E(s,∗)∼P(Dseq)

[∑
i∈Ts

− log(pθ(si|s/Ms
, ∗)

]

Lseq+struct2seq = E(s,x)∼P(Dstruct)

[∑
i∈Ts

− log(pθ(si|s/Ms
,x/Mx

)

]

Lstruct2seq = E(s,x)∼P(Dstruct)

[∑
i∈Ts

− log(pθ(si|∗,x)

] (3)

with pθ(si|s,x) denoting the output of the softmax layer shown in Figure 1 at position i ∈ {1, . . . , n},
given (s,x) as input. The masking strategy for each pre-training objective is outlined below, defining
the positions of the amino acids to predict Ts, the masked residues in the sequence Ms, and the
masked structures Mx:

• seq2seq. This task, used in training sequence-only antibody models [Devlin et al., 2018,
Olsen et al., 2024], is applied to the sequential dataset Dseq, which lacks structural infor-
mation (i.e., x = ∗). For each sequence, between 10% and 40% of the amino acids are
selected for masking using one of two methods: (i) randomly sampling individual residues
throughout the sequence or (ii) masking continuous spans of residues, with the starting
position chosen at random. The positions of the residues to be predicted are the same as
those masked, Ms = Ts. The masked residues in Ms are then processed using one of three
strategies: (a) replaced by the unknown token ∗ with 80% probability, (b) substituted with a
different amino acid with 10% probability, or (c) left unchanged with 10% probability. The
masking distribution is also slightly adjusted to ensure balanced coverage of both CDR and
framework regions.

• seq+struct2seq. Both sequential and structural information are used to predict masked
amino acids, with masking applied to both the structure and sequence simultaneously. The
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same residues are used for both prediction and masking, with Ts = Mx. Following the
seq2seq approach, 10% to 40% of the amino acids are masked, using a mix of continuous
spans and random positions. With equal probability, we either (i) mask the corresponding
coordinates Mx = Ms or (ii) retain the full structural information Mx = ∅ to use it as
guidance.

• struct2seq. Only the structural information from the structural dataset Dstruct is used to
predict amino acids si at specific target positions Ts. The input sequence data is completely
disregarded, replaced by a series of unknown tokens ∗, leaving only the structural information
x. The target positions for amino acid prediction, Ts, are chosen using the same distribution
as in the seq2seq task, alternating between continuous spans and random positions.

By using this combination of pre-training objectives, the model dedicates equal time to each task
individually.

D.1 Training details

The model was trained on 8 A10G GPUs using a distributed DDP strategy and the PyTorch Zero
Redundancy Optimizer [Rajbhandari et al., 2020]. The total number of training steps was predeter-
mined at 125,000. The learning rate was warmed up over the first 200 steps to a peak of 0.001, after
which it was gradually reduced to zero using a cosine scheduler. Training was conducted in 16-bit
precision. To conserve memory and enable a larger batch size, gradient activation checkpointing was
implemented immediately after the structural module. The effective batch size was set to 90 per GPU,
resulting in a total batch size of 720 samples per step. The AdamW optimizer was used with a weight
decay parameter of 0.1, epsilon of 0.00001, and betas of [0.9, 0.95] for regularization. More details
can be found in the Appendix B.

E Experimental results

E.1 CDR editing

Figure 5 collects the result of the CDR recovery experiment in all CDR regions.

E.2 HER2 experiments

Figure 6 displays the results of the HER2 HCDR3 design for the control dataset provided within the
same paper.
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Figure 5: CDR recovery results: One series of aminco acid of the sequence is fully masked (one
CDR), and the model attemps to recover it. AntiFold only uses the structural information. IgBlend
(structure guidance) uses the masked sequence and the structure information. The distances (both
Levenshtein and RSME) are only computed in the masked CDR regions. The x-axis displays the
Levensthein distance of the generated sequences to the original one and the y-axis reports the RMSE
of the generated sequence with regards to the original structure.

15 20 25 30 35 40 45
Log-likelihood

5

6

7

8

9

10

lo
g(

K D
)

AbLang2 (seq-only)
Kendall : -0.08
Spearman : -0.12

90 80 70 60 50
Log-likelihood

5

6

7

8

9

10

lo
g(

K D
)

IgBlend (seq-only)
Kendall : -0.04
Spearman : -0.06

70 60 50 40 30 20
Log-likelihood

5

6

7

8

9

10

lo
g(

K D
)

AntiFold (inverse folding)
Kendall : 0.16
Spearman : 0.25

90 80 70 60 50 40
Log-likelihood

5

6

7

8

9

10

lo
g(

K D
)

IgBlend (inverse folding)
Kendall : 0.12
Spearman : 0.19

Figure 6: Trastuzumab-HER2 H-CDR3 editing on control dataset. Each model scores sequences
using their log-likelihood on all CDRS. The scatter plot displays the log-probability (score) of each
sequence on the x-axis and the − log(KD) values on the y-axis. Additionally, the density of the point
cloud is displayed.
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