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Abstract

Traditional methods for mRNA subcellular localization often fail to account for
multiple compartmentalization. Recent multi-label models have improved perfor-
mance, but still face challenges in capturing complex localization patterns. We
introduce LOCAS (Localization with Supervised Contrastive Learning), which inte-
grates an RNA language model to generate initial embeddings, employs supervised
contrastive learning (SCL) to identify distinct RNA clusters, and uses a multi-label
classification head (ML-Decoder) with cross-attention for accurate predictions.
Through extensive ablation studies and multi-label overlapping threshold tuning,
LOCAS achieves state-of-the-art performance across all metrics, providing a robust
solution for RNA localization tasks.

1 Introduction

The subcellular localization of messenger RNAs (mRNAs) is a critical process in the regulation of
gene expression that ensures the spatial and temporal control necessary for proper cellular function [1].
mRNAs are not distributed uniformly within the cell but are instead localized to specific compartments.
This localization allows for the precise control of protein synthesis, which is particularly important in
complex cells. The asymmetric distribution of mRNAs has been shown to provide several advantages,
including low transport costs and the prevention of ectopic protein activity during translocation
[2, 3, 4].

The traditional methods used to study mRNA localization, such as in situ hybridization (ISH) and
high-throughput RNA sequencing, have been invaluable in advancing our understanding of this
process [5]. However, these methods are often time-consuming and costly, limiting their use in
large-scale studies.
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Initial computational approaches to mRNA localization framed the problem as a single-label classifica-
tion task, where each mRNA was predicted to localize to only one specific compartment. RNATracker
employed deep recurrent neural networks to predict mRNA localization [6]. iLoc-mRNA, utilized
support vector machines (SVMs) to predict mRNA localization specifically in Homo sapiens, [7].
SubLocEP further refined predictions by concentrating on specific cellular compartments while
remaining within the single-label classification framework [8]. However, they were inherently limited
by the assumption that each mRNA localizes to only one compartment, which does not align with
biological reality. Many mRNAs are known to localize in multiple compartments, fulfilling diverse
roles within the cell [9, 8].

To address the limitations of single-label approaches, the field has shifted towards multi-label pre-
diction models. Notable multi-label methods include DM3Loc, a deep learning-based model that
utilized a multi-head self-attention mechanism to predict mRNA localization across multiple com-
partments simultaneously [4]. Moreover, Clarion [5] employed an ensemble learning strategy based
on XGBoost, enhancing the accuracy and robustness of multi-label mRNA localization predictions
by considering label correlations and utilizing advanced feature selection methods. Furthermore, Al-
locator introduced the use of graph neural networks (GNNs) to incorporate RNA secondary structure
information into the prediction model [10].

Multi-label data representation and prediction have recently been greatly studied in the field of
computer vision and natural language processing . MulCon [11] proposed an approach to under-
stand the embedding space of sets of images with supervised contrastive learning with a projection
embedding generated by an encoder. This helps the encoder to identify the distribution difference
between different classes. In case of biological sequences, such initial embedding generation is
constructured either with evolutionary [12], physiochemical [13, 14] features, or using a pretrained
language model [15, 16] to generate embeddings. In this paper, we have proposed a similar approach
for RNA sequence representation learning.

Firstly, we propose the integration of an RNA language model to generate an embedding space
for RNA sequences in the RNA sub-cellular localization task. Secondly, we employ an effective
supervised contrastive learning (SCL) algorithm to identify distinct clusters of RNA sequences,
addressing the natural label overlap in this multi-label classification task using an overlapping
threshold-based similarity score to identify similar clusters during SCL training. Finally, instead
of using a simple fixed prediction head, we utilize a specialized classification head designed for
multi-label tasks (ML-Decoder) that incorporates a cross-attention mechanism for classification. With
these components, we propose multi-label mRNA Localization with Supervised Contrastive Learning
(LOCAS). Through extensive ablation studies and hyper-parameter tuning during SCL training, we
determine the optimal parameters for training LOCAS, achieving state-of-the-art performance across
all metrics in RNA sub-cellular localization compared to previously reported approaches.

2 Methods

In this section, we first describe the datasets that are used for the RNA subcelluler localization task.
Then we dive into the architectural details of different components: feature representation , encoder
network , supervised contrastive learning for RNA sequences, prediction head and overall training
pipeline.

2.1 Dataset Description

For the RNA subcelluler localization task we used the dataset from RNALocate [17] which is also used
in DM3Loc [4]. The dataset comprises 17,298 unique mRNA sequences with six celluler locatations:
Nucleus, Exosome, Cytosol, Ribosome, Membrane, and Endoplasmic Reticulum. However, each
RNA sequence can belong to these multiple classes. We perform 5 fold cross-validation following
[4].

2.2 Initial Feature Representation and Encoder Network

Each RNA sequence in the dataset is first encoded with RNA language model RiNALMo [15]. For a
given input to the RiNALMo, the output from the language model encoder is a sequence of vectors
F = {[CLS], f1, f2, f3, . . . , fN [END]} where each fi ∈ Rd, with d = 1024. To get a sequence
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level representation of the RNA, we consider the [CLS] token of the transformer’s output (which is
the first token of the output).
Encoder Network for Feature Space Transformation: The initial feature representation vector F
is passed through an encoder network, Enc(·), that maps x to a representation vector r = Enc(x) ∈
RDE , where DE = 2048.

2.3 Supervised multi-label Contrastive Training

With the output from the encoder network r = Enc(x), we pass this through a projection layer
z = Projection(r) ∈ RDP , where DP = 128. This projection layer is used for a contrastive
training in the RNA dataset.

Self Supervised Vs Supervised Contrastive Learning: In a self-supervised setting, two distinct
views of each RNA sequence are generated through augmentations like noise addition or random
cropping, forming positive pairs, while other sequences in the batch serve as negative pairs. The
challenge lies in the difficulty of reliably augmenting RNA sequences without compromising their
structural integrity, unlike in natural language or vision domains. We propose a supervised contrastive
learning approach using RNA subcellular localization labels. Similar sequences with the same label
are considered positive pairs, while others are negative.
Overlapping Labels in multi-label Classification: In multi-label problems, such as RNA subcellular
localization, the supervised contrastive loss has a notable limitation. Specifically, it only treats two
sets of labels as belonging to the same class when they are an exact match. However, in multi-
label scenarios, it is rare to encounter identical label sets within a single batch or even across the
entire dataset. In subcellular localization task, where the possible labels are: Nucleolus, Exosome,
Cytosol, Ribosome, Membrane, and Endoplasmic Reticulum (ER), each RNA sequence can have a
combination of these labels.

To measure the degree of labels overlap between two sequences, we use the jaccard index, inspired
from [18]. If two sequences have labels overlap greater than a threshold, we consider them to be in
the similar batch during contrastive learning.

Algorithm 1 Multi-Label Supervised Pair Creation for RNA Sequences
Require: RNA sequences {xi} with label vectors {yi}, Similarity threshold θ
Ensure: Sets of similar pairs P (i) and dissimilar pairs A(i) for each xi

1: for each xi in the batch do
2: for each xj ̸= xi do

3: Compute similarity sij =
∑|L|

n=1 min(yin,yjn)∑|L|
n=1 max(yin,yjn)

4: if sij ≥ θ then
5: Add j to P (i)
6: else
7: Add j to A(i)
8: end if
9: end for

10: end for
11: // Proceed with contrastive training

Prediction Head with ML-Decoder: We use ML-Decoder [19] for the classification head instead
of general classifiers, as it is designed for multi-label classification, replacing the self-attention in
traditional transformer-decoders. It takes the output embeddings E from a fine-tuned encoder (trained
with supervised contrastive loss) and uses group queries Qk to interact with these embeddings,
producing logits Li for each class.

2.4 Complete Training Pipeline of LOCAS

The training of LOCAS involves two steps (Figure 1): First, the encoder is fine-tuned using supervised
contrastive training to learn embeddings where RNA sequences with similar labels are closer together.
Second, the encoder’s outputs are frozen and fed into the ML-Decoder, which uses cross-attention to
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Figure 1: Overall training pipeline for LOCUS. In the first step, the encoder is finetuned with
supervised contrastive learning. In the second step the encoder’s output is fed into the ML-decoder
for final prediction.

Figure 2: Performance comparison of LOCAS with previously proposed methods for mRNA sub-
celuller localization prediction on different metrics.

predict label probabilities. The predictions are then compared with ground truth labels to compute a
loss, refining the model’s accuracy.

3 Results

For RNA subcellular localization prediction, key metrics include Example-Based Accuracy, Average
Precision, Coverage, One-Error, Ranking Loss, and Hamming Loss. These metrics evaluate model
performance in correctly identifying, ranking, and covering multiple subcellular compartments
associated with each RNA sequence.

Comparison with State of the Art Approaches:

The comparison in Figure 2 shows that LOCAS outperforms state-of-the-art models like DM3Loc,
Allocator, and Clarion in RNA subcellular localization across several metrics. LOCAS achieves the
highest accuracy (Acc_Exam of 0.75) and average precision (0.9434), indicating superior ability in
correctly identifying RNA locations. It also records the lowest coverage (2.1262), one-error rate
(0.0092), ranking loss (0.0804), and hamming loss (0.1401), reflecting fewer errors and better ranking
of correct labels. These results demonstrate that LOCAS provides a more accurate, reliable, and
efficient classification of RNA sequences than existing methods. A detailed class-wise performance
analysis follows in the next section.
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Performance on Individual Classes:

This section presents a class-wise performance analysis of LOCAS using the Matthews Correlation
Coefficient (MCC) in Table 1. LOCAS demonstrates a clear advantage in most RNA localization
tasks, such as predicting nuclear RNA, where it achieves an MCC of 0.605, outperforming other
methods like DM3Loc and RNATracker. For the exosome class, LOCAS excels with an MCC
of 0.501, while other methods fail to make meaningful predictions. LOCAS also shows strong
performance in cytosol and ribosome localizations, with MCC values of 0.597 and 0.421, respectively.
However, for the ER class, all the methods performs significantly poor due to the scarcity of positive
samples, which limits the effectiveness of the supervised contrastive loss in distinguishing this class.
Even though iLoc-mRNA[20] performs better for the ER class, performance on the other classes
suggest that iLoc-mRNA is highly biased to classify only the ER class better.

Table 1: Comparison of MCC values across different methods

Method Nucleus Exosome Cytosol Ribosome Membrane ER

DM3Loc [4] 0.386 0.074 0.287 0.355 0.312 0.205
RNATracker [21] 0.345 0.000 0.138 0.270 0.193 0.000
mRNALoc [22] 0.150 0.000 -0.029 - - -0.148
iLoc-mRNA [20] 0.052 - 0.025 0.390 - 0.376
LOCAS 0.605 0.501 0.597 0.421 0.468 0.000

3.1 Ablation Study

Table 2: Comparison of MCC scores for different RNA subcellular localization classes with and
without Supervised Contrastive Learning (SCL).

Method Nucleus Exosome Cytosol Ribosome Membrane End. Reticulum

Without SCL 0.142 0.000 0.130 0.005 0.000 0.000
With SCL 0.605 0.501 0.597 0.421 0.468 0.000

To evaluate the contributions of different components in LOCAS, we conducted an ablation study,
focusing first on the impact of the supervised contrastive learning (SCL) approach. Results in Table
2, show that omitting SCL leads to a significant drop in performance across all metrics, with MCC
scores falling to zero for some classes. For instance, without SCL, the MCC score for the nucleus
class drops to 0.142, below that of most other methods, demonstrating the importance of SCL in
capturing the contextual information of RNA sequences.

Table 3: Comparison of Clustering and Performance Metrics for Different threshold Values (θ)

Metric θ = 0.3 θ = 0.5 θ = 0.8

Clusters 13 18 46

Distribution
Precision 0.503 0.907 0.943
Coverage 4.954 3.156 2.126
One-Error 0.583 0.011 0.009
Ranking Loss 0.701 0.090 0.080
Hamming Loss 0.431 0.237 0.150

We also examined the effect of varying the overlapping threshold in clustering. As shown in Figure
Table 3 , different thresholds yield varying numbers of clusters and distribution patterns. For a
threshold of 0.3 or 0.5, the clustering is heavily biased towards one cluster, while at 0.8, there are
46 clusters with a more balanced, long-tailed distribution. Table 3 confirms that a threshold of 0.8
achieves the best downstream performance, indicating the importance of selecting an appropriate
threshold for effective clustering and performance.
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4 Conclusion and Future Work

In this work, we present LOCAS, a novel framework for RNA subcellular localization that integrates
an RNA language model, supervised contrastive learning (SCL), and a specialized multi-label classi-
fication head to achieve state-of-the-art results. LOCAS effectively captures complex relationships in
RNA sequences, addressing challenges in multi-label classification and natural label overlap.

Despite its success, LOCAS has certain limitations. The batch-wise handling in SCL may be
ineffective when batches lack sufficient sequences from the same class, potentially hindering the
model’s ability to learn robust representations. Additionally, the current approach does not consider
RNA’s 3D structural information, which could further refine localization predictions.

Future research could focus on developing improved batching strategies to ensure more consistent data
distribution and incorporating 3D structural data to complement the sequential features, potentially
enhancing both accuracy and generalizability in RNA localization tasks.
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