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Abstract

Current generative models for drug discovery primarily use molecular docking as
an oracle to guide the generation of active compounds. However, such models are
often not useful in practice because even compounds with high docking scores do
not consistently show experimental activity. More accurate methods for activity
prediction exist, such as molecular dynamics based binding free energy calculations,
but they are too computationally expensive to use in a generative model. To address
this challenge, we propose Multi-Fidelity Latent space Active Learning (MF-LAL),
a generative modeling framework that integrates a set of oracles with varying
cost-accuracy tradeoffs. Unlike previous approaches that separately learn the
surrogate model and generative model, MF-LAL combines the generative and
multi-fidelity surrogate models into a single framework, allowing for more accurate
activity prediction and higher quality samples. We train MF-LAL with a novel
active learning algorithm to further reduce computational cost. Our experiments
on two disease-relevant proteins show that MF-LAL produces compounds with
significantly better binding free energy scores than other single and multi-fidelity
approaches. The code is available at https://github.com/Rose-STL-Lab/
MF-LAL.

1 Introduction

Generative models for de novo drug design have gained significant interest in machine learning
for their promised ability to quickly generate new compounds for specific applications. However,
generating compounds with real-world biological activity remains a fundamental challenge [Handa
et al., 2023, Coley et al., 2020]. One of the main difficulties is the computational evaluation of
compound-protein binding affinities. The generated compounds are often highly novel, so an activity
predictor trained with existing experimental data is insufficient due to poor out-of-distribution
generalization [Chatterjee et al., 2023, Ji et al., 2022]. Instead, physics-based methods that model 3D
interactions between compound and target are commonly used.

Due to its speed, molecular docking is the prevalent physics-based method to evaluate novel com-
pounds by generative models [Eckmann et al., 2022, Jeon and Kim, 2020, Lee et al., 2023, Noh et al.,
2022, Fu et al., 2022, Peng et al., 2022, Guan et al., 2023a,b]. However, docking is a relatively poor
predictor of activity [Pinzi and Rastelli, 2019, Handa et al., 2023, Coley et al., 2020, Feng et al., 2022],
so it would be desirable to apply more accurate binding free energy calculation techniques [Pinzi
and Rastelli, 2019, Feng et al., 2022]. These techniques, based on molecular dynamics simulations,
are currently considered the most reliable approach to predict affinity [Moore et al., 2023, Cournia
et al., 2021]. However, they have not been used by generative models due to their high computational
cost [Thomas et al., 2023], with a single compound-protein pair taking hours to days to simulate on
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a powerful computer [Wan et al., 2020]. Thus, neither docking nor binding free energy techniques
alone can guide the real-world application of generative models.

Multi-fidelity surrogate models aim to fuse multiple data sources as oracles spanning a range of
accuracy and cost [Fernández-Godino et al., 2016].They are frequently learned using an active
learning approach, where a model selects or generates queries that it is most uncertain about to send
to a chosen oracle [Ren et al., 2021]. The results from the oracle are then added to the training data
of the model. We will focus on “query synthesis” approaches [Angluin, 1988], where the model
generates its own queries to send to the oracles, speeding up learning compared to approaches that
query oracles with samples from a fixed candidate set.

Combining docking (low fidelity) and binding free energy (high fidelity) using multi-fidelity surrogate
models holds promise to make generative models more practical. Yet, the use of multi-fidelity methods
in drug discovery has been limited. Prior work from Hernandez-Garcia et al. [2023] uses a generative
model to generate query compounds with high acquisition function values computed by a separate
multi-fidelity surrogate model. However, since we want to generate query compounds to send to
oracles at multiple fidelity levels, the distribution of optimal query compounds may differ across
fidelities. A separate generative model is not aware of such differences across fidelity levels, hence it
cannot send queries to the multi-fidelity oracles efficiently.

We aim to address the problem of multi-fidelity generation with Multi-Fidelity Latent space Active
Learning (MF-LAL), an integrated framework for compound generation using multi-fidelity active
learning. Instead of separating the generative model and surrogate model, we perform surrogate
modeling and generation together at each fidelity level using a sequence of hierarchical latent spaces.
This improves the quality of generated queries because there is a separate latent space and decoder
specialized for each fidelity, and improves surrogate modeling and inter-fidelity information passing
because each latent space can be organized for predicting at just that level. We use both docking
and binding free energy methods as oracles in our multi-fidelity environment to achieve a favorable
trade-off between cost and accuracy. In summary,

• we introduce a novel multi-fidelity surrogate and generative modeling framework, MF-LAL,
which integrates data from multiple fidelity levels to generate high-quality samples at the
highest fidelity (binding free energy).

• we employ an active learning approach with a novel query generation technique that ensures
compounds generated at higher fidelities also scored well at lower fidelities, improving the
quality of generated samples.

• we evaluate MF-LAL and baseline methods on a real-world problem setting involving
optimizing the binding free energy of compounds against two disease-relevant human
proteins, and find that MF-LAL generates compounds with significantly better scores than
baselines.

2 Related Work

2.1 Molecular generative models

Generative models in drug discovery have gained much interest for their ability to quickly generate
compounds with desired properties [Paul et al., 2021]. Early works [Jin et al., 2018, Gómez-
Bombarelli et al., 2018, You et al., 2018] focus on properties such as the octanol-water partition
coefficient (logP) or quantitative estimate of drug-likeness (QED), which are of very limited practical
utility [Coley et al., 2020, Xie et al., 2021]. More recently, there has been an understanding that the
binding affinity to a targeted protein is much more relevant for practical drug discovery [Xie et al.,
2021, Eckmann et al., 2022, Fu et al., 2022].

One approach to guide generative models in optimizing compound binding affinity is to use an oracle
for compound evaluation. This oracle can be applied to reinforcement learning [Jeon and Kim, 2020,
Fu et al., 2022, Mazuz et al., 2023], VAEs [Eckmann et al., 2022, Noh et al., 2022], genetic algorithms
[Spiegel and Durrant, 2020, Fu et al., 2022], diffusion models [Lee et al., 2023, Hoogeboom et al.,
2022, Wu et al., 2024], or other generative frameworks Zhu et al. [2024]. All of them use docking
software, such as AutoDock [Morris et al., 2009], as the oracle, because it is the only reasonably fast
option. However, docking is known to be inaccurate [Pinzi and Rastelli, 2019], and compounds with
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Figure 1: Overview of Multi-Fidelity Latent space Active Learning (MF-LAL).

high docking scores do not consistently show experimental activity [Handa et al., 2023, Coley et al.,
2020, Feng et al., 2022].

Molecular dynamics-based binding free energy calculations are much more accurate than docking
[Moore et al., 2023, Cournia et al., 2021], but have not yet been applied to de novo generative drug
design due to their high computational cost [Thomas et al., 2023]. While Ghanakota et al. [2020] use
binding free energy calculations in combination with a molecular generative model, they focus on the
optimization of an existing known lead compound. This allows them to rely on much cheaper relative
binding free energy calculations, as opposed to the absolute binding free energy (ABFE) calculations
needed for de novo design [Cournia et al., 2017].

Structure-based generative models are trained on 3D structures of protein-ligand pairs, and aim to
predict a 3D ligand that fits in a given protein pocket with high binding affinity. Techniques include
autoregressive generation [Peng et al., 2022] and diffusion modeling [Guan et al., 2023a,b]. Despite
not needing an oracle like docking during the generation process, the generated compounds are still
evaluated with docking as a post-processing step. This means structure-based generative models do
not avoid the issue of inaccurate binding affinity prediction.

2.2 Multi-fidelity surrogate modeling

Multi-fidelity modeling methods aim to fuse multiple data sources of variable accuracy and cost
[Fernández-Godino et al., 2016], and are widely used in scientific fields for surrogate modeling and
uncertainty quantification [Brevault et al., 2020]. A popular choice of surrogate model is a Gaussian
process (GP), which performs well in low data settings and produces well-calibrated uncertainty
estimates [Brevault et al., 2020]. One such technique to apply GPs to multi-fidelity modeling is
described by Wu et al. [2020], where a downsampling kernel is used to output predictions at each
fidelity level. Other multi-fidelity surrogate modeling approaches utilize neural processes [Wang and
Lin, 2020, Wu et al., 2022, 2023, Niu et al., 2024] and ordinary differential equations [Li et al., 2022]
as an alternative to GPs.

Multi-fidelity models are frequently trained in an active learning fashion, where one uses an estimate
of a model’s uncertainty to most efficiently acquire more datapoints from an oracle [Ren et al., 2021].
In the multi-fidelity setting, this means iteratively querying across both the sampling space and each
different fidelity oracle [Li et al., 2020, Hernandez-Garcia et al., 2023]. Traditional active learning
involves selecting from a fixed candidate set with the highest acquisition function value to query
oracles with, which limits the training set to only existing samples. It also limits how much the
model can learn with each query, since the maximally informative sample may not be present in the
candidate set. Query synthesis approaches [Angluin, 1988] have been proposed to avoid this problem
by using a generative model to generate new queries. Hernandez-Garcia et al. [2023] have applied
these ideas to drug discovery problems by training a generative model to optimize the acquisition
function computed by a separate multi-fidelity surrogate model, which does not take into account the
different distributions of optimal query compounds at each fidelity.
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3 MF-LAL

We introduce Multi-Fidelity Latent space Active Learning (MF-LAL), an integrated framework for
compound generation using multi-fidelity Bayesian active learning. An overview of our framework
is shown in Figure 1. We encode molecules into a hierarchy of latent spaces (left panel), one for
each fidelity, and learn surrogates that predict the oracle output based on the latent vectors (middle
panel). These oracles are used to reverse optimize in the latent spaces to generate new compounds
with high predicted scores. The generated molecules are fed to an oracle at a chosen fidelity in an
active learning loop, the output of which is used to re-train the latent representation and surrogate
models (right panel). After training, we use the surrogates to reverse optimize in the highest fidelity
latent space and generate compounds with high property scores at the highest fidelity. See Appendix
A for details of our model and a diagram of the network architecture.

3.1 Learning multi-fidelity latent representations

Problem setup. A multi-fidelity environment consists of a set of oracles {f1, . . . , fk, . . . , fK}
that predict a property of interest, where the accuracy and cost of the predictions increase with
the fidelity level k. We have a multi-fidelity dataset D consisting of K distinct sets of molecules,
one for each fidelity, D = {{x(i)

1 , y
(i)
1 }

N1
i=1, . . . , {x

(i)
K , y

(i)
K }

NK
i=1}. Each y

(i)
k = fk(x

(i)
k ) is the result

from querying oracle k with molecule x
(i)
k . The molecules are drawn from unknown distributions

p∗1, . . . , p
∗
K . We aim to approximate these distributions using generative models pθ1 , . . . , pθK with

parameters θ1, . . . , θK . Note that p∗1 ̸= . . . ̸= p∗K , meaning we must learn separate generative models
for each fidelity level, as opposed to previous approaches that learn a single generative model for all
fidelities.

Latent representation. To learn the generative models, we first learn an encoding of the input
molecule to the lowest fidelity latent space. Specifically, we use a single probabilistic encoder qϕ
parameterized by ϕ that encodes a molecule x into mean and variance vectors µ1 and σ1. The
latent vector z1 ∼ N (µ1, σ1), corresponding to the first (lowest) fidelity, is sampled from the
resulting distribution. Since we want a separate latent space at each fidelity level, we define a
set of probabilistic networks hξ1(z1), . . . , hξK−1

(zK−1) with parameters ξ1, . . . , ξK−1 that pass
information between latent spaces. Specifically, hξk takes the vector zk as input and outputs a mean
and variance vector in the subsequent latent space, µk+1, σk+1. We sample from this distribution to
obtain latent vector zk+1, i.e. zk+1 ∼ N (µk+1, σk+1). We also define a set of probabilistic decoder
networks pθ1(·|z1), . . . , pθK (·|zK) to reconstruct the original molecule x from the latent vectors.
The use of a specialized decoder for each fidelity level improves reconstruction quality compared
to previous methods that only use one, thus making the generated samples more tailored for their
fidelity level.

We represent molecules using SELFIES strings [Krenn et al., 2020]. The encoder and decoder of
MF-LAL are fully-connected neural networks that use a flattened, one-hot encoded SELFIES string.
See Table 2 for comparison with other encoder and decoder designs.

Surrogate modeling. In order to generate molecules with high property scores, we aim to learn dif-
ferentiable surrogates f̂1, . . . , f̂K that approximate the oracles and use them for reverse optimization
in the latent spaces. Each surrogate f̂k maps from its corresponding latent vector zk to an estimate of
fk. We use gradient-based optimization to find a point in a given latent space that has a high property
score predicted by the surrogate, which can then be decoded to a molecule [Gómez-Bombarelli
et al., 2018]. The hξk networks, which pass information between latent spaces, allow us to re-use
information learned about the molecule’s binding properties at lower fidelities to aid in prediction at
the higher fidelities without having to re-learn it using large amounts of high-fidelity data. This is
because training the surrogate models organize each latent space [Tevosyan et al., 2022] for property
prediction at that level, and so the latent vectors contain information about the binding properties
useful for predicting the oracle output that can then be passed to higher fidelities. Additionally, the
use of separate latent spaces for each fidelity level, as opposed to previous approaches that use only a
single latent space shared across all levels, improves surrogate modeling performance because each
latent space can be organized for prediction at just that level.
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We use stochastic variational Gaussian process models (SVGPs, [Hensman et al., 2015]) with
parameters λ1, . . . , λK for the surrogates. We chose SVGPs for their speed of training and ability to
train with minibatches. Specifically, f̂k is given by f̂k ∼ GP(mλk

(x),Σλk
(x, x′)) where m(x) and

Σ(x, x′) are the mean and covariance kernels of the SVGP. To train the model, we jointly minimize
the evidence lower bound (ELBO) [Kingma and Welling, 2013] of the latent encodings and marginal
log likelihood (MLL) of the GP models. Given a training molecule x and associated oracle output y
at fidelity k, we minimize

L(ϕ, ξk−1, θk, λk; k, x, y) = Ezk∼g(·|x) log
pθk(x|zk)
g(zk|x)

+

∫
p(y|f̂k(x))p(f̂k(x)|x)df̂k,

where g(zk|x) =
{
qϕ(zk|x) if k = 1

hξk−1
(zk−1) else

(1)

where the first term is the ELBO and the second is the MLL of the GP. While the loss is only evaluated
at fidelity k, it is backpropagated through to all lower fidelities. Additionally, in our implementation,
we approximate the MLL GP loss using the ELBO [Hensman et al., 2015] for improved scalability.

3.2 Bayesian active learning for sample-efficient training

Algorithm 1 Active learning for MF-LAL
Require: a multi-fidelity dataset D consisting of a set of initial training examples, number of

compounds to generate to generate at lower fidelities M
1: k ← 1
2: while computational budget is not exceeded do
3: train model on data D (Eq. 1)
4: x← generateHighScoringCompounds(k, M , 1) (Algorithm 2)
5: query fk(x) and save result in y
6: Dk ← Dk ∪ {(x, y)}
7: if k < K and Σλk

(qϕ(x)) < γk then
8: k ← k + 1
9: end if

10: end while

Training a multi-fidelity surrogate model requires significant computational resources, especially to
gather data at the highest fidelity level. Instead of passively collecting training data, we develop a
Bayesian active learning approach to efficiently query the oracles, allowing us to make fewer queries
to the most expensive oracles. As show in Algorithm 1, our active learning cycle consists of first
generating a molecule to query at a chosen fidelity, querying the oracle to obtain the property score,
appending the result to the dataset, and then retraining the model. We repeat the process until some
computational budget is reached.

Similar to Kandasamy et al. [2016], we start with only querying the oracle at the lowest fidelity level
k = 1 and increase to higher fidelities when the model’s uncertainty falls below certain thresholds. We
use the posterior variance of the GP surrogate Σλk

to measure the model’s uncertainty. Specifically,
during active learning, we repeatedly generate a latent vector zk at fidelity k that decodes to a query
compound. If Σλk

(zk) < γk, where γk is the uncertainty threshold, then we permanently increment
k by one for all subsequent queries. Otherwise, k remains the same. Once at the highest fidelity,
we keep running active learning until some computational budget is reached. We use this stepwise
approach to ensure all surrogates have enough training data to make accurate predictions in high
property areas of the latent spaces, thus leading to high property compounds being generated.

We generate query molecules from the latent space using the upper confidence bound [Auer, 2002] as
the acquisition function. The method we use to generate molecules is described later in Section 3.3.
To ensure that generated compounds remain similar to the training set of drug-like molecules, we
also add an L2 regularization term on the latent vector. The acquisition function is thus given by

a(z
(i)
k , k) = mλk

(z
(i)
k ) + βΣλk

(z
(i)
k )− ||z(i)k ||

2
2 (2)
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where z
(i)
k is a point in latent space k and β is an exploration hyperparameter. m and Σ are the mean

and covariance kernels of the GP surrogate. We set β = 1 during active learning, and β = 0 after
during inference to only focus on the most promising compounds.

3.3 Generating molecules with high property scores

Algorithm 2 MF-LAL molecule generation procedure
Require: fidelity k to optimize compounds for, exploration/exploitation hyperparameter β, number

of compounds to generate at lower fidelities M
1: procedure GENERATEHIGHSCORINGCOMPOUNDS(k, M , β)
2: procedure GETTOPLATENTPOINTS(k, M , β)
3: for i in 1..M do
4: initialize z

(i)
k ∼ N (0, I)

5: if k == 1 then
6: find z

(i)
k that maximizes Eq. 2 via gradient descent

7: else
8: z

(1)
k−1, . . . , z

(M)
k−1 ← getTopLatentPoints(k − 1,M, β)

9: for j in 1..M do
10: µ

(j)
k , σ

(j)
k ← hξk−1

(z
(j)
k−1)

11: end for
12: find z

(i)
k that maximizes Eq. 2 + Eq. 3 via gradient descent

13: end if
14: end for
15: return z

(1)
k , . . . , z

(M)
k

16: end procedure
17: z

(1)
k , . . . , z

(M)
k ← getTopLatentPoints(k,M, β)

18: for i in 1..M do
19: x(i) ∼ pθk(·|z

(i)
k )

20: end for
21: return x(1), . . . , x(M) if k < K else x(1) ▷ only need one compound at highest fidelity
22: end procedure

Our goal is to generate compounds at fidelity k that maximize some generation objective. To
accomplish this, we perform gradient-based optimization to find a point zk in the kth latent space that
maximizes the generation objective, and then decode zk into a molecule using pθk . For our generation
objective, we do not want to simply maximize f̂k, but instead the upper confidence bound (Eq. 2) to
ensure exploration during active learning. In addition, we also introduce a novel likelihood-based
term to the generation objective that encourages the model to only sample compounds at higher
fidelities that also scored well at the lower fidelities. Specifically, when generating a molecule at
fidelity k, we maximize the likelihood that the molecule would also be generated at fidelity k−1 with
a high property score. This additional term greatly restricts the area of the chemical space explored
by the high fidelity oracles, reducing the computational cost wasted on non-promising areas and
making the use of high-cost oracles feasible. It also means the higher fidelity latent spaces encode
a more limited distribution of compounds, improving the quality of samples generated from those
latent spaces. Indeed, we show that the likelihood term is critical for strong performance (Table 2).

To compute the likelihood of a point zk at fidelity k, we first generate a set of M high-scoring
compounds at fidelity k − 1. Next, we map those points to a sum of Gaussians in the kth latent space
using hξk−1

, giving us a set of M parameters {(µ(j)
k , σ

(j)
k )}Mj=1. We then measure the likelihood

of point zk in the generated sum of Gaussians distribution. This guarantees that the compounds
generated in latent space k are also likely to have been generated in k − 1 with high scores. Thus, we
effectively reduce the size of the chemical space that must be explored at fidelity k to only compounds
that have already shown promise at the lower fidelities. Mathematically, maximizing the likelihood
of a point z(i)k in latent space k is equivalent to maximizing the probability density function evaluated
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at that point:

P
(
z
(i)
k |{(µ

(j)
k , σ

(j)
k )}Mj=1

)
=

M∑
j=1

1√
2π(σ

(j)
k )2

exp

(
−
(z

(i)
k − µ

(j)
k )2

2(σ
(j)
k )2

)
(3)

The full generation algorithm is detailed in Algorithm 2. In our implementation, we vectorize
optimization across all M latent space points simultaneously. In order to encourage diversity in
generated compounds, we also add a term to the generation objective that measures the average
pairwise cosine similarity between the M points, and aim to minimize it:

1

M2

M∑
i=1

M∑
j=1

s(z
(i)
k , z

(j)
k ) (4)

where s(A,B) is the cosine similarity between vectors A and B.

4 Experiments

4.1 Experimental setup

We define a multi-fidelity environment for binding affinity which uses four oracles, each of which
takes a molecule as input and outputs an estimate of its binding affinity with increasing accuracy:

1. Linear regression (f1). Simple linear regression model trained on experimental data from
the BRD4(2)/c-MET target from BindingDB [Liu et al., 2007] to predict the Ki, a measure
of binding affinity. Morgan fingerprints are used to represent the molecule.

2. AutoDock4 (f2) [Morris et al., 2009]. Uses 3D geometric and charge information from the
protein and compound to estimate the binding energy.

3. Ensembled AutoDock4 (f3) [Morris et al., 2009]. Same as above, except we dock the
compound into the binding pockets of eight BRD4/five c-MET cocrystal structures that were
solved with different known ligands, and then take the minimum predicted energy. This
ensemble approach is generally more accurate than using a single protein structure [Amaro
et al., 2018].

4. Absolute binding free energy (ABFE) (f4) [Heinzelmann and Gilson, 2021]. A binding
free energy method applicable to de novo drug discovery that uses molecular dynamics
simulations to accurately predict the binding energy.

We target the BRD4(2) and c-MET proteins (PDB 5UF0 and 5EOB), both of which are implicated
in human cancer development, although through different biological mechanisms. We chose these
targets because ABFE is already well-validated on them and known to have good agreement with
experimental data [Heinzelmann and Gilson, 2021]. See Appendix B for further experimental details
and analysis of the oracles, including experiments confirming that our higher fidelity oracles are more
costly yet more accurate at distinguishing experimental actives from inactives.

Each model is provided with an initial dataset of random ZINC250k [Irwin et al., 2012] compounds
queried at each fidelity (see Appendix B for further details). To compare models, we run each in
an active learning loop using a fixed computational budget of 7 days, and then generate 15 unique
compounds at the highest fidelity predicted to have the best scores. We then run these compounds
through ABFE and compare their scores. See Appendix C for additional results showing the oracle-
predicted binding energy of the generated query compounds over the active learning process.

4.2 Baselines

We compare MF-LAL with the following baselines:

• SF-VAE (only ABFE / only docking) [Gómez-Bombarelli et al., 2018]. Uses a simple
single-fidelity GP as a surrogate model that is used to guide optimization in the latent
space of a vanilla VAE, representing a simple single-fidelity approach. This consists of

7



Table 1: Evaluation of generated compounds at highest fidelity. The mean and top 3 ABFE values
are shown for 15 compounds sampled from each method after active learning for 7 days.

METHOD BRD4(2) ABFE (KCAL/MOL) C-MET ABFE (KCAL/MOL)
MEAN ± S.D. 1ST 2ND 3RD MEAN ± S.D. 1ST 2ND 3RD

SF-VAE (ONLY ABFE) -0.9 ± 2.7 -5.7 -2.9 -2.9 -1.2 ± 3.0 -4.4 -3.9 -3.1
SF-VAE (ONLY DOCKING) -3.1 ± 2.8 -6.1 -5.3 -4.8 -2.8 ± 3.4 -5.9 -5.8 -5.1
REINVENT (ONLY ABFE) -3.9 ± 3.4 -8.7 -8.3 -8.2 -2.9 ± 3.7 -6.5 -5.8 -5.1
REINVENT (ONLY DOCKING) -3.1 ± 4.9 -11.0 -6.2 -5.7 -2.6 ± 5.0 -8.0 -6.8 -5.9
VAE + 4X SF-GP -2.3 ± 3.1 -8.0 -5.5 -5.3 -1.8 ± 2.5 -6.3 -5.9 -5.1
VAE + MF-GP -1.3 ± 3.3 -4.9 -3.1 -2.0 -3.3 ± 2.9 -9.7 -7.7 -4.2
MF-AL-GFN -2.5 ± 2.2 -6.5 -5.8 -5.1 -3.1 ± 1.8 -5.5 -4.5 -4.1
MF-AL-PPO -2.8 ± 2.5 -9.2 -6.5 -5.2 -4.0 ± 2.4 -7.0 -6.6 -5.8
POCKET2MOL -4.8 ± 4.6 -9.8 -9.8 -9.0 -2.2 ± 4.2 -4.5 -3.9 -3.2

MF-LAL (OURS) -6.3 ± 4.0 -12.0 -11.3 -10.2 -6.5 ± 3.2 -12.9 -7.7 -6.5

two separate baselines, one where the GP is trained only on ABFE data and one where it is
trained on only docking data.

• REINVENT (only ABFE / only docking) [Olivecrona et al., 2017]. An RL-based molecular
generation technique which we use to optimize ABFE, and separately, docking score.
Represents a simple single-fidelity approach using a modern generative model.

• VAE + 4x SF-GP. Uses a vanilla VAE model except with four independent GP surrogates,
one for each fidelity, all using the single latent space as input. To be contrasted with
MF-LAL, which uses multiple connected latent spaces instead of a single one.

• VAE + MF-GP. Similar to above, except using a single multi-fidelity GP model [Wu et al.,
2020] instead of four independent single-fidelity GP models.

• MF-AL-GFN [Hernandez-Garcia et al., 2023] GFlowNet generative model used to optimize
the predicted score from a multi-fidelity GP model. This baseline represents the state of the
art in multi-fidelity generation, where generative and surrogate models are separated.

• MF-AL-PPO [Hernandez-Garcia et al., 2023]. Same as above except using the PPO RL
algorithm instead of a GFlowNet as the generative model.

• Pocket2Mol [Peng et al., 2022]. 3D structure-based drug design model that takes a protein
pocket as input and outputs a 3D molecule via diffusion. Unlike the other methods, does not
use any binding affinity oracle during generation.

The first two baselines are single-fidelity methods, where we use both only ABFE and only docking
as the single fidelity. The next four baselines, as well as MF-LAL, are multi-fidelity. Pocket2Mol
does not utilize any oracle during generation. Evaluation of generated compounds from all baselines
is done with ABFE.

4.3 Results

Table 1 reports the average and top 3 ABFE scores of 15 compounds generated by MF-LAL, as well
as those generated by the baseline methods, following active learning for 7 days. We ran each method
separately for two targets, BRD4(2) and c-MET. We filtered generated compounds such that all had
QED [Bickerton et al., 2012] > 0.4, SAscore [Ertl and Schuffenhauer, 2009] < 4, and no rings
with ≥ 7 atoms. We also only allowed compounds that fit these criteria to be queried during active
learning. We filtered compounds that did not meet the criteria after generation, instead of performing
multi-objective optimization, because most generated compounds from single-objective optimization
already had a QED/SAscore in the range of typical drug compounds [Bickerton et al., 2012, Ertl and
Schuffenhauer, 2009].

We find that the average ABFE scores of the compounds generated by MF-LAL, as well as those
of the top three compounds, are significantly better (lower kcal/mol) than the corresponding scores
of compounds generated by the baseline methods for both targets. The difference in average ABFE
score (predicted binding free energy) between MF-LAL and the top baseline is -1.5 kcal/mol for
BRD4(2) and -2.5 kcal/mol for c-MET, which are significant margins. Thus, our method outperforms
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Figure 2: Visualization of MF-LAL generated molecules. The top 3 molecules and associated
ABFE scores are shown for both the BRD4(2) (top row) and c-MET (bottom row) targets.

Table 2: Ablations. The mean and top 3 ABFE-computed energies are shown for 15 compounds
sampled from each method after active learning for 7 days.

METHOD BRD4(2) ABFE (KCAL/MOL) C-MET ABFE (KCAL/MOL)
MEAN ± S.D. 1ST 2ND 3RD MEAN ± S.D. 1ST 2ND 3RD

MF-LAL -6.3 ± 4.0 -12.0 -11.3 -10.2 -6.5 ± 3.2 -12.9 -7.7 -6.5
-FID. 1 -6.1 ± 0.7 -7.7 -7.6 -7.4 -6.0 ± 1.1 -8.8 -7.0 -6.0
-FID. 2 -5.1 ± 2.0 -8.5 -6.5 -6.0 -5.2 ± 2.5 -8.0 -7.3 -6.1
-FID. 3 -4.2 ± 3.1 -9.2 -5.9 -5.7 -4.2 ± 3.5 -9.8 -7.1 -6.1
-FID. 4 -2.4 ± 3.2 -8.6 -4.3 -3.4 -3.1 ± 3.0 -7.6 -6.7 -5.1
W/O LIKELIHOOD TERM -3.6 ± 4.4 -11.9 -10.7 -10.0 -3.8 ± 3.7 -10.9 -7.7 -6.3
TRANSFORMER ENC/DEC -6.2 ± 4.0 -11.5 -11.3 -9.8 -6.5 ± 2.9 -11.6 -7.6 -6.5
GCN ENC/DEC -5.9 ± 3.0 -10.9 -10.1 -9.3 -6.1 ± 4.6 -11.1 -7.5 -6.5

both single and multi-fidelity techniques, as well as a 3D structure-based method (Pocket2Mol, Peng
et al. [2022]) that does not use any binding affinity oracle. This suggests MF-LAL is most capable at
generating compounds with real-world activity, since binding free energies computed with ABFE are
the gold standard prediction method. Note, too, that the multi-fidelity techniques other than MF-LAL
performed mostly similarly to the single-fidelity methods. This suggests that successfully taking
advantage of multiple fidelities requires an architecture which, like that used in MF-LAL, is tailored
to generating compounds for multiple fidelity oracles.

The molecular structures of the top 3 compounds generated by MF-LAL for both targets are shown
in Figure 2. The compounds are structurally diverse, and none of them have close similars in the
training set or in large datasets like PubChem [Kim et al., 2023]. This shows the ability of MF-LAL
to generate promising and novel structures. There is a small shared scaffold across 2 of the generated
c-MET compounds consisting of a pyridazine, but this is not necessarily undesirable as it shows the
model has found a high-property region of chemical space. The scaffold may be a promising starting
point for development of empirical structure-activity relationships and lead optimization by medicinal
chemists. Additionally, the pairwise Tanimoto similarity among the 15 compounds generated by
MF-LAL is less than 0.2 for both targets, further indicating that our method generates a structurally
diverse set.

Table 2 reports results from various ablations of the MF-LAL architecture. We experimented with
removing each fidelity level individually, removing the likelihood term from the generation objective,
and replacing the fully-connected encoder/decoder networks with a Transformer [Vaswani et al., 2017]
and graph convolutional network (GCN, Kipf and Welling [2016]). The results show that all fidelities
contribute to some degree to performance, although f1 (the linear regression model) seems to add
very little. Removing the likelihood term greatly reduced the performance of our method, showing
that the approach of only querying compounds at higher fidelities that also scored well at lower
fidelities is critical for strong performance. Replacing the fully-connected encoder/decoder with a
Transformer had little effect on performance, so we used the simpler fully-connected version. Finally,
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changing the molecular representation to a graph and replacing the fully-connected encoder/decoder
with GCNs [Kipf and Welling, 2016] resulted in slightly worse performance.

5 Discussion and Conclusion

We present Multi-Fidelity Latent space Active Learning (MF-LAL), an integrated framework for
generative and multi-fidelity surrogate modeling. Our experiments show that MF-LAL generates
compounds with significantly higher activity, as predicted by a gold-standard binding free energy
oracle, than other single and multi-fidelity approaches. Thus, MF-LAL shows promise as a way to
generate compounds with real-world binding while incurring a reasonable computational cost.

Limitations of our approach include a limited set of oracles and a potential lack of synthesizability
of the generated compounds, since SAscore is known to be imperfect [Skoraczyński et al., 2023].
Future work could include using a reaction-aware generative model that generates more synthesizable
molecules [Horwood and Noutahi, 2020].
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A Model details

The encoder, decoder, and h networks are all 3-layer feed-forward networks with ReLU activations
and a 512-dimensional hidden layer. Each latent space has 64 dimensions. Molecules are represented
using SELFIES strings [Krenn et al., 2020], and fed to the network using a flattened one-hot encoding
representation. The loss on the latent encodings is the ELBO, which is the sum of the KL divergence
and the cross-entropy loss of the reconstruction.

The surrogate models consist of a 4-layer deep kernel [Wilson et al., 2016] to encode the input and a
Matern kernel for the covariance function. To accelerate training, we use an approximate GP trained
with the ELBO loss [Hensman et al., 2015].

At each active learning step, we train the whole model from scratch until convergence with the Adam
optimizer using a learning rate of 0.0001. For the molecule generation procedure using gradient-based
optimization, we use the Adam optimizer with a learning rate of 0.1 for 100 epochs.

A.1 MF-LAL model diagram
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Figure 3: Diagram of MF-LAL architecture. An input molecule is encoded into the first latent
space z1 using a neural network. The networks hξ1 , . . . , hξK−1

transform points in z1 to the higher
fidelity latent spaces. Each latent space has an associated decoder, which reconstructs the original
molecule, and a GP surrogate model for that fidelity level.

B Experimental details

All experiments were conducted on a server with 8 RTX 2080 Ti GPUs. For our model and each
baseline, we performed a random hyperparameter search with 20 trials using only the first 3 fidelities,
and took the set of hyperparameters with the best generated samples at f3 following 3 hours of active
learning. We excluded ABFE from the hyperparameter search due to computational cost, and just
used the same set of hyperparameters for all subsequent experiments using all 4 fidelities.

Each model was provided with an initial dataset of random ZINC250k [Irwin et al., 2012] compounds
evaluated at each fidelity. Each fidelity had 5 random compounds selected, except for the first fidelity,
where we supplied 200,000 compounds and associated oracle outputs. This was because we wanted
a large dataset of compounds to train the encoder and decoder at the first fidelity level, ensuring
that generated compounds were reasonable, and running f1 was almost instantaneous. For the more
expensive oracles, however, we let active learning generate compounds to query to most efficiently
use computational resources.
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B.1 Oracles

For all oracles, we estimated the cost (for the baselines that require it) using the average run time
over 10 samples with random input compounds. We also computed the ROC-AUC (shown below) of
each oracle for the BRD4(2) target to confirm that the higher cost oracles are more accurate. To do
this, we generated a dataset of known active and presumed inactive compounds for BRD4(2), and
then ran each oracle on all of the compounds. The actives were retrieved from the BRD4(2) target
from BindingDB with Ki < 10µM , and the inactives were generated using DUD-E [Mysinger et al.,
2012]. As expected, the ROC-AUC increases with higher fidelity, as well as the computational cost.

Linear regression (cost: 0.1s, ROC-AUC: 0.59) We used BRD4(2) and, separately, c-MET data
from BindingDB [Liu et al., 2007] to train a simple linear regression model. The input to the
model was 2048-bit Morgan fingerprints, and the output was the experimental binding energy in Ki,
converted to kcal/mol.

AutoDock4 (cost: 4s, ROC-AUC: 0.65) We prepared the AutoDock4 grid files using AutoDock-
Tools [Morris et al., 2009]. Arbitrary ligands were prepared using obabel [O’Boyle et al., 2011]
with pH 7.4 and gasteiger partial charges. We used AutoDock-GPU [Santos-Martins et al., 2021],
a GPU-accelerated version of AutoDock4, for all computation. For each ligand, we performed 20
random restarts and selected the minimum predicted energy.

Ensembled AutoDock4 (cost: 44s, ROC-AUC: 0.70) Same as above, except we used the minimum
energy from 8 separate AutoDock4 runs using the same ligand and each of the following protein
crystal structures (listed as PDB IDs): 5ues, 5uet, 5uev, 5uez, 5uf0, 5uvs, 5uvy, 5uvz
for BRD4(2), and 2wd1, 4deg, 4dei, 4r1v, 5eob for c-MET

Absolute binding free energy (ABFE) (cost: 9:20hrs, ROC-AUC: 0.92) We use the Binding
Affinity Tool (BAT.py) implementation [Heinzelmann and Gilson, 2021] for absolute binding free
energy calculation, available at https://github.com/GHeinzelmann/BAT.py. For BRD4(2),
we use the short tevb calculations, which were introduced recently to reduce computational cost
[Heinzelmann et al., 2024]. For c-MET, we use the standard SDR method, but we found we could
reduce simulation times for all components to 30% of their original amounts and still retain strong
performance. All molecular dynamics simulators are run with AMBER with GPU support. As
BAT.py requires a starting pose for the ligand, we used the pose generated from AutoDock4. We
additionally wrote custom scripts to parallelize molecular dynamics runs across all available GPUs.

B.2 Baselines

The details of each baseline are as follows:

• SF-VAE (only ABFE / only docking) [Gómez-Bombarelli et al., 2018]. The VAE en-
coder and decoder, and GP surrogate, are set up similarly to those in MF-LAL. The upper
confidence bound is used as an acquisition function.

• REINVENT (only ABFE / only docking) [Olivecrona et al., 2017]. Used the code available
at https://github.com/MarcusOlivecrona/REINVENT.

• VAE + 4x SF-GP. The VAE encoder and decoder, and GP surrogates, are set up similarly to
those in MF-LAL. We also use the same acquisition function and generative procedure as
MF-LAL for this baseline, except without the need to map points between latent spaces.

• VAE + MF-GP. We use the Multi-Fidelity Max Value Entropy acquisition function for
selecting compounds during active learning [Takeno et al., 2020], and a linear truncated
fidelity kernel [Gardner et al., 2018] for the GP surrogate.

• MF-AL-GFN [Hernandez-Garcia et al., 2023] Used the code available at https://github.
com/nikita-0209/mf-al-gfn.

• MF-AL-PPO [Hernandez-Garcia et al., 2023]. Provided in the same codebase as the one
referenced above.

• Pocket2Mol [Peng et al., 2022]. Used the code available at https://github.com/
pengxingang/Pocket2Mol.
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C Additional results
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Figure 4: Oracle outputs during active learning. The y-axis shows the oracle-predicted binding
energy of the generated query compounds, and the x-axis shows active learning progress.

Figure C shows the oracle-predicted binding energy of the compounds generated during the MF-LAL
active learning process. We only show fidelities 2 and 3, because fidelity 1 is already supplied with
a large initial dataset so there is little improvement in the query quality during active learning, and
fidelity 4 does not show any noticeable improvement due to a relatively small number of queries
made. For fidelities 2 and 3, we observe a marked improvement of the predicted binding energy over
active learning, showing that MF-LAL successfully learns what makes a compound favorable at each
fidelity level.
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