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Abstract

In this work, we propose a simple transformer-based baseline for multimodal
molecular representation learning, integrating three distinct modalities: SMILES
strings, 2D graph representations, and 3D conformers of molecules. A key aspect
of our approach is the aggregation of 3D conformers, allowing the model to account
for the fact that molecules can adopt multiple conformations—an important factor
for accurate molecular representation. The tokens for each modality are extracted
using modality-specific encoders: a transformer for SMILES strings, a message-
passing neural network for 2D graphs, and an equivariant neural network for
3D conformers. The flexibility and modularity of this framework enable easy
adaptation and replacement of these encoders, making the model highly versatile
for different molecular tasks. The extracted tokens are then combined into a
unified multimodal sequence, which is processed by a downstream transformer
for prediction tasks. To efficiently scale our model for large multimodal datasets,
we utilize Flash Attention 2 and bfloat16 precision. Despite its simplicity, our
approach achieves state-of-the-art results across multiple datasets, demonstrating its
effectiveness as a strong baseline for multimodal molecular representation learning.
Our code is publicly available at https://github.com/andreimano/MolMix.

1 Introduction and Related Work

Accurately representing molecular structures is fundamental in computational chemistry and drug
discovery [1, 2, 3]. Effective molecular representations enable machine learning models to predict
molecular properties, understand chemical behaviors, and accelerate the development of new com-
pounds. Traditional molecular representation methods typically focus on a single modality, such as
SMILES strings [4, 5], chemical fingerprints [6], 2D molecular graphs [7], or the 3D geometry of
molecules [8, 9]. While effective, these methods overlook important molecular characteristics that can
be captured by other modalities [10, 11]. To address this, recent research has introduced multimodal
approaches that integrate multiple molecular representations to provide richer representations for
machine learning tasks in chemistry. Stärk et al. [12] proposed an information maximization approach
to enhance the mutual information between 2D and 3D molecular embeddings. Similarly, Liu et al.
[13] used contrastive pre-training to align 2D and 3D representations. Other approaches extract both
2D and 3D features, such as shortest path distances and 3D distance encodings, to build multimodal
models [14, 15]. Zhu et al. [16] unified 2D and 3D molecular data in a pre-training framework by pre-
dicting either masked 2D structures or 3D conformations. Additionally, language-based models have
been integrated with molecular data. Tang et al. [17], Xiao et al. [18], and Srinivas and Runkana [19]
leveraged large-scale language models to incorporate textual descriptions of molecules, enhancing
molecular property predictions.
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While these representations capture certain aspects of molecular structures, they may not fully
encompass the variability inherent in molecular conformations. Many molecular properties, such as
solubility, toxicity, and binding affinity, are influenced by the range of conformations a molecule can
adopt in nature [20]. Utilizing a single geometric representation for a molecule, therefore, restricts the
effectiveness of machine learning models. Moreover, identifying which conformers most significantly
impact the properties of interest remains difficult. Consequently, creating comprehensive multi-modal
representations that integrate multiple 3D conformations continues to be a challenge. To address this,
Axelrod and Gómez-Bombarelli [21] propose a scheme where 3D conformer embeddings are first
extracted using an equivariant backbone and then aggregated with an attention mechanism, but they
do not train on multimodal data. Similarly, Nguyen et al. [22] introduce a conformer aggregation
approach that leverages Optimal Transport techniques to obtain a single 3D embedding from multiple
conformers, which is subsequently combined with 2D embeddings derived from a GNN. Additionally,
Zhu et al. [23] propose MARCEL, a conformer aggregation benchmark alongside models that employ
set encoders to pool conformer embeddings with 2D structures and SMILES strings for downstream
tasks. These approaches illustrate ongoing efforts to develop more holistic and effective molecular
representations by incorporating both 2D and multiple 3D conformational data.

Despite these advances, there remains a need for simple yet effective models that can seamlessly
integrate multiple modalities and handle multiple conformers without significant computational
overhead. Moreover, recent observations [24, 25] suggest that some model design choices might be
unnecessary for strong empirical performance, thereby making the added complexity superfluous
and inefficient. To address this challenge, we propose MOLMIX, a simple yet effective baseline for
multimodal molecular representation learning. We employ modality-specific encoders - a transformer
for SMILES strings, a GNN for 2D graphs, and equivariant neural networks for 3D conformers - to
extract text and node embeddings from each modality. These embeddings are concatenated into a
multimodal sequence, separated by special tokens, and fed into a downstream transformer that predicts
molecular properties. By leveraging efficient techniques like Flash Attention [26, 27] and bfloat16
precision, MOLMIX scales to handle large sequences of atom tokens with minimal computational
overhead, enabling the direct incorporation of all conformers. Despite its straightforward design,
MOLMIX achieves state-of-the-art results across multiple datasets, demonstrating that simplicity can
be highly effective in multimodal molecular representation learning, while the modular design allows
us to easily exchange the specific modality encoders.

To summarize, our main contributions are:

1. Simple multimodal molecular framework: We introduce MOLMIX, which seamlessly
combines SMILES strings, 2D molecular graphs, and multiple 3D conformers into a unified
sequence for molecular representation learning.

2. Conformer aggregation: By incorporating node embeddings from 3D conformers,
MOLMIX effectively captures conformational variability.

3. Scalability: We utilize Flash Attention and bfloat16 (bf16) precision to scale our model,
enabling the processing of large multimodal datasets with minimal computational overhead.

4. State-of-the-Art performance: MOLMIX achieves superior results on multiple bench-
mark datasets, establishing a strong baseline for future research in multimodal molecular
representation learning.

5. Transfer learning capabilities We show that MOLMIX could potentially be used for
pre-training on large molecular datasets.

We make our code publicly available at https://github.com/andreimano/MolMix.

2 MOLMIX: A Multimodal Molecular Transformer

1D Encoder We represent molecules using SMILES strings, which encode chemical structures as
sequences of characters. Let S = [s1, s2, . . . , sn] denote the input SMILES string, where each si is a
character. Each si is mapped to an embedding vector ei = Embedding(si). To account for sequence
order, positional encodings are added: zi = ei + PE(i). A transformer encoder [28] then processes
these vectors to obtain the hidden representations
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h1D
i = Transformer(zi), (1)

for all i ∈ {1, . . . , n}. Each hidden representation h1D
i corresponds to the respective input character

si, effectively capturing the contextual information about the molecule, for each character.

2D Encoder We represent molecules as graphs G = (V,E), where V is the set of atoms and E is
the set of covalent bonds. Each atom v ∈ V and bond euv ∈ E are associated with initial feature
vectors xv and euv, respectively. We use a message-passing framework with GINE [29, 30] as the
backbone to capture the molecular graph’s structural information. At each message-passing step j,
the hidden representation of atom v is updated as

h2D
v,j = GINE

(
h2D
v,j−1, {h2D

u,j−1 | u ∈ N (v)}, {euv}
)
, (2)

where N (v) denotes the neighbors of atom v. This iterative process aggregates information from
neighboring atoms and bonds, enabling the model to learn graph representations. The final hidden
embeddings h2D

v,j encode both local and global structural features of the molecule.

3D Encoder To leverage the three-dimensional structural information of molecules, we utilize
3D conformations represented by the spatial coordinates of each atom. Let V denote the set of
atoms. Each atom v ∈ V is associated with a 3D coordinate rv ∈ R3. To extract meaningful atom
embeddings that respect the geometric properties of the molecule, we employ an neural network with
3D inductive biases, such as SchNet [8] or GemNet [9], as the backbone model. These networks
process the 3D coordinates {rv}v∈V along with the initial atom features {xv}v∈V and apply a cutoff
function to consider interactions within a specified distance range, generating hidden embeddings

h3D
v = 3DNetwork(rv,xv), (3)

for all v ∈ V . These atom embeddings h3D
v capture both the local geometry and the global spatial

arrangement of the molecule.

Downstream Multimodal Transformer To integrate different molecular representations, we
design a multimodal transformer that combines three distinct modalities. The SMILES encoder
outputs token embeddings h1D

i , where h1D
i corresponds to the ith character in the string. From the 2D

MPNN encoder, we extract atom embeddings h2D
v,j for atom v at layer j. By using embeddings from

all layers, the model captures both local and distant atom interactions, mitigating the oversmoothing
effect common in deep GNNs. The 3D encoder provides atom embeddings h3D

v,c for atom v and
conformer c, encapsulating spatial geometry. We use multiple conformers by simply adding all the
atom embeddings to the multimodal sequence. Modality-specific learnable encodings are added to
the embeddings from each modality. These modality-enhanced embeddings are concatenated into a
unified sequence, with special tokens included: a classification token hCLS is added at the start, and
separation tokens hSEP are placed between modalities. The resulting input sequence is structured as

H =
[
hCLS, {h1D

i }i,hSEP,
{
h2D
v,j

}
v,j

,hSEP,
{
h3D
v,c

}
v,c

,hSEP

]
.

This sequence is then processed by the downstream transformer, which utilizes the self-attention
mechanism to integrate and contextualize information across all modalities. After the transformer
layers, the embedding corresponding to the classification token hout

CLS is extracted and sent to a
readout MLP to perform downstream tasks such as property prediction and molecular classification:

hout
CLS = MultimodalTransformer(H) (4)

ŷ = MLP(hout
CLS) (5)

We reduce memory overhead in our multimodal transformer with bfloat16 precision and Flash
Attention 2 [27]. See appendix C for details and a memory comparison with classical attention.
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Table 1: Comparison between MOLMIX and other baselines on the Drugs-75K and Kraken datasets
from MARCEL [23]. 1D, 2D and 3D represents training on the SMILES strings and molecule
fingerprints, 2D molecular representations and 3D conformers. Multimodal represents training on
all three modalities. The metric used is the Mean Absolute Error (MAE, ↓). Bold indicates the
best-performing model, while underline denotes the second-best. MOLMIX obtains the best results
on 5 out of 7 properties, with second-best results obtained on two properties (Drugs-75K/χ and
Kraken/BurL).

Model Drugs-75K Kraken

IP ↓ EA ↓ χ ↓ B5 ↓ L ↓ BurB5 ↓ BurL ↓
1D

RF 0.498±0.003 0.474±0.002 0.273±0.003 0.476±0.004 0.430±0.009 0.275±0.018 0.152±0.014

LSTM 0.478±0.002 0.464±0.000 0.250±0.005 0.487±0.028 0.514±0.041 0.281±0.004 0.192±0.002

Transformer 0.661±0.002 0.585±0.003 0.407±0.001 0.961±0.081 0.839±0.043 0.493±0.037 0.278±0.021

2D

GIN 0.435±0.003 0.417±0.003 0.226±0.002 0.313±0.026 0.400±0.034 0.172±0.003 0.120±0.004

GIN+VN 0.436±0.006 0.417±0.008 0.227±0.000 0.357±0.003 0.434±0.042 0.242±0.003 0.174±0.011

ChemProp 0.460±0.003 0.442±0.005 0.244±0.001 0.485±0.007 0.545±0.045 0.300±0.009 0.195±0.014

GraphGPS 0.435±0.005 0.409±0.006 0.221±0.005 0.345±0.032 0.436±0.013 0.207±0.012 0.150±0.014

3D

SchNet 0.439±0.006 0.421±0.002 0.224±0.009 0.329±0.007 0.546±0.034 0.230±0.011 0.186±0.010

DimeNet++ 0.444±0.009 0.423±0.007 0.244±0.008 0.351±0.011 0.417±0.040 0.210±0.016 0.153±0.007

GemNet 0.407±0.001 0.392±0.002 0.197±0.004 0.279±0.013 0.375±0.009 0.178±0.010 0.164±0.006

PaiNN 0.451±0.004 0.450±0.005 0.232±0.004 0.344±0.039 0.447±0.032 0.240±0.018 0.167±0.009

ClofNet 0.439±0.008 0.425±0.007 0.238±0.002 0.487±0.009 0.642±0.036 0.288±0.017 0.253±0.005

LEFTNet 0.417±0.001 0.396±0.001 0.208±0.005 0.307±0.001 0.449±0.026 0.218±0.001 0.149±0.010

M
ul

tim
od

al

SchNet 0.454±0.007 0.438±0.013 0.237±0.010 0.270±0.019 0.432±0.046 0.202±0.018 0.144±0.004

DimeNet++ 0.413±0.008 0.394±0.003 0.227±0.005 0.263±0.012 0.347±0.009 0.178±0.011 0.119±0.011

GemNet 0.419±0.002 0.400±0.001 0.217±0.004 0.231±0.003 0.339±0.027 0.159±0.007 0.095±0.001

PaiNN 0.447±0.007 0.427±0.003 0.229±0.007 0.223±0.022 0.362±0.019 0.169±0.011 0.132±0.009

ClofNet 0.428±0.006 0.403±0.002 0.220±0.007 0.323±0.002 0.449±0.005 0.218±0.019 0.155±0.004

LEFTNet 0.417±0.004 0.395±0.000 0.207±0.002 0.264±0.013 0.364±0.035 0.202±0.003 0.139±0.001

MOLMIX 0.405±0.002 0.379±0.004 0.206±0.002 0.191±0.017 0.305±0.020 0.146±0.002 0.121±0.005

Since we use the same positional encoding for each h2D
v,i and h3D

v,c, we maintain the permutation
equivariance property of the 2D and 3D encoders. Another desirable property is for the model to
preserve any invariance of the 3D encoder. Indeed, MOLMIX preserves these useful inductive biases:

Theorem 1. Let S be the SMILES string, G be the 2D graph, and {c1, . . . , ck} be a set of k 3D
conformers for a molecule. Let ŷ = fθ(S,G, {c1, . . . , ck}) be the output prediction obtained as
described in eq. (1) - (5). Let our 3D encoder be invariant to the actions of some group G. Then fθ is
also invariant to any T1, . . . , Tk ∈ G, i.e. fθ(S,G, {T1c1, . . . , Tkck}) = fθ(S,G, {c1, . . . , ck}).

3 Experimental Setup and Results

Table 2: Comparison between MOLMIX and other ap-
proaches as reported in [22]. The metric used is Root
Mean Squared Error (RMSE ↓). MOLMIX obtains the
overall best scores, significantly improving upon the re-
cently proposed multimodal CONAN-FGW model.

Model Lipo ↓ ESOL ↓ FreeSolv ↓ BACE ↓

2D-GAT 1.178±0.454 1.513±0.130 2.926±1.160 1.358±0.574
D-MPNN 0.731±0.148 0.961±0.212 2.053±0.261 0.850±0.145
MolFormer 0.701±0.110 0.875±0.249 2.342±0.212 1.045±0.145
SchNet-scalar 0.839±0.179 0.820±0.164 1.268±0.397 0.850±0.316
SchNet-emb 0.767±0.179 0.797±0.239 1.260±0.369 0.832±0.167
ChemProp3D 0.695±0.230 0.825±0.152 1.419±0.427 0.903±0.412
CONAN 0.746±0.114 0.756±0.138 1.223±0.397 0.797±0.226
CONAN-FGW 0.650±0.126 0.727±0.148 1.033±0.288 0.741±0.126
MOLMIX 0.614±0.022 0.639±0.017 0.976±0.044 0.387±0.041

In this section, we evaluate how
MOLMIX improves predictive perfor-
mance on real-world datasets by ad-
dressing the following questions: Q1)
How does MOLMIX’s performance com-
pare to other sophisticated models?; Q2)
Does incorporating multiple modalities
enhance downstream performance?; Q3)
Are pre-trained weights beneficial for
transfer learning?

To address Question 1, we train
MOLMIX on four MoleculeNet datasets
[31]—Lipo, ESOL, FreeSolv, and
BACE—covering various molecular properties, including physical chemistry and biophysics.
Conformers are generated using the RDKit chemoinformatics package [32]. We follow the same
train/validation/test splits as [22]. We also train models on the newly introduced MARCEL
benchmark [23], specifically the Drugs-75k and Kraken datasets. Drugs-75K, a subset of the
GEOM-Drugs dataset [33], contains 75,099 molecules with conformers generated by Auto3D [34],
and labels for ionization potentials (IP), electron affinity (EA), and electronegativity (χ). Kraken [35]
includes 1,552 monodentate organophosphorus ligands, with conformers generated via DFT, and
labels for four 3D ligand descriptors: Sterimol B5 (B5), Sterimol L (L), buried Sterimol B5 (BurB5),
and buried Sterimol L (BurL). We follow the same splits as in [23].
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For all experiments, we report the mean and standard deviation over five different runs. We use the
same hyperparameters for the modality encoders—we encode the SMILES strings using a transformer
with two layers and four attention heads, the 2D graph is processed by a GINE [29] network containing
6 layers, and the 3D conformations are processed either using a SchNet [8] or a GemNet [9] model.
All of the encoders have a hidden dimension of 128. The modality embeddings are then projected
by a linear layer to a 512-dimensional space before we jointly processing them with a downstream
Transformer network with 8 heads and 6 layers for the Lipo, ESOL, FreeSolv, BACE and Kraken, and
12 heads with 8 layers on Drugs-75K. We use the Schedule-Free AdamW optimizer [36, 37, 38].

Figure 1: Modality ablation study on the Kraken dataset
(MAE ↓). We keep the downstream Transformer fixed
and train using a single modality or a combination of
modalities. Using all three modalities obtains the best
results on three out of the four properties, with the second-
best results generally being obtained by a configuration
that contains 3D conformers. Notably, for the buried
Sterimol L property, the best results are obtained by a 3D
encoder + Transformer model, indicating that the property
could mainly depend on the 3D structure.

Modality B5 ↓ L ↓ BurB5 ↓ BurL ↓

1D 0.499±0.033 0.497±0.025 0.291±0.020 0.187±0.005
2D 0.258±0.017 0.347±0.013 0.176±0.010 0.141±0.004
3D 0.213±0.008 0.337±0.009 0.164±0.004 0.116±0.003
1D+2D 0.297±0.015 0.390±0.016 0.180±0.008 0.153±0.006
1D+3D 0.209±0.002 0.337±0.010 0.156±0.013 0.127±0.004
2D+3D 0.202±0.009 0.356±0.026 0.151±0.004 0.122±0.004
1D+2D+3D 0.191±0.017 0.305±0.020 0.146±0.002 0.121±0.005

Figure 2: Transfer learning experiment. We select the best
checkpoint of a model trained to predict the electronega-
tivity (χ) on the Drugs-75K dataset. We then freeze the
model and only train the last linear readout layer on the
Kraken dataset. We compare with a randomly initialized
model. For all descriptors, using the pre-trained weights
improve predictive performance. Note that pretraining
improves both mean performance and standard deviations.

Modality B5 ↓ L ↓ BurB5 ↓ BurL ↓

Random init. 0.567±0.010 0.543±0.020 0.334±0.004 0.216±0.003
Pretrain 0.521±0.003 0.509±0.004 0.316±0.001 0.195±0.003

On the MoleculeNet datasets, MOLMIX
obtains the overall best results, signifi-
cantly improving upon the results of [22]
on some datasets such as BACE, as can
be seen in table 2. This highlights that
our simple approach can potentially learn
better multimodal representations with
conformer aggregation than previously
proposed methods that contain more so-
phisticated aggregation techniques.

On the MARCEL datasets, compared to
the approaches in [23], we achieve the
best results on five out of seven proper-
ties and second-best on the remaining
two, as can be seen in table 1. This
suggests that MOLMIX also consistently
performs well when using physically-
grounded conformer generation methods
like DFT and Auto3D.

To address Question 2, fig. 1 shows that
for three of the four Kraken descriptors,
training on all three modalities yields
the best results, while for one property,
training on the 3D modality alone per-
forms slightly better. The results indi-
cate that 3D tokens contribute the most
to downstream performance, followed by
2D, with SMILES (1D) having the least
impact. Notably, SMILES strings signif-
icantly improve performance when predicting the Sterimol L descriptor.

To answer Question 3, we select the best checkpoint from a model trained to predict electronegativity
(χ) on the Drugs-75K dataset. We then freeze its weights and train only the final linear layer to
predict descriptors on the Kraken dataset, comparing it to a randomly-initialized model. As shown in
fig. 2, pre-training improves predictive performance in all cases, suggesting that with sufficient data,
MOLMIX could serve as a foundation model for molecular tasks.

4 Conclusions and Further Work

We propose MOLMIX, a simple yet effective multimodal molecular transformer supporting conformer
aggregation. MOLMIX preserves inductive biases of modality encoders and achieves state-of-the-art
results across multiple datasets. We hint towards MOLMIX being able to support transfer learning,
suggesting that it could be used as a molecular foundation model. Finally, we use Flash Attention
and bf16 precision to handle longer sequences and multiple modalities efficiently.

We leave three open questions. First, large self-supervised VLMs excel in 0-shot prediction and
fine-tuning [39, 40, 41, 42]. Exploring self-supervised pre-training for MOLMIX using signals like
masked language modeling [43] and noise-contrastive estimation [44] could be valuable. Second,
multiple conformers without pooling may be suboptimal; token merging [45] could improve memory
and runtime. Lastly, adding modalities like molecular fingerprints may enhance performance.
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A Proof for Theorem 1

Theorem 1. Let S be the SMILES string, G be the 2D graph, and {c1, . . . , ck} be a set of k 3D
conformers for a molecule. Let ŷ = fθ(S,G, {c1, . . . , ck}) be the output prediction obtained as
described in eq. (1) - (5). Let our 3D encoder be invariant to the actions of some group G. Then fθ is
also invariant to any T1, . . . , Tk ∈ G, i.e. fθ(S,G, {T1c1, . . . , Tkck}) = fθ(S,G, {c1, . . . , ck}).

Proof. Let gθ be our 3D encoder network, as described in eq. (3). Let V be the set of atoms
and {xv}v∈V , {rv}v∈V the atom features and their 3D coordinates, such that a conformer can be
described as the tuple c = ({xv}v∈V , {rv}v∈V ). We assume that gθ is invariant to any action T ∈ G,
therefore we have that, for any conformer c, gθ(Tc) = gθ(c) = h3D.

Let hθ be the downstream Transformer together with the readout layer, as described in eq. (4) -
(5). Since we add the same learnable modality encoding to each h3D

v,k, we also have that for any
permutation π ∈ Sym(K), we have

hθ({gθ(T1c1), . . . , gθ(Tkck)}) = hθ({gθ(c1), . . . , gθ(ck)})
= hθ({h3D

v,1, . . . ,h
3D
v,k}v∈V )

= hθ({h3D
v,π(1), . . . ,h

3D
v,π(k)}v∈V )

= ỹ,

therefore, if when we include the 2D graph G and the SMILES string S, we obtain
fθ(S,G, {T1c1, . . . , Tkck}) = fθ(S,G, {c1, . . . , ck}) = ŷ.

B Qualitative attention example

We present the attention scores for each head in a MOLMIX model trained on the Drugs-75k dataset,
using a randomly sampled molecule from the dataset for visualization. As shown in Figure 3, distinct
patterns emerge across the attention heads. While it remains challenging to assign a definitive
interpretation to each individual head, certain sparse or dense patterns are evident in each cross-
modality section. This suggests that the model is learning to extract meaningful and potentially useful
features from all modalities.

C Attention implementation details

We employ Flash Attention 2 [27] for the self-attention mechanism in our models. Flash Attention 2
is a hardware-optimized implementation that significantly reduces both memory usage and runtime
compared to the standard attention algorithm. It achieves these gains by leveraging GPU programming
techniques, such as kernel fusion and tiling. Additionally, we utilize the varlen implementation,
which prevents unnecessary memory and compute consumption on padding tokens.

Table 3 presents the memory savings achieved by using Flash Attention 2 during training.

Table 3: Comparison between fp32 standard attention and bf16 Flash Attention 2 memory usage
across different models and batch sizes.

Dataset Kraken

Batch Size 16 32 64

Standard Attention (SchNet) 67 GB OOM OOM
Standard Attention (GemNet) 80 GB OOM OOM
Flash Attention 2 (SchNet) 5.1 GB 11.6 GB 22.3 GB
Flash Attention 2 (GemNet) 22 GB 40 GB 73 GB
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Figure 3: Red lines mark the boundaries between modalities on the key axis (with keys for each token
represented by columns), while yellow lines mark the boundaries on the query axis (with queries
represented by rows). The modalities are ordered as 3D, SMILES, and 2D. The attention scores are
taken from the first layer of the model and clipped to the [−10, 10] range.
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