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Abstract

Cryogenic electron tomography (cryo-ET) is a technique to produce highly de-
tailed 3D images (called tomograms) of cellular environments. Cryo-ET is cur-
rently the only technique that can achieve near-atomic resolution of proteins and
cellular structures in their native environment. An essential step of cryo-ET anal-
ysis techniques targeted at protein structure determination is to find all instances
of the protein of interest in the tomograms, a task known as particle picking. Due
to the low signal-to-noise ratio, presence of artifacts and vast diversity in target
proteins, particle picking is a challenging 3D object detection problem. Existing
approaches for particle picking are either slow or are limited to picking a few par-
ticles of interest, which requires large annotated and difficult to obtain training
datasets. In this work, we propose ProPicker, a fast and universal particle picker
that can detect particles beyond those included in the training set and can process
tomograms within a few minutes. Our promptable design allows for selectively
detecting a specific protein in the volume based on an input prompt. Our exper-
iments demonstrate that ProPicker can achieve performance on par with state-of-
the-art universal pickers, while being up to an order of magnitude faster.

1 Introduction
Cryo-electron tomography (cryo-ET) has recently surged in popularity due to its unique capabili-
ties of imaging biological macromolecules in their native environments (Turk & Baumeister, 2020;
Hylton & Swulius, 2021). An ambitious goal of cryo-ET is to obtain an ’atlas’ of the cell with all
of its constituent macromolecules mapped in their native environment. This would revolutionize
our understanding of essential protein interactions and has the potential to provide breakthroughs in
modern medicine spanning cell biology to drug discovery (Bodakuntla et al., 2023). In this paper, we
focus on particle picking, an essential task in cryo-ET imaging and analysis, which entails finding
all instances of a particle of interest in 3D volumes, called tomograms, obtained with cryo-ET.

Particle picking is a challenging 3D object detection problem. Due to the fundamental limitations
of data acquisition in cryo-EM, tomograms have a very low signal-to-noise ratio and exhibit strong
artifacts. Moreover, depending on the goal of the cryo-ET study, practitioners need to analyze
substantial amounts of data. Tomograms are often large (200 × 1000 × 1000 voxels and up), and
cryo-ET datasets can consist of more than a hundred tomograms (Genthe et al., 2023; Zeng et al.,
2023). Finally, due to the significant diversity in protein types within the cell, there is a vast array
of unique object classes to be detected, many of which display only subtle differences, rendering
differentiation challenging. For instance, the human body alone is estimated to contain more than
20,000 unique proteins (Li & Buck, 2021). Given these challenges, a particle picking method should
be accurate, fast, and universal, i.e. should be able to pick any particle of interest. Existing methods
for particle picking are either slow or not universal, that is they are limited to picking a small, fixed
set of particles of interest.
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Figure 1: Overview of ProPicker: We extract a generalized representation of the particle to be
picked in the tomogram by a prompt encoder. Conditioned on the prompt features, we segment the
tomogram for the desired particle. Finally, we leverage the output segmentation map to find the
particle coordinates, either by clustering or template-based approaches.

In this paper, we propose ProPicker, a Promptable particle Picker that can rapidly detect any type of
protein selected by a versatile prompting mechanism (Figure 1). For fast particle picking, ProPicker
leverages an efficient 3D segmentation network to segment particles of interest in tomograms and
accurately locate their positions. To make ProPicker universal, we propose a novel promptable
segmentation architecture that uses a conditioning mechanism to control the type of particle to be
segmented by the network. The prompt provides a generalized representation of the particle one
wishes to pick and is not restricted to those encountered during training.

We demonstrate that ProPicker can accurately pick a wide array of unique proteins while simultane-
ously being significantly faster at single particle picking than the state-of-the-art (Section 4.1). We
also demonstrate that ProPicker can pick new particles that the model has not encountered during
training (Section 4.2. Experiments on two real-world tomograms indicate that ProPicker is able to
pick particles in a crowded cellular context and in diverse environments (Section 4.3). Finally, we
demonstrate that ProPicker can be fine-tuned with little data to improve picking performance on
challenging novel particles (Appendix E).

2 Background & Related Work
The most widely used method for particle picking is template matching (TM) (Bohm et al., 2000;
Cruz-León et al., 2024). TM methods pick particles by comparing a template of the particle to be
picked to a candidate sub-tomogram extracted via a 3D sliding window. This approach is universal,
as it can pick any particle as long as a template is available. However, TM is computationally
demanding, as the stride of the sliding window needs to be small for accurate picking. TM can take
up to hours per tomogram Genthe et al. (2023); Maurer et al. (2024).

Building upon classical template-based approaches, TomoTwin Rice et al. (2023) utilizes a learned
convolutional encoder to map both template and sub-tomogram into a structured latent space, where
similarity is evaluated. TomoTwin is state-of-the-art among universal particle pickers.

Particle pickers using deep-learning-based object detection often outperform TM in terms of perfor-
mance and picking speed (Gubins et al., 2020; Genthe et al., 2023). Many such pickers, including
our ProPicker method, use a convolutional network to segment particles of interest belonging to one
or more classes and produce candidate particle locations by clustering the predicted segmentation
masks (Moebel et al., 2021; De Teresa-Trueba et al., 2023; Liu et al., 2024). While deep-learning-
based object detection approaches for particle picking are typically significantly faster than TM-like
methods (Gubins et al., 2020), current variants are not universal, i.e., they can only pick a few fixed
particles of interest seen in the training set.

ProPicker belongs to the class of particle pickers that use deep learning-based object detection.
As such, ProPicker inherits the faster picking speed compared to template-based methods. What
distinguishes ProPicker from existing pickers using deep learning-based object detection, is that due
to its promptable design, ProPicker is universal, i.e., is not limited to a fixed set of particles. We
note that the method that is most closely related to ProPicker is TomoTwin, which is also universal,
but template-matching-like in nature.
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3 ProPicker: Promptable Segmentation for Particle Picking
ProPicker takes a tomogram x, and a prompt, i.e., a 3D voxel array p ∈ Rm×m×m representing
the particle of interest as input. The output is a set C containing predicted particle centers. In this
work, a prompt p is a small sub-tomogram, i.e., a part of a larger tomogram, of shape 37× 37× 37
containing one instance of the particle of interest. The prompt sub-tomogram is extracted from
one of the tomograms to which we wish to apply particle picking. ProPicker consists of a prompt
encoder and a segmentation model, which we detail in the following.

The prompt encoder. The prompt encoder εp : Rm×m×m → Rd extracts a salient feature vector
zp ∈ Rd that encodes information required for efficiently detecting the particle in tomograms. We
focus on prompts in voxel-space and use the TomoTwin encoder (Rice et al., 2023) as the prompt
encoder due to its robustness and good performance in template-based particle classification (see
Section 2). Its input is a sub-tomogram that includes the particle of interest, and it outputs a concise
(d = 32) representation zp of the particle that we use to condition the segmentation model.

The segmentation model. Given an input volume x ∈ Rn×n×n and prompt p, our promptable
segmentation model S : Rn×n×n × Rd → Rn×n×n can be conditioned on the input prompt that
steers the output map y ∈ {0, 1}n×n×n to the desired particle class, that is y = S(x; zp), where
zp = ε (p) . The model output y is the voxel-wise prediction of the model with respect to the
absence/presence of the particle described in the input prompt. We detail the architecture of the
conditional segmentation model and how we train it in Appendix A and Appendix B.

Picking particles with ProPicker. The first step is to manually extract a sub-tomogram that in-
cludes an instance of the particle of interest to be used as a prompt. Next, we embed the extracted
prompt and segment the tomogram using ProPicker. As tomograms are typically very large, we seg-
ment the volume using a strided 3D sliding window approach. Specifically, we slide a moderately
sized window across the tomogram to extract sub-tomograms, and segment each sub-tomogram
individually. We obtain a full-sized segmentation mask for the tomogram by combining the sub-
tomogram level masks, averaging overlapping regions. We propose two strategies to map the seg-
mentation output y to particle center coordinates C:

• Clustering-based picking (ProPicker-C): We detect clusters in the segmentation map by
finding connected components. The centroid of each cluster is a predicted particle center.
The precision of this approach can be improved by leveraging prior information about the
target particle size by excluding clusters that are too small or too large.

• TM-based picking (ProPicker-TM): We apply a TM-based picker to the input tomogram
over regions where our segmentation mask predicts the presence of a particle.

4 Experiments

Here, we show that ProPicker can pick particles based on a single prompt and with high speed.
We measure picking performance with F1 score, and report best-case performance with hyperpa-
rameters, e.g., particle-dependent thresholds on cluster sizes, optimized on test data for all methods
following common practice (Rice et al., 2023).

Code for training and picking with ProPicker is publicly available; see Appendix F for details.

4.1 Picking Speed

Both TomoTwin and ProPicker process the tomogram in a 3D sliding window fashion. Therefore,
inference time is cubically related to the window stride s. However, large strides (small overlap)
often result in low detection performance. Here, we explore this trade-off. To quantify speed, we
report the throughput in tomograms per hour on a single NVIDIA L40 GPU for picking a single
particle of interest in a tomogram of size 200× 512× 512.

As the speed at which a particle can be reliably picked depends on, e.g., the particle’s size (especially
for TM methods like TomoTwin), we measure the picking speed on a set of 10 tomograms which
contain instances of 100 unique particle classes in total. Both TomoTwin ProPicker and have seen
all of these particles during training, but within in different tomograms, i.e., in different contexts.
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Figure 2: Best-case F1 scores and speed for ProPicker-C, ProPicker-TM (with TomoTwin TM) and
TomoTwin for 100 unique particles seen during training. Vertical markers are medians, circles are
means.

z
y

x
y

Expert Annotations

z
y

x
y

ProPicker

x
z

x
z

Figure 3: Slices through a tomogram (TS 30) from EMPIAR 10988. For clarity, we denoise the
tomogram with Topaz (Bepler et al., 2020); the Topaz-denoised tomogram is not used for picking.

As can be seen in Figure 2, ProPicker-C with s = 32 can pick most particles as well as TomoTwin
for s = 4 (TomoTwin’s default s = 2 gives slightly better performance but is almost 8× slower),
while being more than 5× faster. Increasing ProPicker’s stride to s = 56 doubles the speed while
resulting in a moderate loss of performance. Note that TomoTwin cannot be significantly accelerated
by increasing the stride, as even s = 8 leads to a large drop in performance. ProPicker-TM with
TomoTwin as template matching yields better average performance than ProPicker-C. This comes
at the moderate cost of searching ProPicker’s segmentation mask with TomoTwin (with s = 4).

4.2 Generalization to Unseen Particles in Synthetic Tomograms

Next, we study ProPicker’s capability to generalize to unseen particles. We test the generalization
capability of ProPicker on the TomoTwin generalization tomogram simulated by Rice et al. (2023).
This tomogram contains instances of 8 structurally diverse particles that are not part of our training
set. As it has been generated with the same simulator as most of ProPicker’s and TomoTwin’s
training dataset, the tomogram is therefore well suited for studying the generalization of ProPicker
to unseen particles in an environment similar to that seen during training. Across the 8 particle
classes, ProPicker-C achieves a mean best-case F1 of 0.81 which is on par with TomoTwin’s mean
best-case F1 of 0.83. The detailed results can be found in Appendix C.

4.3 Generalization to Real-World Tomograms

As a first example, we consider a single tomogram from EMPIAR 10988, which shows ribosomes
within S. pombe cells (De Teresa-Trueba et al., 2023). Figure 3 shows ProPicker (s = 32) segmen-
tation masks without clustering or TM-based picking alongside expert annotations of the ribosomes
produced by De Teresa-Trueba et al. (2023). For a quantitive evaluation, we compute best-case
picking F1 scores with respect to the expert annotations. ProPicker-C achieves a best-case F1 score
of 0.35, TomoTwin (s = 4) achieves 0.60. We found that ProPicker-C performs better when we
slightly denoise the tomogram with a Gaussian filter with kernel standard deviation 0.5. On the
denoised tomogram, ProPicker-C achieves a best-case F1 score of 0.46.
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Figure 4: Slices through a tomogram from the DS-10440 dataset (Peck et al., 2024). Expert
annotations and ProPicker segmentation masks for apoferritin and cytosolic ribosomes are shown
in pink and ice-blue. The tomogram underlying the segmentation masks has been denoised by Peck
et al. (2024). We use the raw, un-denoised tomogram (not shown) as input for ProPicker.

Next, we consider a single tomogram from the DS-10440 dataset generated by Peck et al. (2024),
which is available through the Cryo ET Data Portal (Ermel et al., 2024). Among other particles (see
Appendix D), the dataset contains expert annotations for cytosolic ribosomes (4.3 megadalton) and
apoferritin (450 kilodalton). Our goal is to pick all instances of the ribosomes and the apoferritin
in the same tomogram. As can be seen in Figure 4, the segmentation model of ProPicker is able
to detect both the ribosomes (ice blue) and the apoferritin (pink) based on a single prompt each.
Using ProPicker-TM with TomoTwin as template matching, we obtained a best-case F1 picking
score of 0.69 for the ribosomes and 0.71 for the apoferritin. The cluster-based picking approach of
ProPicker-C gave a best-case F1 picking score of 0.5 and 0.53 respectively. The worse performance
of cluster-based picking is likely due to crowded parts (see, e.g. the zoomed-in region), where
several instances of the same particle appear close together, which makes clustering challenging
compared to peak-finding, which is used in TomoTwin-based picking. TomoTwin applied to the
entire tomogram achieves a best-case F1 score of 0.64 for both the ribosomes and the apoferritin.

5 Discussion & Conclusion

In this work, we propose ProPicker, a particle picking method for cryo-ET that leverages a novel
promptable segmentation model for rapid and accurate detection of proteins. The core of our frame-
work is an efficient segmentation model capable of selectively detecting particles in tomograms
based on an input prompt, a concise representation of the particle of interest. Through the use of a
3D segmentation U-Net, ProPicker greatly accelerates particle picking while matching state-of-the-
art performance on a wide range of particles. Our experiments show that ProPicker can generalize
to particles unseen during training and also to real-world tomograms, although ProPicker’s training
set consists exclusively of synthetic data (see Appendix B).

We also encountered real-world tomograms and particles for which ProPicker was unable to produce
good results (see Appendix D, Appendix E). Such issues related to generalization and robustness are
not exclusive to ProPicker (Bandyopadhyay et al., 2022), e.g., Huang et al. (2024) reported signif-
icant drops in performance when applying deep learning-based particle pickers, among them To-
moTwin, to tomograms whose characteristics are too different from the training data. One approach
to improve the performance of ProPicker in challenging scenarios is fine-tuning (see Appendix E).

It is widely accepted that training on larger and more diverse datasets improves the robustness of
deep learning models (Radford et al., 2021; Fang et al., 2022; Lin & Heckel, 2024). Therefore,
a promising direction for future work is to collect large datasets of tomograms with ground truth
particle annotations for a variety of particles. Large scale efforts to do so have already been initiated,
see for example the CryoET Data Portal (Ermel et al., 2024) and (Ishemgulova et al., 2023). Once
such datasets become available, incorporating them into the training sets of universal particle pickers
like TomoTwin and ProPicker is likely to increase their robustness and performance.
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Appendix

A Architectural Details

Here, we provide details on our concrete choice for the segmentation model, and how we condition
it on a prompt.

A.1 Segmentation Model Architecture

We use a well-established convolutional 3D U-Net (Ronneberger et al., 2015), which is an encoder-
decoder architecture (see Figure 1), as our segmentation model. The U-Net’s encoder consists of
5 spatial downsampling layers, and the corresponding decoder has 5 spatial upsampling layers. In
total, the U-Net has 124 million trainable parameters.

A.2 Prompt Conditioning Technique

We condition each of the decoder’s 5 spatial upsampling layers with FiLM (Perez et al., 2018), which
works as follows: Let C be the number of channels (features) of an intermediate 3D feature map
after upsampling. First, we multiply the encoded prompt zp ∈ R32 with two (learnable) matrices
A,B ∈ RC×32. Finally, we map each channel k ∈ {1, ..., C}, with an affine transformation with
slope (Azp)k ∈ R and intercept (Bzp)k ∈ R, which gives the conditioned feature map. We use
one separate pair of matrices (A,B) for each of the 5 upsampling layers.

B Training details

Training Dataset of ProPicker. We train ProPicker on realistically simulated tomograms from
Rice et al. (2023) and Gubins et al. (2020), which have also been used to train TomoTwin. Our train-
ing set contains the majority of TomoTwin’s training data, and consists of 78 tomograms containing
a total of 113 unique protein types, as well as gold fiducial markers, vesicles and filaments. Each
tomogram contains around 1500 protein instances, each belonging to a set of 10−13 unique protein
types. We train on sub-tomograms of size 64 × 64 × 64 extracted from all tomograms with a 3D
sliding window with stride 32.

Training ProPicker. To reduce computational cost, we keep the prompt encoder frozen during
training. We train the segmentation model with the Adam optimizer (Kingma & Ba, 2015) with fixed
learning rate 0.01. For each gradient step, we first randomly sample a batch of 8 sub-tomograms.
Each sub-tomogram can contain particles that belong to up to 13 unique classes (see above). Next,
we randomly sample 10 prompts. Each prompt corresponds to one particle class of which instances
may be contained in the sub-tomogram. We pass each sub-tomogram and its corresponding 10
prompts through the conditional segmentation model. This yields a total of 80 = 8 · 10 predicted
segmentation masks. Finally, we compute the average voxel-wise binary cross entropy between the
model outputs and the 80 single-class target masks as loss.

C Performance of TomoTwin and ProPicker-C on the TomoTwin
generalization Tomogram

Method / PDB 1avo 1e9r 1fpy 1fzg 1jz8 1oao 2df7 Mean Median
TomoTwin 0.71 0.80 0.70 0.90 0.85 0.86 0.99 0.83 0.85

ProPicker-C 0.79 0.79 0.56 0.94 0.87 0.71 1.00 0.81 0.79

Table 1: Best-case F1 picking scores for TomoTwin (s = 2) and ProPicker-C (s = 32) on the
TomoTwin generalization tomogram, which contains particles that were not seen during training.
We took TomoTwin’s results from the authors’ software demo (Rice et al., 2022).
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Figure 5: Best-case F1 scores of ProPicker-C and DeepFinder versus amount of fine-tuning data
for unseen particles.

D Limitations and Challenges

In the main paper, we demonstrated that ProPicker generalizes well to unseen particles and real-
world tomograms. However, certain tomograms and particle types posed challenges, highlighting
opportunities for further improvement.

For example, the tomogram by Peck et al. (2024) in which we picked ribosomes and apoferritin
(Section 4.3) also contains virus-like particles, beta amylase, beta galactosidase, and thyroglobulin.
In our hands, neither ProPicker nor TomoTwin were able to pick these particles based on a single
prompt. Beta Amylase, beta galactosidase, and thyroglobulin are very small, produce little contrast
and are, therefore, considered very hard to pick (Peck et al., 2024). The virus-like particles in
contrast are large and clearly visible even in the noisy tomograms. However, the training dataset
of ProPicker and TomoTwin contains only proteins and no virus-like particles (Rice et al., 2023),
which might explain the low performance.

In Appendix E, we show results on a synthetic tomogram where ProPicker achieves mixed picking
performance on 8 unique particle classes. We also show that it is possible to significantly improve
ProPicker’s performance through fine-tuning on a comparably small amount of data.

E Fine-Tuning ProPicker

In the main paper, we have shown that ProPicker is able to accurately pick particles both seen and
unseen during training based on a single prompt. However, we have also seen that, especially in the
real-world tomograms, there are some particles which neither ProPicker nor TomoTwin are able to
locate. Here, we show that ProPicker’s performance on unseen particles can be significantly, and
data-efficiently improved through fine-tuning. Note that fine-tuning ProPicker is different from the
setup of picking based on a single prompt we have considered so far in this work, but is analogous
to the approach of non-universal picking methods. Rather than trying to outperform such methods,
our aim is to show that fine-tuning ProPicker-C can perform on-par with them.

Fine-tuning strategy for ProPicker. We describe how to fine-tune ProPicker to pick a single
particle of interest. This requires (parts of) one or more tomograms with corresponding ground-
truth binary segmentation masks of the particle, as well as a manually extracted example of the
particle that serves as prompt. During fine-tuninig, we keep this prompt and the prompt encoder
fixed, and only fine-tune the segmentation model and the prompt conditioning mechanism.
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Dataset. We resort to a set of tomograms from TomoTwin’s training set each of which contains
instances of 8 unique particles. As TomoTwin’s training set was specifically desinged to contain
particles whose structures are all very different from one another (see (Rice et al., 2023) for details),
these 8 particles are hard, unseen examples for ProPicker. We have access to 8 tomograms, out of
which we use 7 for fine-tuning and one for testing. All tomograms contain around 150 instances
of each particle. For the experiment in this Section, we re-trained ProPicker and its TomoTwin
prompt-encoder, and excluded the 8 particles from the both training sets.

DeepFinder baseline. We choose DeepFinder (Moebel et al., 2021) as baseline from the class
of non-universal state-of-the-art deep learning-based particle pickers. DeepFinder is segmentation-
based and uses a 3D U-Net-like convolutional architecture, like many other such pickers, e.g, DeeP-
iCt (De Teresa-Trueba et al., 2023) or DeepETPicker (Liu et al., 2024).

We compare to two variants of DeepFinder. For the first variant, ”DeepFinder (1 Class)”, we train
one DeepFinder model for each particle separately. This is the same setup as when we fine-tune
ProPicker. For the second variant, ”DeepFinder (8 Classes)”, we train one DeepFinder model to
pick all 8 particles simultaneously. Moebel et al. (2021) observed that multi-class training can yield
substantial improvements in performance for hard-to-pick particles. Note that, in contrast to the
single class setup, the multi-class setup requires annotations for all 8 particles.

Results. Due to the particularly challenging data, we observe rather low picking F1 scores for
ProPicker-C on most particles when picking with a single prompt (left panel of Figure 5). Note
that the (re-trained) TomoTwin, too, struggles with picking, and achieves a mean F1 score similar
to ProPicker-C. As it is not straightforward how to fine-tune TomoTwin on individual particles, we
only report the performance of the re-trained TomoTwin for prompt-based picking.

Fine-tuning ProPicker-C significantly boosts picking performance for all particles. The performance
of the fine-tuned models saturates quickly as more data becomes available: Fine-tuning on a single
tomogram, which contains around 150 instances of each particle, yields significant improvements
for all particles, whereas going from 4 to 7 fine-tuning tomograms makes little to no difference.

If only a few tomograms or only annotations for the particle of interest are available, fine-
tuning ProPicker-C yields superior performance compared to both variants of DeepFinder.
When training/fine-tuning on a single tomogram, the fine-tuned ProPicker-C pickers outperform
DeepFinder with 1 class (center panel) and 8 classes (right panel). Even as more data becomes
available, ProPicker-C performs as well as or better than the single-class DeepFinder models, but
the performance gap is narrowing.

The benefit of ProPicker-C’s pre-training is not able to outweigh the advantages of multi-class par-
ticle picking if enough training data is available: DeepFinder trained on all 8 classes simutaneously
performs on par or better than the 8 fine-tuned ProPicker-C pickers when training/fine-tuning on 4 or
7 tomograms. We again emphasize that the price of the improved performance is having to annotate
all particles in the tomogram even if one is only interested in a single one.

Further reducing the data requirements for fine-tuning ProPicker by incorporating techniques for
data-efficient training (see (Huang et al., 2022)) is a promising direction for future work.

F Code Availability

Python scripts for training and picking with ProPicker can be downloaded here: https://drive.
google.com/file/d/1h6fJFlWZ0hfJfL33yd4Z4yBfM_VlfnKx/view?usp=sharing. Please
refer to the README file for details.

A pre-trained model is avaialble here: https://drive.google.com/file/d/1QQcpvFzgMZcWF_
Yuba8O3tJJ4pmpu6EB/view?usp=share_link.
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