
ProteinZen: combining latent and SE(3) flow matching
for all-atom protein generation

Alex J. Li
UC Berkeley - UCSF Joint Bioengineering PhD

alexjli@berkeley.edu

Tanja Kortemme
UCSF

tanjakortemme@gmail.com

Abstract

De novo protein design has been greatly accelerated by the advent of generative
models of protein structure. While more coarse-grain tasks such as backbone
generation are increasingly possible, existing models still struggle on problems
that require precise placements at the atomic scale, motivating the development
of all-atom generative models. However, all-atom generative modeling remains
challenging due to the complex interplay between discrete and continuous aspects
of protein structure. In this work we propose a framework to capture this interplay
by combining backbone generation methods using flow-matching on backbone
frames with flow-matching in learned latent spaces. We present a prototype of
our method ProteinZen that implements these ideas, and demonstrate promising
initial results on the all-atom generation task, with 46% of samples being sequence-
structure consistent at the atomic level while retaining competitive sample diversity
and novelty.

1 Introduction

The ability to design proteins de novo, or without relying on existing starting points in nature,
would open up possibilities to access functions unobserved in nature, as well as the ability to a
priori embed engineering qualities into designs such as tunability, controllability, and modularity
[1]. In recent years, generative modeling methods utilizing paradigms such as score-based diffusion
[2] and flow matching [3] have drastically expanded our capabilities to design proteins with new
structures de novo as well as functions such as protein-protein binders [4]. Despite these advances,
targeting functional design remains challenging. We posit this difficulty is in part due to the lack of
atomic-level reasoning in existing generative models. We know that atomic precision, both local and
extended, is necessary for many design targets such as de novo enzymes [5][6] and protein binders to
polar interfaces [7]. However, existing models such as RFDiffusion [8] and Chroma [9] only model
backbones, and extensions such as RFDiffusion-AA [10] and LigandMPNN [11] start to introduce
more atomic-awareness into models but still do not consider atomic structures in full detail. These
shortcomings motivate the transition towards all-atom generation, where all available atomic detail is
considered and refined during the generation process.

The difficulty of transitioning from backbone generation to all-atom protein structures lies in the
interdependencies between discrete and continuous aspects of protein structure: amino acid residues
take discrete identities with discrete atomic compositions, but their associated atomic placements exist
in continuous space. Hence, precise placements of atoms requires careful treatment of the interplay
between these quantities. Recent work has tackled this problem utilizing concepts of superposition,
such as Protpardelle [12] and Pallatom [13], which can be thought of as modeling the joint distribution
across all possible atomic configurations and collapsing it down to a single identity when necessary.

One downside of superposition-based methods is that they must keep track of many extra atoms per
residue as overhead. They also require defining how both sequence and possible atomic configurations

Machine Learning for Structural Biology Workshop, NeurIPS 2024.

evolve during the generation process as well as potential covariation within such a process. An
attractive alternate approach is to instead abstract fine-grain atomic details into latent representations
via autoencoders and, utilizing techniques similar to those of latent diffusion [14], generate these
latent quantities instead. This approach is appealing, in part, because it circumvents the complexities
of modeling entangled discrete and continuous quantities during the generative stages of the model,
relegating their determination to regression stages conditioned upon generated outputs. Futhermore,
because we do not explicitly define the available information in the latent representation, co-generation
of latent representations has the potential to improve generation quality by providing an avenue of
propagating higher-order information through sampling trajectories.

In this work we explore this idea via preliminary work on ProteinZen, our model for all-atom
generation utilizing a multi-modal flow-matching process over backbone frames as well as learned
per-residue latent representations. We demonstrate promising prototype performance on the all-atom
generation task and suggest future directions for this work.

2 Methods

2.1 Setup

In the following sections we largely focus on a single residue T (i) at position i, with a protein being
an ordered sequence of such residues. We consider two representations for residue T (i). The first
is a frames-based representation (F (i), s(i), {χ(i,k)}) composed of the residue backbone frame as
defined in AlphaFold2 [15], sequence identity, and associated sidechain rotamer angles, respectively.
The second is a purely atomistic representation ({a(i,j)}, {h(i,j)}) consisting of the coordinates
and associated elements, respectively, of the all-atom representation of the residue. Note that both
representations fully specify a residue in atomic detail and we can freely interconvert between the
two forms. We also define z(i) as latent features associated with T (i) and m(i) as the residue’s mask
state. See Appendix A for formal definitions. When clear we drop the superscript for simplicity, in
which case it is implied that we are looking at a single residue position i.

We treat the generation process in two stages: (1) the co-generation of protein backbone and per-
residue latent features, and (2) the decoding of the latent features into atomic structures conditioned
upon the backbones generated.

2.2 Protein generation as joint flow-matching over SE(3) and latent space

In the first stage, we seek to generate a backbone frame F = (r, x) ∈ SE(3) and associated latent
representation z ∈ Rc for each residue. For the backbone frames, we follow FrameFlow [16] and
FoldFlow [17] in flow-matching over SE(3) by training flows on SO(3) and R3. We further treat the
latent features by applying Euclidean flow-matching procedures [3]. More concretely, we construct
the following interpolants indexed by t ∈ [0, 1] from source distribution T0 = (r0, x0, z0) ∼ ρ0 (our
noise distribution) to target distribution T1 = (r1, x1, z1) ∼ ρ1 (the distribution of all-atom protein
structures):

rt = expr0(t logr0(r1)) xt = tx0 + (1− t)x1 zt = tz0 + (1− t)z1

Tt = (rt, xt, zt) rt ∈ SO(3), xt ∈ R3, zt ∈ Rc

See Appendix B for details on the noise distribution. We formulate our flow-matching losses as
denoising objectives and train a denoiser r̂1, x̂1, ẑ1 = fθ(Tt, t) to minimize the following losses:

Lrot =
1

(1− t)2
∥logrt(r̂1(Tt, t))− logrt r1∥

2 Ltrans =
1

(1− t)2
∥x̂1(Tt, t)− x1∥2

Llatent =
1

(1− t)2
∥ẑ1(Tt, t)− z1∥2

In total, the flow-matching loss becomes

Lfm = Lrot + Ltrans + Llatent + 0.25Lbb fine-grainI[t > 0.25]

where Lbb fine-grain is a loss on fine-grain backbone structure specified in FrameDiff (see Appendix C
for details) and I is the indicator function.

2

2.3 Atomic structure autoencoder: a hybrid VAE/MLM

In order to train our denoiser, we need a way of learning the latent target z1. Inspired by latent diffusion
[14], we utilize an autoencoder to encode atomic-resolution residues into a latent representation z1
and decode the sequence identity and associated atomic coordinates from this latent. However, in
this context a vanilla VAE [18] is prone to sequence leakage: the atomic properties of the residue
specify its sequence identity, and because the amino acid alphabet is relatively low-dimensional in the
context of deep learning, small latents and heavy regularization are necessary to prevent autoencoder
collapse when recovering the residue identity (empirically we have observed collapse on latents as
small as hidden dimension 8). Furthermore, we find that reconstruction is poor with such latents.

We mitigate this problem borrowing concepts from masked language modeling [19]. Define the
autoencoder process with encoder Eθ and decoder Dθ as

µz, σz = Eθ({a(i,j)}, {h(i,j)},m(i)) z1 ∼ N (µz, σ
2
z) p̂(.), X̂ (.) = Dθ(F, z1, t = 1)

where p̂ describes a categorical probability distribution over the amino acid alphabet A, and X̂
describes the sidechain torsion angles for each possible sequence identity in A. We then read out the
predicted residue identity and torsion angles as ŝ = argmaxsp̂(s) and χ̂ = X̂ (ŝ), respectively.

During training, we mask some proportion of residues, which involves removing all associated
atomic information about the residue sidechain as well as specifying whether or not the residue is
masked. On masked residues, we evaluate reconstruction losses for both the sequence and the atomic
positionings, while on unmasked residues we evaluate only the atomic reconstruction loss given the
ground truth residue identity. Our final autoencoder loss is

Lae = Latomic + Ltorsion + Lsmooth lddt + Lmasked cce + 0.001LKL

Definitions for each component loss term can be found in Appendix C.

2.4 Grounding the denoiser using “passthrough losses”

We find it beneficial to ensure the model is well calibrated in both latent and physical space, so
during training we also pass the outputs of the denoiser directly into the latent decoder and minimize
the reconstruction losses of the outputted structure against the ground truth structure. We call
these “passthrough losses”, which are largely the same as the reconstruction losses applied above but
evaluated on decoder outputs when fed denoiser outputs rather than encoder outputs. More concretely,

p̂t(.), X̂t(.) = Dθ(F̂ , ẑ1, t) ŝt = argmaxsp̂t(s) χ̂t = X̂t(ŝt)

We then evaluate the autoencoder loss components on these passthrough outputs with some minor
changes as listed below (further details can be found in Appendix C).

Lpt =

(
1

(1− t)2
Lpt
atomic + Lpt

smooth lddt

)
I[t > 0.25] + Lpt

cce + Lpt
torsion

2.5 ProteinZen architecture

ProteinZen is a two-stage network which implements the above paradigm (Figure 1). We build the
encoder using Tensor-Field Networks [20], the decoder out of modified IPMP layers [21], and the
denoiser out of graph variants of IPA [15] in a method inspired by IPA Transformers [22]. Notably,
ProteinZen is SE(3) equivariant and heavily utilizes spatial locality to both sparsify computation and
impart physics-inspired implicit biases. Due to this sparsity, the memory complexity of ProteinZen is
roughly linear in the number of residues. For more architecture details, see Appendix D.

2.6 Training

The full loss we optimize for is

L = Et∼U(0,1),T0∼ρ0,T1∼ρ1

[
1

N

N∑
i=1

L(i)
fm + L(i)

ae + L(i)
pt

]
We train ProteinZen on AFDB512, a dataset we constructed from clustered PDB [23] monomers and
high-confidence AlphaFold Database (AFDB) [24] Foldseek cluster representatives [25] for single
chains of at most 512 residues. For dataset details and construction, see Appendix E.

3

Figure 1: ProteinZen architecture, highlighting the joint frame/latent generation scheme and how
all-atom structure is decoded.

Method All-atom PMPNN 8
SSC (↑) DIV-str/DIV-seq (↑) NOV-str (↓) DES (↑) DIV-str (↑) NOV-str (↓)

ProteinGenerator [26] 0.11 0.39 / 0.76 0.85 0.81 0.27 0.81
Protpardelle [12] 0.17 0.27 / 0.97 0.82 0.88 0.14 0.79
Pallatom* [13] 0.68 0.61 / 0.92 0.75 0.88 0.67 0.73

ProteinZen 0.46 0.50 / 0.96 0.81 0.88 0.40 0.79

Table 1: Sample quality metrics for ProteinZen and relevant comparison models. *Pallatom was
trained on proteins of length at most 128, so the reported performance is partially out-of-distribution.

3 Results

3.1 Metrics

We evaluate generation quality on three main criteria. The first is sequence-structure consistency
(SSC), which we evaluate by predicting the structure of the generated sequence using ESMFold [27]
and computing the all-atom RMSD (aaRMSD) against the generated structure. We use a threshold of
aaRMSD < 2Å for a sample to be SSC. The second is diversity along both structure (DIV-str) and
sequence (DIV-seq) axes, measured as the number of clusters formed when clustering SSC samples
with Foldseek [28] or MMSeqs2 [29] for structure and sequence, respectively, normalized by the
total number of SSC samples. The third is structural novelty (NOV-str), where we query the PDB for
the most structurally-similar hits using Foldseek and average the TM-scores (a metric for structural
similarity, with TM > 0.5 indicative of two samples having the same fold [30]) of the maxTM hit per
structure.

We also evaluate similar metrics for the backbone structures themselves to evaluate sequence-structure
backbone consistency (see Appendix G) and designability of the backbone structures in general.
In the designability case, we swap the SSC metric for a designability metric (DES), where we
use ProteinMPNN [31] to sample 8 sequences per backbone and predict structures for each using
ESMFold. We define the minimum Cα RMSD between any of the predicted structures and the design
structure as the self-consistent RMSD (scRMSD) and use a threshold of scRMSD < 2Å for a structure
to be designable. The other two metrics DIV-str and NOV-str are evaluated on designable structures
using the lowest scRMSD ESMFold prediction.

Following MultiFlow [32], we benchmark ProteinZen and relevant comparison models on 100
samples for each length 70, 100, 200, and 300 residues (Table 1). Excluding concurrent work

4

Figure 2: Various methods of evaluating ProteinZen sample characteristics. (A) Sequence-structure
consistency of all-atom structures over length. (B) Secondary structure content of sequence-structure
consistent samples. (C) maxTM scores of SSC samples against PDB. (D) Examples of sequence-
structure consistent samples. Purple is the generated structure and blue is the ESMFold prediction
colored by pLDDT.

Pallatom, ProteinZen outperforms previous models in all-atom generation, having a respectable 46%
of samples being sequence-structure consistent. We also improve upon sample diversity and novelty,
although Pallatom also has better performance on these metrics. We note that the models considered
generally have much lower SSC than DES, signalling a disconnect between generated backbones
and their associated sequence and atomic detail. Future work will investigate how to better integrate
structure and sequence generation to mitigate this problem in ProteinZen.

3.2 Sample characteristics

We evaluate other characteristics of ProteinZen samples in Figure 2. Figure 2A shows SSC as a
function of sequence length. We note that ProteinZen has much better performance on shorter length
proteins, which could potentially be due to its architecture limiting long-range modeling capacities.

Figure 2B shows the secondary structure distribution of SSC samples, depicting that overall the model
is capable of generating structures with diverse secondary structures composition. When compared to
the data distribution (Appendix E), we observe that samples are biased towards α-helices in content, a
property observed in many existing generative models [8][9]. We note that β-sheets have much higher
contact order (involve contacts which are local in space but distal in sequence) than α-helices, so
ProteinZen’s bias could also point towards investigating ProteinZen’s long-range modeling capacities.

Figure 2C depicts the maxTM distribution across SSC samples. All samples have maxTM > 0.5,
signalling that ProteinZen has learned and largely recapitulates the known fold space of the PDB.
There may be hints of generalization to novel fold space given that some samples approach the
maxTM = 0.5 threshold, and improving this generalization is an avenue of future work.

Finally, Figure 2D shows examples of sequence-structure consistent samples. We generally get
good agreement between the generated structure and the predicted model, with the core more well
constrained than the surface as expected. We note that we occasionally observe clashes, which could
potentially be mitigated with the implementation of a clash loss on decoder outputs.

4 Conclusions

We present preliminary work on our prototype of ProteinZen, a method which utilizes multi-modal
flow-matching over backbone frames and latent representations to generate all-atom protein structures.
It exhibits promising performance on the all-atom generation task, where 46% of samples are

5

sequence-structure consistent with atomic accuracy. Future work will look into improving the
long-range modeling properties of ProteinZen, exploring the interplay between the autoencoder and
denoiser modules, and extending the model to conditional generation tasks.

Acknowledgments and Disclosure of Funding

We would like to thank Deniz Akpinaroglu and Jason Yim for helpful discussions. A.J.L. is in part
supported by a National Science Foundation Graduate Research Fellowship (NSF GRFP) and a UCSF
Discovery Fellows Fellowship. T.K. is a Chan Zuckerberg Investigator.

References
[1] Tanja Kortemme. De novo protein design—from new structures to programmable functions. Cell,

187(3):526–544, February 2024.

[2] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2021.

[3] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching
for generative modeling. In The Eleventh International Conference on Learning Representations, 2023.

[4] Matthias Gloegl, Aditya Krishnakumar, Robert Ragotte, Inna Goreshnik, Brian Coventry, Asim K Bera,
Alex Kang, Emily Joyce, Green Ahn, Buwei Huang, Wei Yang, Wei Chen, Mariana Garcia Sanchez, Brian
Koepnick, and David Baker. Target-conditioned diffusion generates potent tnfr superfamily antagonists
and agonists. bioRxiv, 2024.

[5] Anna Lauko, Samuel J. Pellock, Ivan Anischanka, Kiera H. Sumida, David Juergens, Woody Ahern, Alex
Shida, Andrew Hunt, Indrek Kalvet, Christoffer Norn, Ian R. Humphreys, Cooper Jamieson, Alex Kang,
Evans Brackenbrough, Asim K. Bera, Banumathi Sankaran, K. N. Houk, and David Baker. Computational
design of serine hydrolases. bioRxiv, 2024.

[6] C. J. Markin, D. A. Mokhtari, F. Sunden, M. J. Appel, E. Akiva, S. A. Longwell, C. Sabatti, D. Herschlag,
and P. M. Fordyce. Revealing enzyme functional architecture via high-throughput microfluidic enzyme
kinetics. Science, 373(6553):eabf8761, 2021.

[7] Scott E. Boyken, Zibo Chen, Benjamin Groves, Robert A. Langan, Gustav Oberdorfer, Alex Ford, Jason M.
Gilmore, Chunfu Xu, Frank DiMaio, Jose Henrique Pereira, Banumathi Sankaran, Georg Seelig, Peter H.
Zwart, and David Baker. De novo design of protein homo-oligomers with modular hydrogen-bond
network–mediated specificity. Science, 352(6286):680–687, 2016.

[8] Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E. Eisenach,
Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M. Wicky, Nikita Hanikel,
Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham Venkatesh, Isaac Sappington,
Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile Mathieu, Sergey Ovchinnikov, Regina
Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung Baek, and David Baker. De novo design of protein
structure and function with rfdiffusion. Nature, 620(7976):1089–1100, July 2023.

[9] John B. Ingraham, Max Baranov, Zak Costello, Karl W. Barber, Wujie Wang, Ahmed Ismail, Vincent
Frappier, Dana M. Lord, Christopher Ng-Thow-Hing, Erik R. Van Vlack, Shan Tie, Vincent Xue, Sarah C.
Cowles, Alan Leung, João V. Rodrigues, Claudio L. Morales-Perez, Alex M. Ayoub, Robin Green,
Katherine Puentes, Frank Oplinger, Nishant V. Panwar, Fritz Obermeyer, Adam R. Root, Andrew L. Beam,
Frank J. Poelwijk, and Gevorg Grigoryan. Illuminating protein space with a programmable generative
model. Nature, 623(7989):1070–1078, November 2023.

[10] Rohith Krishna, Jue Wang, Woody Ahern, Pascal Sturmfels, Preetham Venkatesh, Indrek Kalvet, Gyu Rie
Lee, Felix S. Morey-Burrows, Ivan Anishchenko, Ian R. Humphreys, Ryan McHugh, Dionne Vafeados,
Xinting Li, George A. Sutherland, Andrew Hitchcock, C. Neil Hunter, Alex Kang, Evans Brackenbrough,
Asim K. Bera, Minkyung Baek, Frank DiMaio, and David Baker. Generalized biomolecular modeling and
design with rosettafold all-atom. Science, 384(6693):eadl2528, 2024.

[11] Justas Dauparas, Gyu Rie Lee, Robert Pecoraro, Linna An, Ivan Anishchenko, Cameron Glasscock, and
D. Baker. Atomic context-conditioned protein sequence design using ligandmpnn. bioRxiv, 2023.

6

[12] Alexander E. Chu, Jinho Kim, Lucy Cheng, Gina El Nesr, Minkai Xu, Richard W. Shuai, and Po-Ssu
Huang. An all-atom protein generative model. Proceedings of the National Academy of Sciences,
121(27):e2311500121, 2024.

[13] Wei Qu, Jiawei Guan, Rui Ma, Ke Zhai, Weikun Wu, and Haobo Wang. P(all-atom) is unlocking new path
for protein design. bioRxiv, 2024.

[14] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 10684–10695, June 2022.

[15] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon
A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub
Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin
Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals,
Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein
structure prediction with alphafold. Nature, 596(7873):583–589, July 2021.

[16] Jason Yim, Andrew Campbell, Andrew Y. K. Foong, Michael Gastegger, José Jiménez-Luna, Sarah Lewis,
Victor Garcia Satorras, Bastiaan S. Veeling, Regina Barzilay, Tommi Jaakkola, and Frank Noé. Fast protein
backbone generation with se(3) flow matching, 2023.

[17] Joey Bose, Tara Akhound-Sadegh, Guillaume Huguet, Kilian FATRAS, Jarrid Rector-Brooks, Cheng-Hao
Liu, Andrei Cristian Nica, Maksym Korablyov, Michael M. Bronstein, and Alexander Tong. SE(3)-
stochastic flow matching for protein backbone generation. In The Twelfth International Conference on
Learning Representations, 2024.

[18] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and Yann
LeCun, editors, 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings, 2014.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and Thamar
Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186. Association for Computational
Linguistics, 2019.

[20] Nathaniel Thomas, Tess E. Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
Tensor field networks: Rotation- and translation-equivariant neural networks for 3d point clouds. CoRR,
abs/1802.08219, 2018.

[21] Nicholas Z. Randolph and Brian Kuhlman. Invariant point message passing for protein side chain packing.
bioRxiv, 2023.

[22] Jason Yim, Brian L. Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay, and
Tommi Jaakkola. SE(3) diffusion model with application to protein backbone generation. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett,
editors, Proceedings of the 40th International Conference on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pages 40001–40039. PMLR, 23–29 Jul 2023.

[23] H. M. Berman. The protein data bank. Nucleic Acids Research, 28(1):235–242, January 2000.

[24] Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina Yordanova,
David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, Augustin Žídek, Tim Green, Kathryn Tunyasu-
vunakool, Stig Petersen, John Jumper, Ellen Clancy, Richard Green, Ankur Vora, Mira Lutfi, Michael
Figurnov, Andrew Cowie, Nicole Hobbs, Pushmeet Kohli, Gerard Kleywegt, Ewan Birney, Demis Hassabis,
and Sameer Velankar. AlphaFold Protein Structure Database: massively expanding the structural coverage
of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1):D439–D444, 11
2021.

[25] Inigo Barrio-Hernandez, Jingi Yeo, Jürgen Jänes, Milot Mirdita, Cameron L. M. Gilchrist, Tanita Wein,
Mihaly Varadi, Sameer Velankar, Pedro Beltrao, and Martin Steinegger. Clustering predicted structures at
the scale of the known protein universe. Nature, 622(7983):637–645, September 2023.

7

[26] Sidney Lyayuga Lisanza, Jake Merle Gershon, Sam Tipps, Lucas Arnoldt, Samuel Hendel, Jeremiah Nelson
Sims, Xinting Li, and David Baker. Joint generation of protein sequence and structure with rosettafold
sequence space diffusion. bioRxiv, 2023.

[27] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Robert
Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Salvatore
Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level protein structure with a
language model. Science, 379(6637):1123–1130, 2023.

[28] Michel van Kempen, Stephanie S. Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee, Cameron
L. M. Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein structure search with
foldseek. Nature Biotechnology, 42(2):243–246, May 2023.

[29] Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein sequence searching for the
analysis of massive data sets. Nature Biotechnology, 35(11):1026–1028, October 2017.

[30] Yang Zhang and Jeffrey Skolnick. Scoring function for automated assessment of protein structure template
quality. Proteins: Structure, Function, and Bioinformatics, 57(4):702–710, October 2004.

[31] J. Dauparas, I. Anishchenko, N. Bennett, H. Bai, R. J. Ragotte, L. F. Milles, B. I. M. Wicky, A. Courbet,
R. J. de Haas, N. Bethel, P. J. Y. Leung, T. F. Huddy, S. Pellock, D. Tischer, F. Chan, B. Koepnick,
H. Nguyen, A. Kang, B. Sankaran, A. K. Bera, N. P. King, and D. Baker. Robust deep learning–based
protein sequence design using proteinmpnn. Science, 378(6615):49–56, 2022.

[32] Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative flows on
discrete state-spaces: Enabling multimodal flows with applications to protein co-design, 2024.

[33] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger,
Lindsay Willmore, Andrew J. Ballard, Joshua Bambrick, Sebastian W. Bodenstein, David A. Evans, Chia-
Chun Hung, Michael O’Neill, David Reiman, Kathryn Tunyasuvunakool, Zachary Wu, Akvilė Žemgulytė,
Eirini Arvaniti, Charles Beattie, Ottavia Bertolli, Alex Bridgland, Alexey Cherepanov, Miles Congreve,
Alexander I. Cowen-Rivers, Andrew Cowie, Michael Figurnov, Fabian B. Fuchs, Hannah Gladman, Rishub
Jain, Yousuf A. Khan, Caroline M. R. Low, Kuba Perlin, Anna Potapenko, Pascal Savy, Sukhdeep Singh,
Adrian Stecula, Ashok Thillaisundaram, Catherine Tong, Sergei Yakneen, Ellen D. Zhong, Michal Zielinski,
Augustin Žídek, Victor Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, and John M. Jumper.
Accurate structure prediction of biomolecular interactions with alphafold 3. Nature, 630(8016):493–500,
May 2024.

[34] Greg Landrum, Paolo Tosco, Brian Kelley, Ric, David Cosgrove, sriniker, Riccardo Vianello, gedeck,
NadineSchneider, Gareth Jones, Eisuke Kawashima, Dan Nealschneider, Andrew Dalke, Brian Cole,
Matt Swain, Samo Turk, Aleksandr Savelev, Alain Vaucher, Maciej Wójcikowski, Ichiru Take, Vincent F.
Scalfani, Daniel Probst, Kazuya Ujihara, Rachel Walker, guillaume godin, Axel Pahl, Juuso Lehtivarjo,
Francois Berenger, strets123, and jasondbiggs. rdkit/rdkit: 2023_09_6 (q3 2023) release, 2024.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

[36] Ting Chen, Ruixiang ZHANG, and Geoffrey Hinton. Analog bits: Generating discrete data using diffusion
models with self-conditioning. In The Eleventh International Conference on Learning Representations,
2023.

[37] Wolfgang Kabsch and Christian Sander. Dictionary of protein secondary structure: Pattern recognition of
hydrogen-bonded and geometrical features. Biopolymers, 22(12):2577–2637, December 1983.

8

Appendix

A Setup

In this work we largely consider quantities in the context of a single residue T (i) at position i, with a
protein of N residues being an ordered sequence (T (1), ..., T (N)). We formally define the quantities
associated with residue T (i) as follows:

• s(i) ∈ A is the identity of the residue i within amino acid alphabet A.

• a(i,j) ∈ R3 is the coordinate of the jth atom in residue i in units of nm.

• h(i,j) is the element of the jth atom in residue i.

• F (i) = (r(i), x(i)) ∈ SO(3)×R3 is the backbone frame of residue i as define in AlphaFold2
[15]. x is in units of nm.

• {χ(i,k)|χ(i,k) ∈ [0, 2π)} is the set of sidechain torsions of the residue i.

• z(i) ∈ Rc is the latent representation associated with residue i (in this work we use c = 32).

• m(i) ∈ {0, 1} specifies whether residue i is masked (1) or not (0).

B Noise distribution

Following FrameFlow [16], during training we use data-dependent coupling to sample from our
noise distribution. For the rotation noise, we sample from the IgSO3 distribution centered around the
ground truth data and with σ = 1.5, which helps push noise samples away from areas where we get
degenerate solutions for the geodesic. For the translation noise, we sample from a standard Gaussian
with σ = 1nm and align this noise to the ground truth data using the Kabsch algorithm. For the latent
noise we sample from a standard Gaussian with no data-dependent coupling.

During sampling we sample from the uniform distribution of SO(3) for rotations with the same priors
as training for the translation and latent components.

C Loss term additional details

C.1 Flow-matching terms

Following FrameDiff [22] and FoldFlow [17], we find that a separable variant of Lrot leads to most
stable training. This separable loss evaluates an MSE loss on the angle and axis components of the
predicted rotation vector field separately, with the angle term scaled by 0.5.

We additionally include an auxiliary loss on fine-grain backbone atomic detail reported in FrameDiff
[22]:

Lbb fine-grain =
1

|B|
∑

b(i,j)∈B

∥b̂(i,j) − b(i,j)∥2

+
1

Zbb

∑
b(i1,j1),b(i2,j2)∈B

I[d(i1,j1,i2,j2) < 6]∥d̂(i1,j1,i2,j2) − d(i1,j1,i2,j2)∥2

where B is the set of all backbone atoms, N is the number of residues, and

Zbb =

 ∑
b(i1,j1),b(i2,j2)∈B

I[d(i1,j1,i2,j2) < 6]

−N

d(i1,j1,i2,j2) = 10∥a(i1,j1) − a(i2,j2)∥
d̂(i1,j1,i2,j2) = 10∥â(i1,j1) − â(i2,j2)∥

9

C.2 Sidechain reconstruction terms

For sidechain recovery, we evaluate the following losses when teacher-forcing with the ground-truth
sequence (e.g. χ̂ = X̂ (s)):

Latomic = 10
∑
(i,j)

∥â(i,j) − a(i,j)∥2 Ltorsion =
∑
(i,k)

(
2− 2 cos

(
χ̂(i,k) − χ(i,k)

))

In words, this corresponds to the MSE loss on atomic coordinates (units of Å) and MSE loss on
sidechain rotamer angles when represented as unit vectors, respectively. We also utilize the smooth
LDDT loss Lsmooth lddt introduced in AlphaFold3 [33].

Lsmooth lddt = 1− 1

Zaa

∑
a(i1,j1),a(i2,j2)

1

4
I[d(i1,j1,i2,j2) < 15](σ(0.5− d(i1,j1,i2,j2)) + σ(1− d(i1,j1,i2,j2))

+ σ(2− d(i1,j1,i2,j2)) + σ(4− d(i1,j1,i2,j2)))

where σ(x) is the standard logistic function and

Zaa =
∑

a(i1,j1),a(i2,j2)

I[d(i1,j1,i2,j2) < 15]

For sequence recovery we use

Lcce = −I[m = 1]
∑
α∈A

p̂(α) ln(p̂(α))

which is the cross-entropy loss applied to masked residues only. Finally, we also apply a KL-
divergence loss term on the latent space

LKL = DKL(N (µz, σ
2
z)||N (0, I))

C.3 Passthrough reconstruction terms

We compute passthrough losses by evaluating the autoencoder loss components on passthrough
outputs with a few modifications:

• We scale Lpt
atomic by 1/(1− t)2, which upweights the atomic-scale loss at times closer to

t = 1.

• We evaluate the cross entropy loss Lpt
cce at all positions regardless of whether the ground

truth latent was derived from a masked residue or not.

• We only apply Lpt
atomic and Lpt

smooth lddt at times t > 0.25.

10

D ProteinZen architecture details

D.1 Encoder architecture

Figure 3: ProteinZen encoder architecture

ProteinZen’s encoder is a two-track GNN which operates at both atomic- and residue-level resolutions
(Figure 3). Inspired by Tensor Field Networks (TFN) [20], we encode atomic and residue features in
the basis of the irreducible representations of SO(3), utilizing features of at most order l = 1 and of
both even and odd parity.

Per-atom we generate initial features from the following set of atomic properties:

• Element represented as a one-hot vector of the element’s row and column in the periodic
table.

• Chirality as defined by RDKit [34].
• Atom hybridization.
• Number of bonds to heavy-atoms.
• Number of implicit hydrogens.
• Formal charge.
• Whether the atom is in an aromatic environment.
• Whether the atom is in a ring of size [3,4,5,6,8].
• How many rings the atom is in.

Per-residue we initialize the residue features as

• The sinusoidal embedding of the residue index as used in the original Transformer [35].
• A one-hot encoding of the sequence identity.

The masking process involves replacing the masked residue with an idealized alanine. For each atom
we specify whether or not it’s parent residue is masked, and we also add a similar masking feature to
the residue itself.

At the atom level we construct two sets of graphs: a radius-based graph which connects an atom to all
other atoms within 5Å, and a bond-based graph which represents the bond connectivity of all atoms.
The radius graph edges are initialized to interatomic distances encoded using a Gaussian radial basis.
The bond graph edges are generated with the following set of additional bond properties:

• The bond order, both as a one-hot vector and as a float.
• Whether the bond is part of an aromatic environment.

11

• Whether the bond is part of a conjugated system.

At the residue level we construct a k-nearest neighbors graph with k = 30, with the edge features
initialized to

• The signed sequence distance encoded via a sinusoidal embedding.

• The physical distance encoded using a Gaussian radial basis.

• The residue-level features of both participant residues.

At the atomic level and per encoder layer, TFN convolutions are done separately across the bond and
radius graphs and additively combined with the input embeddings via a residual connection. Atomic
features are then aggregated into residue-level embeddings to update the residue-level graph. Another
TFN convolution is performed at the residue level as well.

After all layers of the encoder, we have to convert the residue-level features from an SE(3)-equivariant
basis to an invariant basis, as the rest of ProteinZen uses backbone frames which hold SE(3)-invariant
features. To do this, we use a final adapter layer which facilitates the conversion. This is done
by compute the Wigner-D matrix which rotates the residue features into the frame of the residue’s
backbone frame, then feeds all the rotated features into a fully-connected network. We then use a
final linear layer to produce both µz and σz .

D.2 Decoder architecture

Figure 4: ProteinZen decoder architecture

ProteinZen’s decoder network is composed of IPMP layers [21], which uses the inputted latent
embedding and timestep t (which is set to 1 when running on encoder inputs) as residue-level features
and, when combined with input backbone frames, predicts per-residue sequence logits and sidechain
torsion angles per possible sequence identity. Initial edge features are derived from backbone atom-
backbone atom (including virtual Cβ) pairwise distances between two residues lifted to a Gaussian
radial basis using a small MLP. We largely use the IPMP algorithm as described in PIPPack [21],
but change the message-passing inputs use all-by-all pairwise invariant point distances rather than
per-channel pairwise invariant point distances.

12

D.3 Denoiser architecture

Figure 5: ProteinZen denoiser

ProteinZen’s denoiser network is largely inspired by IPA Transformers [22], but on a spatially-
sparcified dynamic graph in a method inspired by Chroma [9]. In brief, the network retains a fixed
sequence-local graph which connects each residue to each of the 5 residues upstream and downstream
of it in sequence. At each layer, we also sample a graph based on the current denoising state of
the frames, which connects the 30 k-nearest neighbors in space as well as 60 additional long-range
connections sampled without replacement with probability proportional to inverse cubic distance.
Following Chroma, we use the Gumbel-Top k trick to compute these long-range connections. On
each graph we run a graph-variant of IPA [15] to update the residue embeddings, and these updates
are then propagated to both the latent and the frame via their respective update functions. We also
utilize self-conditioning [36], which is implemented by featurizing both the sequence-local and
spatially-sampled graphs on both the current denoising state as well as the self-conditioning input.
When no self-conditioning input is provided, we zero out these inputs.

E Dataset construction

We construct AFDB512 using two different data sources: the PDB [23] and the AlphaFold predicted
structures database [24]. For PDB structures, we adapt the strategy from FrameDiff [22] and select
structures which meet the following criteria:

• X-ray structure or EM structure with resolution < 5.0 Å.
• Oligomeric state is specified as “monomer” in the mmCIF header.
• Length is between 31 and 512 residues.
• Greater than 50% of residues are in defined secondary structure elements as defined by

DSSP [37]

We cluster these structures based on the 95% sequence identity cluster assignments specified by the
PDB. This results in 23154 structures total, with 7793 structure clusters.

For AFDB structures, we adapt strategies from Protpardelle [12] and Pallatom [13] and select
structures which meet the following criteria:

• pLDDT > 80.
• Length is between 31 and 512 residues.
• Greater than 50% of residues are in defined secondary structure elements as defined by

DSSP [37].
• Longest loop < 15 residues.

13

• More than 2 secondary structure elements as defined by DSSP.
• Structures are >30% core, where a core residue is defined as a residue with at least 18

neighboring Cα atoms within 10 Å.

• Radius of gyration is less than 2.24×N0.392 Å where N is the number of residues. This is
inspired by the empirical radius of gyration scaling law observed for globular proteins.

• Is an AFDB Foldseek cluster representative [25].

This results in 80064 structures total.

Figure 6: AFDB512 secondary structure composition

F Training details

During training we use the following masking scheme:

• 25% of the time, we mask all residues
• 25% of the time, we mask no residues
• 50% of the time, we sample a masking threshold from U(0, 1) and mask that proportion

of residues by sampling from U(0, 1) per-residue and masking those that fall below the
masking threshold.

Per epoch, we sample from both the PDB monomer clusters and the AFDB structures such that the
ratio of real-to-synthetic structures is 1:3. We train on 4 NVIDIA A40 GPUs for ∼8 days using a
batch size of 6000 residues. We use the Adam optimizer with β1 = 0.9, β2 = 0.999 and a learning
rate of 0.0001.

G Sequence-structure backbone consistency

In Table 2 we add results for benchmarked models on sequence-structure backbone consistency,
which is performed under the same regime as the all-atom generation task but the SSC metric
is computed using only backbone atoms (which we have renamed as SSC-bb). We also include
Multiflow [32] as a benchmark model, which generates sequence and backbone structure but no
sidechain conformations. We note that Multiflow is trained on synthetic data which consisting of
protein backbones with ProteinMPNN-redesigned sequences which are SSC-bb by ESMFold, and
hence such benchmark values may not be directly comparable to other methods. Overall, we find that
metrics under the co-design evaluation are generally more similar to metrics from all-atom evaluation
than from backbone evaluation, which suggests that existing methods’ performance bottleneck may

14

Method All-atom Seq/struct Co-design PMPNN 8
SSC (↑) DIV-str/DIV-seq (↑) NOV-str (↓) SSC-bb (↑) DIV-str/DIV-seq (↑) NOV-str (↓) DES (↑) DIV-str (↑) NOV-str (↓)

Multiflow1 [32] - - - 0.87 0.43 / 0.87 0.80 0.99 0.40 0.79
ProteinGenerator [26] 0.11 0.39 / 0.76 0.85 0.20 0.32 / 0.77 0.85 0.81 0.27 0.81
Protpardelle [12] 0.17 0.27 / 0.97 0.82 0.59 0.14 / 0.70 0.80 0.88 0.14 0.79
Pallatom2 [13] 0.68 0.61 / 0.92 0.75 0.70 0.60 / 0.81 0.75 0.88 0.67 0.73

ProteinZen 0.46 0.50 / 0.96 0.81 0.54 0.47 / 1.00 0.81 0.88 0.40 0.79

Table 2: Sample quality metrics for ProteinZen and relevant comparison models. 1Multiflow co-
generates sequence and backbone structure without sidechain conformations, and is trained on
synthetic data generated using ProteinMPNN and filtered using ESMFold. 2Pallatom was trained on
proteins of length at most 128, so the reported performance is partially out-of-distribution.

lie in designing good sequences rather than precise sidechain placement. Protpardelle seems to
be an exception to this trend, as its SSC-bb is much higher than its SSC yet its diversity is much
lower, suggesting that Protpardelle’s performance may be skewed by generating low-diversity but
high-designability samples.

15

	Introduction
	Methods
	Setup
	Protein generation as joint flow-matching over SE(3) and latent space
	Atomic structure autoencoder: a hybrid VAE/MLM
	Grounding the denoiser using ``passthrough losses''
	ProteinZen architecture
	Training

	Results
	Metrics
	Sample characteristics

	Conclusions
	Setup
	Noise distribution
	Loss term additional details
	Flow-matching terms
	Sidechain reconstruction terms
	Passthrough reconstruction terms

	ProteinZen architecture details
	Encoder architecture
	Decoder architecture
	Denoiser architecture

	Dataset construction
	Training details
	Sequence-structure backbone consistency

