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Abstract

Although protein language models (pLMs) have been used to successfully design
proteins for therapeutic and research purposes, it remains unclear under what
conditions they will succeed or fail. We show that pLM likelihoods indicate zero-
shot fitness prediction capabilities. To determine what data causes a sequence to
be likely, we utilize influence functions finding that homologous neighbors from
proteins search are responsible for increasing sequence likelihood most. We use
this to motivate finetuning on sequences with only low likelihoods to improve the
performance on selecting beneficial mutations, thus improving protein engineering
capabilities.

1 Introduction

Protein Language Models (pLMs) have been thought to encapsulate millions of years of evolutionary
information through unsupervised pretraining on protein databases. Works have shown that their
likelihoods can infer evolutionary trajectories, improve design campaigns, and predict zero-shot
mutational effects (Hie et al., 2022; Biswas et al., 2021; Meier et al., 2021). However, more
recent works have begun enumerating cases where pLMs likelihoods are influenced by training data
compositions that are not direct consequences of natural evolution (Weinstein et al., 2022; Ding and
Steinhardt, 2024).

Motivated by the need to better understand how training data selection in biological pretraining
biases the patterns captured, we start by showing that variations in downstream protein engineering
performance can be explained by the likelihood of the starting sequence. To do so, we use deep
mutational scan (DMS) datasets to see if underlying log likelihood of starting sequences can be
predictive of zero-shot fitness prediction capabilities, and find that mutation effect prediction
on lower likelihood starting (i.e. wildtype) sequences have worse performance, and that high
likelihoods can become harmful after a certain threshold. From this finding, we generalize the
failure pathology from species-level (Ding and Steinhardt, 2024) to individual sequence probabilities.
The ability to calculate pseudo log likelihood on datasets of evolutionary-scale magnitude is enabled
by a new derivation of pseudo log likelihood calculation reducing the number of inference
passes from O(L) to O(1) without any post-training.

A question then emerges: what is causing these sequence likelihoods? We utilize influence functions
to understand what proteins from the underlying training dataset increase the likelihood of certain
wild type proteins. Our studies reveal that the distribution of influential data points follow a power
law distribution, and that highly influential sequences can be quickly found using a search tool such
as mmseqs2 (Steinegger and Söding, 2017).

Combining these results, we motivate a past method known as evo-tuning Alley et al. (2019) to
protein designers or test-time training Sun et al. (2019) to the machine learning community. We
leverage our results relating to likelihood to suggest that evo-tuning on low likelihood wild types
improves performance and evo-tuning on high likelihood wild types harms performance. This finding
matches the intuition garnered from the zero shot plots and helps to explain counterintuitive dynamics
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Figure 1: Understanding DMS and a theory of PLM evolution capabilities. (a) A deep mutational
scan follows by choosing a protein then selecting residues to mutate. Mutations are performed,
expressed, then assayed for function to determine a fitness score. (b) We refine the efficient evolution
hypothesis of Hie et al. (2024) suggesting that ability of PLMs for economic protein maturation is
dependent on more than nature’s plausible mutations. Mutation effect prediction success is reliant on
the underlying likelihood of the wild type or non-mutated protein.

seen in Hsu et al. (2022) that unsupervised finetuning can sometimes worsen performance. Together,
our findings improve real-world applicability of increasingly powerful pLMs, and provide theoretical
and granular analysis to how homology to training data sequences affects performance.

2 Utilizing pLM Likelihoods to Predict Zero-Shot Success

2.1 Efficient Pseudo Log Likelihood Calculation

For non-autoregressive models, papers (Lin et al., 2023) often use a measure of pseudo log likelihood
(PLL) by evaluating PLL(x) = 1

L

∑L
i=1 logP (yi = xi|x\i,θ). The resultant equation requiresO(L)

forward passes to calculate, where L is the length of the protein. Because of the high computational
burden, autoregressive language models are sometimes preferred over masked language models
when likelihood-based mutation effect prediction is the desired downstream use. To overcome this,
Kantroo et al. (2024) perform post training on ESM-2 to predict the distribution of tokens of as if the
underlying token of interest had been masked.

We prove that PLL can be computed for any masked language model in a single forward pass using
Algorithm 2 as a result of Theorem 2.1. The proof can be seen in Appendix C.1. As a result, we can
calculate PLL for any model without requiring bespoke finetuning or exhaustive resources.

Theorem 2.1 Under a mask-consistent masked language model that sets masked tokens to a random
token with probability α and keeps them unchanged with probability β:

P (yi = xi|x\i,θ) =
α+ β

α
P (yi = xi|x,θ)−

β

α
. (1)

2.2 ESM-2 and ProGen-2 Likelihoods Predict DMS Correlation

Our goal is to see if the apparent capacity for pLMs to be used for zero-shot fitness is primarily driven
by data or a true understanding of the fitness landscape. To do so, we evaluate pLMs on various
deep mutational scan (DMS) tasks, and assess if task performance is correlated with likelihood.
Specifically, we take the wild type proteins in 217 DMS studies from ProteinGym (Notin et al., 2023)
and calculating PLLs for each of them. In Figure 2 we plot the relationship between PLL and DMS
Spearman ρ for the most utilized masked and autoregressive pLMs ESM-2 and ProGen-2.

Generally, ProteinGym task averages improve as parameters increase (Figure 2a upper), with ESM-2
performance degrading past 650 million parameters. But, an inverse scaling law emerges for the
Spearman correlation between likelihood and DMS correlation. Figure 2a lower suggests that in
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Figure 2: pLM likelihoods are predictive of mutation effect capabilities. (a Upper) Model
parameter counts versus average Spearman correlation on DMS datasets across models. (a Lower)
Spearman correlation of PLL and performance at each model size. ESM-2 (b) and ProGen2 (c) of
varying scales comparing PLLs DMS wild types against zero-shot performance. Each plots title
lists the Spearman (ρ) and Pearson (r) correlation of the underlying data. Lastly, a second order
polynomial regression is fit to the data in all cases resulting in a concave down parabola.

small models, a lot of performance can be explained by the likelihood of the wild type sequence,
which then degrades as parameters increase across both ESM-2 and ProGen-2.

Further looking at the data in Figures 2b & c illuminates why the correlation between likelihoods and
DMS performance decreases. Instead of of likelihoods being less explanatory of zero-shot fitness
prediction, higher parameter count models exhibit performance degradation at high likelihoods. This
effect is magnified when looking at sequences with probabilities near 1 (or 0 on the log scale) for
models such as ESM-2 15 billion and ProGen-2 6.4 billion. One interpretation of this phenomenon is
that the increased learning capacity of larger models has caused them to overfit on certain regions
of sequence space, suggesting that the optimal choice of pretrained model is dependent on the
downstream task and dataset.

In all, the results shown in Figure 2 corroborate a theory exemplified in Figure 1b. Low likelihood
wild type sequences struggle to predict beneficial and harmful mutations. As the likelihood increases
so does performance, but after a certain threshold too much probability mass harms predictive
capability.

3 Understanding pLM Likelihoods using Influence Functions

Motivated by the predictive phenomenon with likelihoods, we aim to study a more rigorous causal
relationship between data and downstream likelihoods using influence functions. We determine
a structure of the data involved in these likelihoods, then we leverage that to inspire a method of
post-training similar to evo-tuning with a caveat.

3.1 Protein Influence Power Laws

Influence functions (Hampel, 1974; Koh and Liang, 2017) measure the impact of a training sequence
on function of interest. We quantified per-datum influence values in the train dataset to find most
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influential points on sequence likelihood to investigate our examined phenonmenon. To approxi-
mate ESM-2’s training distribution, we randomly sample 10,000 proteins from UniRef50 and trim
sequences to be of length at most 1,024. We utilize the Kronfluence library (Bae, 2024) to calculate
influences conditioning the inverse Hessian on the random samples. Figure 3 depicts influence
of these 10,000 points as well as points retrieved by searching UniRef50 using mmseqs2 on the
likelihood four common proteins of interest: Green Fluorescent Protein (GFP), Cytochrome Complex
(CytC), KaiB, and Programmed Cell Death Protein 1 (PD1).
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Figure 3: pLM influence tails exhibits a
power law relationship. ESM-2 650M in-
fluences plotted against the complementary
cumulative distribution.

Our results suggest two main insights. First, we re-
produce the power law tail observed for traditional
LMs in Grosse et al. (2023), suggesting similar data
dynamics between pLMs and LMs. From a biologi-
cal perspective, Qin and Colwell (2018) finds a power
law tail in the covariance of phylogenetic protein sys-
tems, which might lend a way to understand this re-
sult. Second, for each of the four proteins, mmseqs2
found some of the most influential proteins when
compared to an unfiltered set. This means that search
might serve as an efficient way to deduce which train-
ing samples can be used to improve performance.

3.2 Influence Diminishes with Edit Distance

As protein search yields many of the influential pro-
teins, a natural thought would be that influence is
related to the amount of homology between a train-
ing data point and the sequence whose likelihood
is in question. To investigate this phenomenon, we
selected DMS studies by the maximal number of ed-
its from the wild type sequence taking the top 10
from ProteingGym. Each DMS study is used as a
synthetic set of training examples to examine what
would happen were a protein with some number of mutants from the wild type within the train set.

Figures 6 and 7 depict the influence of a mutant protein against its wild type as a function of its edit
distance to the wild type. Across five different ESM-2 model scales (8M, 35M, 150M, 650M, and
3B) and all 10 datasets, we find that as edit distance increases influence decreases. Variations in the
clarity of this relationship might be explained by the number of locations mutated on the protein of
interest and underlying distribution of edit distances.

4 Evo-Tuning pLMs to Improve Fitness Prediction

Motivated by the finding that that low probability sequences underperform, and that mmseqs2 serves
as a simple heuristic for finding likelihood-influencing data points, we propose a simple remedy: a
pLM can be finetuned to increase the likelihood of the wild type sample for a protein engineering
task, but sequences with sufficiently high likelihoods should remain unchanged.

We perform unsupervised finetuning on homologous sequences (sometimes referred to as evo-tuning
(Alley et al., 2019)) of ESM-2 650M on a set of sequences derived by searching UniRef100 for the
wild type sequence on each of the 217 DMS studies in ProteinGym separately. Post training utilizes
AdamW (Loshchilov et al., 2017) with a learning rate of 1e-6 for 5 epochs on the 1,000 most similar
proteins to wild type as determined by E-value of mmseqs2 search. As our findings above further
indicate that too much likelihood harms performance, we only consider finetuning models where the
log likelihood falls below a threshold ϵ.

Examining the change in Spearman correlation on the DMS test bed from finetuning with respect
to initial sequence log likelihood in Figure 4, performance improvement is anti-correlated with
starting probability. Low likelihood sequences benefit from training, while high likelihood sequences
get harmed, an effect that gets amplified as more training occurs. This effect further corroborates
the model shown in Figure 1b. The nontrivial performance harm of too much likelihood might be
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Figure 4: Wild type likelihoods are predictive of finetuning success. (a) The change in Spearman
correlation on 217 DMS studies over 5 epochs. Each plots upper right corner denotes the slope of a
linear model. (b) The cumulative gain in performance for studies below likelihood ϵ.

Model Name

Selection Criteria

Mean Weighted
MeanActivity Binding Expression Organismal

Fitness Stability

ESM-2 650M 0.441 0.327 0.415 0.390 0.523 0.439 0.419
+ Finetune ϵ = −1.4 0.4610.020 0.3560.029 0.4370.022 0.4250.035 0.5340.011 0.4620.023 0.4430.024

+ Finetune ϵ = 0 0.3910.050 0.2710.056 0.3930.022 0.3850.005 0.4440.079 0.3980.041 0.3770.042

ProGen2 XL 0.404 0.291 0.418 0.389 0.445 0.406 0.389
EVE 0.464 0.354 0.404 0.449 0.487 0.454 0.432
MSA Transformer 0.459 0.32 0.435 0.416 0.476 0.438 0.421
TranceptEVE L 0.492 0.359 0.457 0.466 0.5 0.474 0.455

Table 1: Comparing finetuned ESM-2 650M to state-of-the-art pLMs. ESM-2 650M with and
without finetuning at various values of ϵ compared to other fitness prediction models. Results for all
non ESM-2 models are reported from ProteinGym. In line with earlier findings that high likelihoods
can harm performance, we find that applying a threshold to which sequences we finetune on improves
performance.

explained through Weinstein et al. (2022)’s findings that modeling the sample data distribution density
isn’t what leads to fitness prediction. In our case, further finetuning on high likelihood regions in
sequence space might cause memorization of phylogenetic artifacts instead of fitness signals.

If the model is naively finetuned before evaluation on every DMS, then performance degrades as
seen in Table 1 at ϵ = 0, in accordance with Meier et al. (2021). Figure 4b investigates how only
performing finetuning on samples that fall below some likelihood threshold ϵ leads to a gain in total
correlation accross ProteinGym. ϵ is evaluated at 11 equally spaced log likelihoods from −2 to 0.
The best performance is observed at ϵ = −1.4. After accounting for this procedure, ESM-2’s scores
jump and outperform models that utilize evolutionary information through MSAs like EVE (single)
and MSA Transformer (single) (Frazer et al., 2021; Rao et al., 2021), while becoming competetive
with the state-of-the-art hybrid MSA and pLM model TranceptionEVE (Notin et al., 2022).

5 Conclusion

We provide a model for understanding the variation in fitness prediction performance of PLMs as
a function of likelihood. Experiments show that likelihoods can explain performance across both
MLMs and autoregressive LMs. To understand this phenomenon, we utilize influence functions to
show that sequences retrieved from search have strong influence over protein likelihoods. These two
findings in conjunction motivate a traditional finetuning intervention, but now only for sequences of
sufficiently low likelihood.
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Appendix A Related Works

Protein Language Models Modern pLMs come in two forms: masked or autoregressive models. Of
the former, transformer based language modeling efforts like ESM-1B, ESM-1V, and ESM-2 became
dominant with BERT-like pretraining objectives (Vaswani et al., 2017; Rives et al., 2021; Meier et al.,
2021; Lin et al., 2023). In contrast, ProGen (Alley et al., 2019; Madani et al., 2023; Nijkamp et al.,
2023) and other works embraced the GPT-like pretraining style and opted for autoregressive training
scheme.

As a result of these training tasks, pLMs have afforded many capabilities surrounding evolution
through their likelihoods. Biswas et al. (2021) use pLMs to do property engineering with a limited
number of labeled sequences. Meier et al. (2021) showed that pLMs are capable of zero-shot mutation
prediction by comparing the log odds ratios between sequences of interest. Extending this, Hie
et al. (2022) proved pLMs can predict the evolutionary trajectory of a range of different proteins and
selective pressures. Not only can pLMs predict evolution, Hie et al. (2024) demonstrated that an
ensemble of pLMs can improve the affinity of monoclonal antibodies without any information about
the antigen.

Limitations Protein Language Models of Training Data Though data research is becoming more
and more prevalent within the language modeling, its treatment within the domain of pLMs has
not yet been as extensive thus far. Fannjiang and Listgarten (2024) provided a good introduction to
the relationship between data and model performance in both protein specific and general purpose
modeling regimes. On the matter of training as a whole, Weinstein et al. (2022) argued that the
density of pLM training data alone doesn’t specify the fitness functions of interest, rather due to
misspecification pLMs learn to model the stationary distribution enabling their success in fitness
tasks. Recently, Ding and Steinhardt (2024) showed how species bias within protein databases has
lead to biases in the underlying pretraining sets for most pLMs. It further demonstrated that pLMs
fail on design tasks catered towards low-likelihood species and would often revert to over-represented
homologs. Lastly, Hermann et al. (2024) uncovered dataset overlaps between commonly used pLM
benchmarks and their pretraining datasets. When these overlapping points were removed from the
benchmarks, scores decreased.

Relating Training Data and Model Outputs One of the first attempts to relate a probabilistic
model’s outputs to its input data comes from influence functions (IFs) in robust statistics (Hampel,
1974). Koh and Liang (2017) ported the classic technique to deep learning. Soon after, Grosse et al.
(2023) improved computations of IFs enabling evaluation for models of up to 52 billion parameters.

Other modern schools of thought surrounding data have begun understanding downstream model
performance as a function of pretraining data for robustness and pruning. Fang et al. (2022) finds
that the data distribution is the cause of the large gains in effective robustness for CLIP. Others used
data pruning to outperform classical neural scaling laws (Sorscher et al., 2022). With the growing
importance being placed on data, tasks are now developing to understand which data points are
most important through the DataComp challenges that have been put forward for multimodal and
traditional language models (Gadre et al., 2024; Li et al., 2024). Further evidence can be seen with
complex data distributions and post-training regimes in works such as Llama 3.1 (Dubey et al., 2024).

Appendix B Further Preliminaries

B.1 Zero-Shot Fitness Prediction

One of the most common methods for determining how protein fitness changes with mutations is
called a deep mutational scan (DMS). As seen in 1a, deep mutational scans start with a protein of
interest, then perform combinatorial set of mutations to select residues in the protein. Those are
characterized in the wet lab then compared against the unmutated or wild type starter protein.

We choose to focus on masked language models in this study due to their ease of use in point
wise mutations and community adoption. Following ESM-1V we utilize, the difference in model
likelihoods to compute zero-shot fitness predictions. We denote the wild type sequence as x and the
set of mutable residues as T . From here we can calculate a predicted gain in fitness f of a mutated
sequence x′ over x using parameters θ as the log odds ratio of the mutated sequence against the wild
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type:
f(x′, x) =

∑
t∈T

logP (yt = x′
t|x\t,θ)− logP (yt = xt|x\t,θ). (2)

Each evaluation of f can be compared against real world assay values, thus Spearman correlation
can be used as a measurement of agreement (Spearman, 1904) making the task equivalent to ranking.
This method is how the predictions in ProteingGym are formulated for the ESM suite of models.

Although this is a powerful method of zero-shot precition, it has two major limitations. First is the
linear additivity of fitness. As a result it can’t model epistatic fitness interactions. Second is the need
for mutants to be identical in length to the wild type sequence. Since we’re evaluating the log odds
ratios at certain locations to derive fitness, each residue must have an existing counterpart on both
proteins to enable evaluation.

B.2 Influence Functions

We find ourselves utilizing a training dataset D = zi
N
i=1 of N samples and individual sequences zis.

Models are then fit to minimize the empirical risk of a loss function L to derive an optimal set of
parameters:

θ⋆ = argmin
θ⋆
J (D,θ) = argmin

θ⋆

1

N

N∑
i=1

L(zi,θ). (3)

In particular, we are interested in understanding the effect of a single point m. We choose to weight
this data point with some parameter ϵ arriving at:

θ⋆(ϵ) = argmin
θ⋆

1

N

N∑
i=1

L(zi,θ) + ϵL(zm,θ). (4)

Setting ϵ = −1 can be thought of as asking the counterfactual: what if zm wasn’t in the training
set? Using a first-order Taylor series of Equation 4, the Implicit Function Theorem, and a few other
assumptions we can derive the influence of zm on θ⋆ in Equation 5. Furthermore, Equation 6 shows
that we can calculate the influence of a sequence on a functional evaluation of f via the chain rule.

Iθ⋆(zm) =
dθ⋆

dϵ

∣∣∣
ϵ=0

= −H−1∇θL(zm,θ⋆) (5)

If (zm) = ∇θf(θ
⋆)⊤Iθ⋆(zm) = −∇θf(θ

⋆)⊤H−1∇θL(zm,θ⋆) (6)

H−1 represents the inverse hessian calculated over D. As one can imagine, calculating this directly
becomes prohibitively memory intensive. Grosse et al. (2023) makes it computationally feasible by
assuming layer-wise independence and using of EK-FAC for hessian calculation (George et al., 2018).
We use the implementation of Bae (2024) in our analysis.

Although giving insight to a very complex relationship, influence functions are not without their
limitations. Basu et al. (2020) show the fragility of the method to training alterations like the number
of layers, layer width, and the inclusion of weight decay. Extending upon these findings, Bae et al.
(2022) showed how a mixture of complications in assumptions and practical training dynamics differ
from the idealized construction in influence functions. The work argued that influence functions
better capture the proximal Bregman response function, that is what is the effect of removing a data
point while also attempting to maintain current predictions?

B.3 Pseudo Log Likelihoods

Unlike autoregressive language models, masked language models don’t have a natural way to
immediately compute the joint likelihood of a sequence. As a result, Wang and Cho (2019) proposed
to mask every index of a sequence one-at-a-time then average to derive a PLL (Wang and Cho, 2019):
PLL(x) = 1

L

∑L
i=1 logP (yi = xi|x\i,θ).

10



This formulation suffers from the need to run O(L) forward passes to compute a perplexity or log
likelihood. In response to this, the community only considers autoregressive pLMs when computing
fitness values for proteins containing insertions or deletions.

Appendix C Single-Inference Pseudo Log Likelihood

In this section, we derive the result from Theorem 2.1 as a result of the BERT training objective used
in masked pLMs. Algorithm 2 leverages this result to reduce the number of inferences from O(L) to
O(1). Lastly, to ensure that the assumptions weren’t too lenient, we evaluate our likelihoods on 7, 545
sequences of varying species and length showing tight agreement between our Single-Inference PLL
and traditional PLL.

Though Kantroo et al. (2024) also provide a method for enabling PLL calculation in a single pass, it
requires training a separate neural network to estimate the masked quantities. Hence, whenever one
wants to calculate PLL in one pass for any new model this adapter network must be trained before.
Our method bypasses this need, letting PLL be evaluated out of the box in a single inference pass.

C.1 Proof of Theorem 2.1

Recalling the training set of BERT, 15% of tokens in a sequence are chosen for training. Of those
tokens 80% are turned into [MASK], 10% are substituted with random tokens, and the last 10% are left
unchanged. We denote the likelihood of substitution with α and the probability of being unchanged
with β.

Letting ϕ|x ∼ Bernoulli( α
α+β ) represent the event of a token being a substituted token given that it’s

not a [MASK] token. Using the law of total probability, we can now expand the likelihood of a token
being identical to its input token.

P (yi = xi|x) = P (yi = xi, ϕ = 0|x) + P (yi = xi, ϕ = 1|x) (7)
= P (yi = xi|ϕ = 0, x)P (ϕ = 0|x) + P (yi = xi|ϕ = 1, x)P (ϕ = 1|x) (8)

= (1)(
β

α+ β
) + P (yi = xi|ϕ = 1, x)(

α

α+ β
) (9)

P (yi = xi|ϕ = 0, x) becomes 1 as the token was unchanged. Now the insight comes at the evaluation
of P (yi = xi|ϕ = 1, x). This is the probability of the ith token given that the input variable was
uninformative. Put in another way, it’s the probability if the token was masked. We call the language
model "mask-consistent" if P (yi = xi|ϕ = 1, x) = P (yi = xi|x\i). Substituting this identity with
some algebraic manipulation completes the proof.

P (yi = xi|x) =
β

α+ β
+

α

α+ β
P (yi = xi|x\i) (10)

P (yi = xi|x)−
β

α+ β
=

α

α+ β
P (yi = xi|x\i) (11)

α+ β

α
P (yi = xi|x)−

β

α
= P (yi = xi|x\i) ■ (12)

C.2 Algorithm

Algorithm 1 provides detail on the traditional method of PLL calculation. Each residue is masked
one at a time, then the log probabilities of being the inputted sequence at the masked location are
averaged into a single scalar.

To overcome the for loop, and thusO(L) forward passes, Algorithm 2 relies on Theorem 2.1 to derive
probability values equivalent to the masked probabilities. As each probability of interest is captured
in a single forward pass, we can side step the for loop now only requiring O(1) or a single forward
pass to calculate PLL. One limitation becomes apparent in calculating our closed form probability of
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Algorithm 1 Traditional Pseudo Log Likelihood Calculation
Require: x ∈ VL

1: z ← 0 ▷ Initialize PLL
2: for i ∈ {1, . . . , L} do
3: z ← z + 1

L logP (yi = xi|x\i) ▷ Mask and infer
4: end for
5: return z

interest, it’s plausible that α+β
α P (yi = xi|x) < β

α leading to a negative probability. Since probability
must be a non-negative measure, we therefore clip values that are too low to some ϵ.

Algorithm 2 Single-Inference Pseudo Log Likelihood
Require: x ∈ VL, ϵ ∈ R+

1: p← P (y = x|x) ▷ Perform inference once, p ∈ [0, 1]L×V

2: p′ ← max(α+β
α p− β

α , ϵ) ▷ Use Thm. 2.1 and ϵ for negative probabilities
3: return 1

L

∑L
i=1 log p

′(yi = xi) ▷ Vector sum and in place operation

To ground α and β, BERT plus the ESM family use 0.1 for both α and β. For each token included in
loss calculation, the models substitute and hold each token with 10% chance given. We utilize this
value for all calculations of Single-Inference loss within this study.

C.3 Empirical Validation of Single-Inference Pseudo Log Likelihood

To assess the correctness of the Single-Inference PLL calculation, we seek to measure its correspon-
dence with classic PLL calculation. We calculate PLL using both methods using 7, 545 of various
lengths, species, and families from Ding and Steinhardt (2024). In Figure C.3 we can see the two
quantities plotted against one another.

The two methods have strong correlation statistics. Calculating the correlation between PLL and
Single-Inference PLL yields Spearman ρ = 0.923 and Pearson r = 0.930. The P -values for both
underflow the range of Python’s floating point precision. Spearman correlation was seen to slightly
improve as ϵ increased while Pearson correlation would lessen. As our interests lie in rank order
statistics, we chose to utilize an ϵ = 10−3 to have more rank agreement during the studies of the
main text.

Appendix D Extended Influence Function Plots

We plot the relationship between influence and edit distance for the ESM-2 family at scales between
8 million and 3 billion. Each plot depicts a single model examining the effect of adding the mutants
of a DMS study into the underlying training set. We selected the 10 studies with the highest maximal
edit distance from their wild type sequence.
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Figure 5: Single-Inference PLL against true PLL on a diverse set of proteins at ϵ = 10−5.
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Figure 6: Influence versus edit distance for the top 5 DMS studies with the most mutations from
wild type.
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Figure 7: Influence versus edit distance for the top 6-10 DMS studies with the most mutations
from wild type.
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