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Abstract

Protein function inference relies on annotating protein domains via sequence simi-
larity, often modeled through profile Hidden Markov Models (profile HMMs),
which capture evolutionary diversity within related domains. However, pro-
file HMMs make strong simplifying independence assumptions when modeling
residues in a sequence. Here, we introduce PSALM (Protein Sequence Annotation
using Language Models), a hierarchical approach that relaxes these assumptions
and uses representations of protein sequences learned by protein language models
to enable high-sensitivity, high-specificity residue-level protein sequence anno-
tation. We also develop a benchmark for protein sequence domain annotation,
where training and test sequences have been rigorously split to share no similarity
between any of their domains at a given threshold of sequence identity. Prior
benchmarks, which split one domain family at a time, do not support methods for
annotating multidomain proteins, where training and test sequences need to have
multiple domains from different families. We validate PSALM’s performance on
this benchmark and highlight PSALM as a promising alternative to HMMER, a
state-of-the-art profile HMM-based method, for protein sequence annotation.

1 Introduction

Proteins consist of structural and functional units called domains, which are conserved through
evolution. The primary aim of protein sequence annotation is to identify and characterize these
domains, as understanding their individual functions can provide insight into the protein’s overall
biological role. Given the challenges of experimental protein function characterization, function
is often inferred through sequence similarity (homology) to domains with known roles [1, 2]. As
protein sequence databases and the number of unannotated sequences expand rapidly [3], efficient
annotation methods have become vital for leveraging this growing resource to understand molecular
biology and evolution.

The state of the art uses profile hidden Markov models (profile HMMs) to detect domains [4] and
profile/profile comparison to identify homologous domains [5]. Databases like Pfam [6] organize
millions of protein sequences into approximately 20,000 domain families, each represented by a
profile HMM. Annotation is achieved by comparing a protein sequence against these domain profiles,
rather than scanning millions of individual sequences. This approach not only classifies the full
protein but also identifies the composition and boundaries of each domain at the residue level, both
enabling functional inference and preventing the “transitive identification catastrophe,” where function
is mistakenly transferred between sequences due to homology of unrelated domains [7].
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In this work, we introduce Protein Sequence Annotation with Language Models (PSALM) and show
that ESM-2, a pre-trained general-purpose protein language model (pLM) [8], can be extended to
predict residue-level sequence annotations. Our contributions:

• To the best of our knowledge, PSALM is the first deep learning approach for residue-level
protein sequence domain annotation. While deep learning methods have been applied ex-
tensively to protein sequence annotation, most attempts focus on recognition/classification of
entire protein sequences [9–13], rather than recognition of individual domain subsequences
in a longer target sequence, which is a different problem.

• We demonstrate that, by utilizing pLMs, we can relax the strong, simplifying independence
assumptions made by profile HMMs when modeling residues in a protein sequence and
can predict residue-level sequence annotations with greater sensitivity and specificity
than state-of-the-art profile HMM-based methods. Predicted homology from PSALM
accurately annotates domain boundaries, multi-domain proteins, conserved domains across
distantly-related protein sequences, and even domains that are currently unannotated.

• We develop a benchmark for protein sequence domain annotation, where training and
test sequences have been rigorously split to share no similarity between any of their domains
at a given threshold of sequence identity, enabling challenging, realistic evaluation of domain
annotation methods across a wide range of domain families and sequence similarity. Prior
benchmarks, which split one domain family at a time, do not support methods for annotating
multidomain proteins, where training and test sequences need to have multiple domains
from different families.

2 Related work

Profile HMMs This approach uses curated multiple sequence alignments (MSAs) of related domains,
which reveal patterns of conservation and variability at the residue level, to model consensus using
“match”, “insert”, and “delete” hidden states [2, 14]. These models serve as templates for comparison
against the sequence of interest, enabling the identification of domains by finding subsequences
that match the profile HMMs. Sequences with multiple, unrelated domains will require the use of
multiple profile HMMs for annotation. HMMER [4] is the state-of-the-art protein sequence domain
annotation method and underlies many different databases, which organize related domains into
MSAs and profile HMMs at varying levels of granularity, enabling profile-based annotations at the
superfamily [15], family [6], and sub-family [16] levels. While profile HMMs have enabled sensitive,
high-coverage, large-scale annotation of the known protein universe [6], they make two limiting
assumptions. Profile HMMs assume both that the observed residues are conditionally independent
given the hidden state and that the transition to the next hidden state depends only on the current
state (Markov property). While these assumptions simplify the modeling process, they may prevent
profile HMMs from capturing complex dependencies between residues in a sequence by ignoring
how residues distant in the one-dimensional sequence can interact with each other, especially over
long distances, in the folded three-dimensional structure of the protein.

Deep Models Recent breakthroughs like AlphaFold2 [17] prove that deep-learning-based approaches
can learn these complex relationships from sequence data. However, efforts to apply deep learning
methods to predict protein function from sequence have either focused on predicting ontology-based
functional annotation at the sequence level [18–21] or recognizing homology at the sequence level
[10–13]. To our knowledge, ProtENN, an ensemble of convolutional neural networks, represents
the first attempt to predict Pfam domains directly from protein sequences [9]. ProtENN, however, is
constrained to make one domain prediction per input sequence and cannot natively identify domain
boundaries or multiple domains within a sequence without ad hoc post-processing. Additionally,
ProtENN cannot provide information on the contribution of an individual residue to a predicted
annotation.

3 PSALM overview

We frame the residue-level protein sequence annotation problem as a mapping from a protein sequence
x = (x1, x2, . . . , xL) to a sequence of domain family labels y = (y1, y2, . . . , yL). Each residue xi

represents one of 25 possible amino acids (20 canonical, 2 non-canonical, and 3 ambiguous amino
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Figure 1: Overview of residue-level protein sequence annotation with PSALM. A sequence x of
length L is embedded as x′ with a frozen ESM-2. The PSALM clan and family models predict the
clan annotations ẑ and family annotations ŷ, respectively, and are trained to minimize cross-entropy
loss L(·). During training only, the true clan annotations z are provided to the family model. Here,
the example outputs are predicted across a set of 2 families.

acid characters), while each label yi corresponds to one of D domain families, with D + 1 for
none. Approximately 23% of protein sequences and 47% of residues in UniProt lack a Pfam domain
annotation [6]. The goal is to train a model to predict the domain family for each residue:

ŷi = argmax
f

P (Yi = f |x), (1)

where P (Yi) is the probability distribution over the D + 1 domain family labels.

To numerically encode protein sequences for machine learning tasks, we use a pre-trained protein
language model (pLM). Specifically, we employ ESM-2 650M, which generates residue-level se-
quence embeddings x′ by capturing long-range interactions and contextual information [8]. These
embeddings x′ replace the original sequence x for downstream tasks. In this approach, we keep the
ESM-2 weights frozen.

PSALM uses a hierarchical approach (Fig. 1) that considers both individual protein domain families
and clans, which are collections of evolutionarily related (homologous) protein domain families
categorized by Pfam [22]. In Pfam 35.0, approximately 45% of the 19,632 Pfam families are grouped
into 655 clans, and a family can only belong to at most one clan. While the main task is to predict
the domain family at each residue, clan-level predictions provide an interpretable intermediate step,
aiding functional and structural insights when family-level information is unclear. For each residue,
PSALM predicts the clan (ẑi) and family (ŷi) as follows:

ẑi = argmax
c

P (Zi = c|x′) (2)

ŷi = argmax
f

P (Yi = f |Zi = C(f),x′)P (Zi = C(f)|x′), (3)

where C(f) maps a family to its corresponding clan. By jointly modeling clans and families, PSALM
enhances interpretability and accuracy, ensuring robust residue-level domain annotations. Additional
details, including those concerning choice of model architecture, training, and hyperparameter
selection, are provided in Appendix A.2)

4 Benchmarking

Data In many machine learning contexts, data samples are assumed independent, allowing for
random training-test splits. However, protein sequences share evolutionary relationships, making
random splits unreliable and likely to inflate performance estimates [23–27]. To address this, we
used Pfam-A Seed 35.0, a dataset of approximately 1.2 million proteins from 20,000 domain families
[6], and split it into a training set of 517,936 sequences and five test subsets, from across which
a validation set was sampled, resulting in a total of 73,286 test sequences and 5,775 validation
sequences. Each test subset was defined by the maximum percent identity (PID) that any domain
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Table 1: Residue-level domain annotation benchmark on Pfam Seed dataset

Clan Family
PID Model TPR FPR F1 MCC TPR FPR F1 MCC

0-20%
HMMER* 0.694 0.033 0.819 0.642 0.659 0.033 0.810 0.636
PSALM650 0.944 0.022 0.985 0.957 0.750 0.012 0.978 0.947
PSALMOH 0.490 0.100 0.764 0.559 0.089 0.022 0.236 0.203

20-40%
HMMER* 0.907 0.043 0.941 0.862 0.876 0.043 0.939 0.861
PSALM650 0.966 0.020 0.985 0.964 0.845 0.015 0.982 0.959
PSALMOH 0.516 0.107 0.780 0.602 0.102 0.023 0.282 0.251

40-60%
HMMER* 0.951 0.058 0.957 0.898 0.921 0.058 0.956 0.896
PSALM650 0.977 0.020 0.986 0.966 0.924 0.017 0.984 0.964
PSALMOH 0.666 0.104 0.835 0.671 0.159 0.029 0.430 0.363

60-80%
HMMER* 0.974 0.059 0.971 0.924 0.946 0.059 0.970 0.923
PSALM650 0.984 0.018 0.988 0.970 0.957 0.016 0.988 0.968
PSALMOH 0.788 0.094 0.890 0.745 0.216 0.027 0.573 0.478

80-100%
HMMER* 0.977 0.051 0.972 0.935 0.950 0.051 0.971 0.934
PSALM650 0.981 0.015 0.986 0.969 0.967 0.012 0.986 0.968
PSALMOH 0.877 0.066 0.925 0.836 0.282 0.018 0.709 0.630

in any test sequence shares with any domain in any sequence in the the training set. This ensures
varying levels of similarity, from 0 < max PID ≤ 20 to 80 < max PID ≤ 100. Further details on
benchmark dataset creation are provided in Appendex A.1.

Baselines We establish two baseline methods for comparison. We use HMMER, the current state-
of-the-art protein sequence annotation method, to build profile HMMs from MSAs of the ground truth
domains in the training set, denoted as HMMER*, and use these profiles to annotate the test sequences
with hmmscan. This allows us to evaluate how a state-of-the-art profile HMM method compares
to PSALM when using the same training and testing sets. Additionally, we implement a variant
of PSALM, denoted as PSALMOH, where one-hot embeddings for each amino acid in a protein
sequence are utilized instead of embeddings from the pre-trained protein language model ESM-2.
This comparison helps discern whether differences in performance between PSALM and HMMER*
are influenced by ESM-2 or solely by the subsequent neural network architecture. Additionally,
we assess both the capacity of PSALM by evaluating performance across different ESM-2 model
sizes (Appendix A.3) and the impact of intermediate clan predictions by evaluating a "family-only"
PSALM (Appendix A.4). The PSALM model presented in the main results in Table 1, which uses a
frozen ESM-2 650M and has intermediate clan predictions, is denoted as PSALM650.

Evaluation Protein sequence databases have vastly more negatives than positives, requiring
extremely low (essentially zero) and controllable false positive rate (FPR), as false annotations are
amplified and propagated to additional sequences by later searches. Methods in this field are typically
benchmarked for the sensitivity or true positive rate (TPR) they can achieve at a high specificity
(low FPR). We also report the F1 score and Matthews Correlation Coefficient (MCC). Here, FPR is
defined as the fraction of true negative residues (shuffled, preserving residue composition) incorrectly
identified as homologous to a Pfam protein domain family, and TPR is defined as the fraction of
residues in ground truth domains correctly identified.

We highlight the key observations from the sequence annotation benchmark. PSALM650 demonstrates
superior performance in domain annotation, accurately annotating a substantial portion of true domain
regions while consistently calling fewer false positives compared to HMMER* (Table 1), with the
single exception being family TPR at the 20-40 PID range test subset. PSALM performance strictly
increases with ESM-2 model size (Appendix A.3) and the inclusion of intermediate clan predictions
(Appendix A.4). The one-hot baseline PSALMOH learns to predict clan annotations but consistently
has the lowest TPR for family annotation.
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Figure 2: Comparison of PSALM and HMMER* annotations to the ground truth HMMER annotations
for two selected protein sequences from the 0-20% PID test subset.

5 Examples

In Figure 2, we compare the PSALM650 and HMMER* annotations to the ground truth annotations
determined by HMMER, focusing on two protein sequences drawn from the 0-20% PID test subset,
which contains the domains most distantly related to those in the training set. PSALM is able to
identify domains in this test subset that HMMER* either misidentifies (Fig. 2 A) or fails to identify
(Fig. 2 B). Figure 2 B further demonstrates both PSALM’s ability to identify multiple domains in a
single input sequence and PSALM’s inability to annotate the full C-terminal domain, which is too
diverged from related domains in the training set for PSALM to fully identify.

6 Conclusions and limitations

We introduce PSALM, a highly sensitive and specific protein sequence annotation method, which
extends the capabilities of self-supervised pLMs with just a few hundred thousand protein se-
quences, enabling interpretable residue-level annotations at both the clan and family levels. Code,
data, and models are available in the protein-sequence-annotation Python package and
Protein-Sequence-Annotation/PSALM GitHub repository. We address the current limitations
and potential future research directions of this approach with the following points.

Data leakage Despite our efforts to mitigate it, information from the test set may still contribute to
training through the millions of sequences used to train ESM-2. While we exclude sequences used to
train ESM-2 from our 0-20 PID test subset, indirect leakage through homology remains a possibility.
Ideally, retraining ESM-2 from scratch on our training data would provide better insight into the
out-of-distribution generalization capabilities of PSALM. We have not done this in the present work
because of the compute demand for training a pLM like ESM-2, but we plan to rigorously split a
much larger set of proteins to train a pLM from scratch.

Domain calling PSALM cannot distinguish between repeated domains occurring consecutively or
accurately resolve split domains. For example, if a domain repeats immediately after itself, PSALM
labels the entire two domain block instead of recognizing two separate domains within it. Similarly,
when a domain is split, PSALM identifies the two halves as separate domains from the same family,
rather than as originating from a single domain. We aim to address this by explicitly modeling the
domain boundaries and developing domain-calling algorithms.
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A Appendix

A.1 Benchmark creation

The goal of benchmark creation is performed in two phases. In the first phase, we filter domains
by a strict sequence percent identity (PID; Appendix A.1.1) to remove similar domains and ensure
that test domains are sufficiently dissimilar from training domains. In the second phase, we retrieve
the full-length sequences corresponding to these domains and categorize them by their similarity
to the training set. We begin by collecting the 1.2M “seed domains” from Pfam-A Seed 35.0, a
set of curated, representative domains for each domain family that are used to build the 20K Pfam
profile HMMs [6]. We apply BLUE [27], a graph-based sequence splitting algorithm, to partition
the seed domains into preliminary training and test sets, defining an edge between two domains as
their pairwise PID )Appendix A.1.1). We choose a PID threshold of 25% to split the seed domains
as a meaningful cutoff to differentiate structurally and functionally distinct domains – protein pairs
that share >25% identity indicate similar structure and function [28], and less than 1-% of protein
pairs sharing <25% identity have similar structures [29]. This filtering step results in 560K training
domains and 190K test domains. The remaining 450K seed domains were discarded due to sharing
> 25% PID with both test and training sets.

In order to effectively assess the ability of PSALM to identify multiple domains in a sequence (as
opposed to annotating a pre-determined region of interest), the benchmark needs to contain full-
length protein sequences. We retrieve the full-length sequences corresponding to these representative
training and test domains from UniProt release March 2021, a comprehensive database of 230M
protein sequences. This results in 517K training sequences. From the test set, we eliminate duplicate
sequences also present in the training set. All sequences across both training and test sets are
annotated via the hmmscan tool from HMMER [4] with strict inclusion thresholds (E-value < 0.001,
bitscore ≥ 30) in order to identify domain hits that constitute a “ground truth”, with special care to
nested, contiguous domains, which may escape typical processing methods (Appendix A.1.3). For
training and test purposes, family and clan labels are only assigned to ground truth domains. We
discard sequences in test that do not contain an annotated ground truth domain represented by at least
20 ground truth domains from the same family in the training set, resulting in 73K test sequences.

Simply splitting domains by PID is not sufficient to enforce the same gaurantees on full-length,
multi-domain proteins, as the full-length sequences may contain additional domains beyond the seed
domains. Thus, we further categorize each retrieved test sequence by the maximum PID that any of
its domains shares with any domain in the training set as a conservative proxy for its distance from
the training set (Appendix A.1.2). We partition the test set into five subsets based on this maximum
PID (Table 2), and a total of 6K validation sequences are sampled uniformly across the test subsets.
Such a partition may result in test sequences that, for example, may be placed in the 80 < PID ≤ 100
subset due to a single domain closely related to one in the training set, whereas the test sequence may
have several other domains that share significantly lower PID with domains in the training set (this
is why the average PID is near the lower bound of the max PID range for many of the test subsets
in Table 2). The domain coverage, defined as the average percent of residues in a sequence that are
labeled by Pfam domains, is similar across all test subsets.

We address the potential for unannotated domains to introduce data leakage across the training and
test sets by shuffling all subsequences without family and clan labels in the test sequences to disrupt
possible domain structures, preserving 0th order residue-composition [1, 4]. Since PSALM may
be sensitive enough to identify unannotated domains, it is trained with these regions shuffled, to
mitigate penalties for “false positives” (with respect to the ground truth annotations). Another source

Table 2: Partition of the test set into 5 subsets

Test splits 0-20% 20-40% 40-60% 60-80% 80-100% Train Val

Sequences 4,087 37,319 17,756 8,570 5,864 517,936 5,775
Families 543 2,456 1,952 1,731 1,697 14,811 2,097

Clans 180 414 365 341 319 646 388
Coverage 65.31% 59.74% 58.66% 62.02% 56.71% 60.41% 58.79%

Average PID 18.35% 27.64% 42.45% 58.08% 80.01% NA 45.08%
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of data leakage may arise from the millions of representative sequences from the UniRef50 database
release April 2021 [30] used to train ESM-2. We identify that none of the 4,087 sequences in the
0 < PID ≤ 20 test subset were present as representative sequences in this version of UniRef50.
However, UniRef50 may contain close homologs to the sequences in this test subset.

A.1.1 BLUE

We use the BLUE algorithm [27] to split the 1.2M Pfam Seed domains into preliminary train and test
sets with a PID threshold of 25%. The pairwise PID between two sequences x and y is defined as
follows:

PID(x,y) =
# aligned residues
min(ℓ(x), ℓ(y))

, (4)

where ℓ(x) and ℓ(y) represent the lengths of sequences x and y, respectively. If two domains are in
the same family, PID is directly calculated from their seed alignment. If two domains are not in the
same family but are in the same clan, they are aligned using the glsearch tool from the FASTA3
software package [31], which performs a “global-local” alignment to account for possible large
differences in sequence length. If two domains are not in the same clan, they are assumed to share
< 25% PID.

A.1.2 Maximum PID calculation

Once the full length test sequences have been retrieved and subsequently filtered, we compute, for
each test sequence, the maximum PID between any of its annotated domains and any annotated
domain in train via Algorithm 1. Each test sequence is assigned to a single (out of five) test subset
based on its maxmimum PID.

Algorithm 1 Percent identity splitting test set
Require: train sequences Dtr, test sequences Dte, Pfam family profile HMMs F

Initialize an empty dictionary-like structure record_max_pids
for f ∈ F do

train_domains← hmmsearch f against Dtr

test_domains← hmmsearch f against Dte

for (domain,sequence_id) ∈ test_domains do
MSA← hmmalign domain to train_domains with f
domain_pids← esl-alipid MSA
max_pid←max(domain_pids)
if sequence_id not in record_max_pids then

record_max_pids[sequence_id]← max_pid
else if max_pid > record_max_pids[sequence_id] then

record_max_pids[sequence_id]← max_pid
end if

end for
end for
Assign each sequence in Dte to a test split based on max pid

The esl-alipid tool calculates PID for all pairs of sequences for a given MSA, and is part of the
EASEL software package, which can be downloaded together with HMMER [4].

A.1.3 Ground truth annotation

We determine “ground truth” by annotating full length sequence with Pfam Seed profile HMMs
using hmmscan with strict inclusion criteria (E-value < 0.001, bitscore ≥ 30). The highest-scoring
annotation at each residue is taken as ground truth, but additional post-processing is necessary to
ensure that “nested” domain structures are retained. This is accomplished by considering the “match
strings” that HMMER generates for an alignment. The match strings contain characters that represent
matches, where residues align to a given domain profile, and characters that represent inserts, where
unaligned residues are inserted into the sequence relative to the domain profile. Annotating the
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Figure 3: A schematic of nested domains with two domains A and B in the nested format A-B-A.
As A is annotated with a higher score than B and overlaps with B, annotating residues only via highest
score will fail to include domain B. Using the match state strings to identify smoothed maximal
segments preserves the nested domain structure in the ground truth annotation.

highest-scoring match state at each residue preserves nested domain structure in the ground truth
annotations (Fig. 3).

In a match string, regions with majority matches may contain a few inserts and vice versa. To prevent
frequently alternating annotations in the ground truth, we smooth the match and insert states in the
match string by identifying maximal scoring segments within the sequence. We assign insert states
a positive score and match states a negative score. The segment of the sequence with the greatest
aggregate score is known as the maximal segment [32], and all residues in the maximal segment are
denoted as insert states. The scores si for each state are inferred from the match string for a given
sequence:

si ∝ log

(
qi
pi

)
, (5)

where pi is the frequency with which the state appears in the match string, and qi is a state’s target
frequency, with

∑
i pi = 1 and

∑
i qi = 1. We set the insert state target frequency at 0.85, the match

state target frequency at 0.15, and the length threshold at 20, below which maximal segments are
ignored.
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A.2 Implementation details

The clan and family models follow a similar structure and are trained separately. Protein sequences are
initially embedded, providing a sequence of continuous, context-dependent residue-level embeddings
as a replacement for the sequence of amino acid characters typically used as input to profile HMMs.
The resulting embeddings are then passed into a single bidirectional Long Short-Term Memory
(BiLSTM) layer to capture sequential dependencies [33] in the forwards and backwards directions.
This bidirectional approach was chosen to mimic the backward pass in profile HMM optimization,
aligning with their ability to account for sequence contexts in both directions [2]. RNNs, including
BiLSTMs, have been shown to generalize profile HMMs by extending their capacity to model
complex, nonlinear dependencies in sequential data, while retaining state-based representations
[34, 35]. The choice of BiLSTM was made deliberately to introduce as few changes as possible,
ensuring that the observed performance improvements could be attributed primarily to the use of the
protein language model, rather than architectural differences from profile HMMs. The output from
the BiLSTM layer is subsequently decoded using a stack of three dense layers, scaled to the number
of clans or family labels, to produce logits across the prediction space. Probabilities are computed by
applying softmax to the logits generated by each model.

Model # Params Learning Rate
Clan Family Clan Family

PSALM650 69M 166M 5e−4 5e−5
PSALM150 18M 67M 5e−4 5e−5
PSALM35 10M 47M 5e−4 5e−5
PSALM8 5M 29M 5e−4 5e−5
PSALMOH 56M 153M 1e−4 1e−5

Table 3: Number of parameters and learning rates (LR) for PSALM models.

Both PSALM and PSALM-onehot are trained using cross entropy loss over the entire sequence
for both family and clan annotations. The family model is trained via teacher forcing, where it is
provided the correct clan annotation for each residue in order to mitigate error propagation [36]. For
training all PSALM+ESM-2 models, we use ADAM optimizer [37] with initial learning rate 5e− 4
for the clan model and 5e− 5 for the family model. These values were selected via hyperparameter
tuning from across the following learning rates: [1e− 3, 5e− 4, 1e− 4, 5e− 5, 1e− 5]. A similar
hyperparameter search results in a learning rate of 1e− 4 for the PSALMOH clan model and 1e− 5
for the family model. We employ a learning rate scheduler that reduces the learning rate by a factor of√
10 if the loss fails to decrease over consecutive epochs with an additional early stopping criterion

of 5 epochs with no improvement. The effective batch size is 32,768 tokens.

The number of parameters for all PSALM clan and family models are given in Table 3. All models
were trained on four NVIDIA A100 80GB GPUs. To accommodate memory limitations on the GPU,
all sequences are truncated to a maximum length of 4096 residues. This truncation strategy only
applies to approximately 0.25% of sequences across the training and test sets and does not reflect
a model limitation – PSALM can be used to annotate sequences of any length provided enough
memory. All procedures from the HMMER tool suite use version 3.4 [4].
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A.3 Model Capacity Experiments

We assess the model capacity of PSALM by evaluating performance across different model sizes,
using the 8M, 35M, 150M, and 650M parameter ESM-2 models denoted as PSALM8, PSALM35,
PSALM150, and PSALM650 (Table 4). We find that PSALM’s performance increases with ESM-2
model size up to the largest ESM-2 size tested (650M).

Table 4: PSALM model capacity results on MDPH-Bench

Clan Family
PID Model TPR FPR F1 MCC TPR FPR F1 MCC

0-20%

HMMER* 0.694 0.033 0.819 0.642 0.659 0.033 0.810 0.636
PSALM650 0.944 0.022 0.985 0.957 0.750 0.012 0.978 0.947
PSALM150 0.862 0.133 0.912 0.758 0.621 0.050 0.869 0.730
PSALM35 0.729 0.174 0.847 0.620 0.428 0.071 0.721 0.532
PSALM8 0.589 0.214 0.772 0.488 0.211 0.079 0.463 0.293
PSALMOH 0.490 0.100 0.764 0.559 0.089 0.022 0.236 0.203

20-40%

HMMER* 0.907 0.043 0.941 0.862 0.876 0.043 0.939 0.861
PSALM650 0.966 0.020 0.985 0.964 0.845 0.015 0.982 0.959
PSALM150 0.887 0.092 0.925 0.819 0.727 0.036 0.910 0.817
PSALM35 0.799 0.131 0.873 0.709 0.607 0.056 0.825 0.682
PSALM8 0.636 0.192 0.788 0.553 0.353 0.074 0.623 0.452
PSALMOH 0.516 0.107 0.780 0.602 0.102 0.023 0.282 0.251

40-60%

HMMER* 0.951 0.058 0.957 0.898 0.921 0.058 0.956 0.896
PSALM650 0.977 0.020 0.986 0.966 0.924 0.017 0.984 0.964
PSALM150 0.888 0.058 0.927 0.834 0.806 0.026 0.919 0.832
PSALM35 0.826 0.101 0.882 0.736 0.728 0.049 0.866 0.738
PSALM8 0.704 0.158 0.809 0.598 0.532 0.072 0.741 0.567
PSALMOH 0.666 0.104 0.835 0.671 0.159 0.029 0.430 0.363

60-80%

HMMER* 0.974 0.059 0.971 0.924 0.946 0.059 0.970 0.923
PSALM650 0.984 0.018 0.988 0.970 0.957 0.016 0.988 0.968
PSALM150 0.912 0.058 0.940 0.850 0.859 0.028 0.936 0.852
PSALM35 0.845 0.083 0.900 0.761 0.782 0.045 0.888 0.759
PSALM8 0.728 0.154 0.827 0.609 0.605 0.084 0.778 0.583
PSALMOH 0.788 0.094 0.890 0.745 0.216 0.027 0.573 0.478

80-100%

HMMER* 0.977 0.051 0.972 0.935 0.950 0.051 0.971 0.934
PSALM650 0.981 0.015 0.986 0.969 0.967 0.012 0.986 0.968
PSALM150 0.895 0.049 0.929 0.845 0.851 0.024 0.924 0.845
PSALM35 0.812 0.088 0.872 0.732 0.732 0.046 0.853 0.725
PSALM8 0.711 0.114 0.809 0.624 0.601 0.059 0.761 0.600
PSALMOH 0.877 0.066 0.925 0.836 0.282 0.018 0.709 0.630
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A.4 Family-only PSALM Full Results

We conduct an additional ablation experiment in order to study the effect of predicting clan-level
annotations as an interpretable intermediate in PSALM (Table 5). We retrain the PSALM family
models without providing any predicted clan annotations and denote this model as PSALM_F for all
ESM-2 model sizes tested in Appendix A.3. Clan predictions are generated by identifying the clan
corresponding to the predicted family. We find that intermediate clan predictions are necessary for
PSALM to surpass HMMER*.

Table 5: Family-only PSALM MDPH-Bench Results

Clan Family
PID Model TPR FPR F1 MCC TPR FPR F1 MCC

0-20%

HMMER* 0.694 0.033 0.819 0.642 0.659 0.033 0.810 0.636
PSALM_F650 0.701 0.015 0.827 0.664 0.632 0.015 0.811 0.653
PSALM_F150 0.630 0.034 0.781 0.596 0.540 0.034 0.753 0.576
PSALM_F35 0.560 0.065 0.733 0.523 0.412 0.065 0.670 0.476
PSALM_F8 0.394 0.115 0.599 0.355 0.232 0.115 0.469 0.253

20-40%

HMMER* 0.907 0.043 0.941 0.862 0.876 0.043 0.939 0.861
PSALM_F650 0.781 0.011 0.878 0.764 0.747 0.011 0.873 0.760
PSALM_F150 0.705 0.032 0.833 0.691 0.651 0.032 0.822 0.682
PSALM_F35 0.662 0.058 0.800 0.632 0.581 0.058 0.778 0.614
PSALM_F8 0.479 0.102 0.674 0.462 0.356 0.102 0.605 0.406

40-60%

HMMER* 0.951 0.058 0.957 0.898 0.921 0.058 0.956 0.896
PSALM_F650 0.833 0.012 0.906 0.810 0.816 0.012 0.904 0.809
PSALM_F150 0.785 0.025 0.877 0.759 0.758 0.025 0.873 0.756
PSALM_F35 0.746 0.048 0.846 0.703 0.708 0.048 0.839 0.697
PSALM_F8 0.594 0.087 0.749 0.557 0.520 0.087 0.723 0.535

60-80%

HMMER* 0.974 0.059 0.971 0.924 0.946 0.059 0.970 0.923
PSALM_F650 0.888 0.012 0.938 0.857 0.876 0.012 0.937 0.856
PSALM_F150 0.842 0.025 0.910 0.801 0.823 0.025 0.908 0.799
PSALM_F35 0.792 0.048 0.876 0.733 0.770 0.048 0.872 0.730
PSALM_F8 0.632 0.093 0.776 0.569 0.586 0.093 0.762 0.558

80-100%

HMMER* 0.977 0.051 0.972 0.935 0.950 0.051 0.971 0.934
PSALM_F650 0.892 0.010 0.940 0.875 0.887 0.010 0.939 0.875
PSALM_F150 0.835 0.024 0.903 0.808 0.819 0.024 0.901 0.806
PSALM_F35 0.740 0.047 0.839 0.701 0.720 0.047 0.835 0.697
PSALM_F8 0.661 0.078 0.783 0.609 0.627 0.078 0.774 0.601
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