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Abstract

Nuclear Magnetic Resonance (NMR) spectroscopy is essential for identifying
novel natural products. However, interpreting NMR spectra is time-consuming and
requires expertise, leading to the development of computational tools for "structure
annotation", which provides an ordered list of similar known molecules to speed
up identification.
This work introduces SPECTRE, a state-of-the-art transformer-based model for
structure annotation. Key contributions include 1) A novel, entropy-optimized
Morgan fingerprint (MF) that can be adjusted for different NMR spectra types. 2)
A lightweight, accurate structure annotation method, accepting flexible types of
NMR input by Data type dropout (DTD), a new data augmentation technique to
handle missing modalities for multi-modal models. As a result, SPECTRE achieves
95.79% accuracy, a 12.18% improvement over the previous SOTA.
Our code is available at here and the dataset is available at here . Unfortunately,
we have to remove all the HSQC spectra from the dataset because of intellectual
property issue.

1 Introduction

Research on new drugs from penicillin to a variety of anti-cancer compounds often begins with the
discovery and analysis of natural products. Nuclear Magnetic Resonance (NMR) spectroscopy is
pivotal to natural products’ structure analysis. Chemists use both one-dimensional (1D) and two-
dimensional (2D) NMR spectroscopy to solve molecular structures. This process typically starts with
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simple 1D experiments to gain basic information and progresses to more complex 2D experiments to
unravel detailed structural features. However, analyzing NMR spectra involves a considerable amount
of human reasoning and a high level of expertise, making it a substantial bottleneck in the structure
elucidation process. Structure annotation methods have been proved to expedite the identification
process by offering clues to molecular structure based on measured similarity to known molecules [9].

Thus, the construction of molecular representations suitable for machine learning models plays an
essential role in developing systems that assist chemists in this complex task. Notably, the Morgan
Fingerprint (MF) [10] is a bit vector representation of molecules widely used in cheminformatics.
Please refer to Appendix A for an explanation of MF’s configuration parameters: radius and length.

Building on this foundation, our work introduces SPECTRE, a cutting-edge transformer-based model
designed to aid chemists using NMR spectroscopy for molecular identification. We have developed a
novel form of Morgan Fingerprints, aiming for the highest entropy representation. SPECTRE is able
to predict these advanced fingerprints from NMR data and accurately identify molecules from a pool
of over 3,881 candidates. This marks a significant leap forward, improving accuracy by 12.18% and
reducing the parameter size by 93.94% over the previous state-of-the-art.

Furthermore, our model addresses one of the critical limitations encountered in prior work: the
restriction of input data types. SPECTRE’s versatility in accepting a wide array of NMR spectra
types, from 2D 1H–13C HSQC NMR to 1D 1H NMR and 13C NMR, and any combination of them,
substantially widens its applicability. This flexibility, the first in the field to our knowledge, enables
chemists to leverage NMR data more comprehensively for molecule recognition, particularly in
low-resource settings. Our proposed data type dropout method randomly removes some of the
three types of input NMR types for each training example, leading SPECTRE to learn more robust
molecule representations exploiting all three types of NMR spectra and accept molecules with only
some particular NMR spectrum type available.

2 Related Work

Molecular identification and representation are crucial in cheminformatics. SMILES [12] offers
a human-readable, machine-parsable string format representation and is used in our dataset as
molecules’ identifiers. Morgan Fingerprints(MFs) [10] map molecular structures to bit vectors and
admit variations like the fingerprint proposed in DeepSAT [4](DeepSAT FP) which reduce collisions.

NMR-based structure annotation has rapidly advanced with the advent of deep learning [1, 4].
Alberts, Zipoli, and Vaucher predict SMILES from 1D NMR spectra and then compute MF for
molecular retrieval. DeepSAT uses CNNs to process 2D 1H–13C HSQC spectra for classification,
molecular weight prediction, and their variation of MFs. SPECTRE, however, is the first to accept
flexible combinations of NMR inputs, including 1D 1H, 1D 13C, and 2D 1H–13C HSQC spectra.

Addressing missing modalities in multi-modal machine learning has been tackled by methods such
as ModDrop [8] and ModDrop++ [6], which are CNNs where each channel represent a modality
and missing modalities are handled by zeroing out channels. Cheerla and Gevaert use a multimodal
autoencoder and drop entire feature vectors for missing modalities, rescaling the weights for input
to the next stage. In contrast, our Data Type Dropout (DTD) uses delimiter tokens to combine all
modalities as one input sequence, with adjacent <start><end> delimiters indicating missing modalities.
ESM3 [3] uses BERT-style training to learn a model that can complete patterns of structure, sequence,
and function, allowing the generation of new molecules with desired properties.

3 Dataset

In our work, we collected 2D 1H–13C HSQC NMR spectra from the JEOL database [7] and simulated
some additional 2D 1H–13C HSQC NMR spectra using the ACD Labs’ Spectrus Processor, whose
license prevents us from releasing the simulated HSQC spectra to public. We in total have 2D
HSQC spectra of 137,267 molecules, together with their chemical names, SMILES strings, and
molecular weight. Meanwhile, we collected 1D 1H NMR and 1D 13C NMR spectra of 155,815
natural products from NP-MRD, the largest natural product NMR database. Duplicated molecules
with stereodescriptors, which indicate a right-handed and left-handed stereocenter, are filtered out
in our dataset. Combining the two sources, we created SPECTRE-DB (SDB), a dataset of 39,563

2



molecules with all three NMR spectra types, to compare different NMR combinations and choose
their entropy-based MF configurations. The rest of the molecules, which have partial NMR types
missing, are used to train models targeted to single-NMR-combination and DTD-based models.

4 Methods

Figure 1: SPECTRE Overview. A) demonstrates how NMR spectra and molecular weight are
encoded and provides an additional example when 1D NMRs are not available. Angle brackets
indicate classification tokens and input source delimiter tokens. At the 3rd column of HSQC spectra,
a negative sign means the carbon is bound with 1 or 3 hydrogen(s) and a positive sign means 2
hydrogens. B) shows that the input sequence is encoded by the transformer encoder and only the
<CLS> token is used to predict MF. Molecules will be retrieved based on cosine similarity. The
ground truths of NMR input are used only for measuring performance during validation and testing.

We use the transformer encoder architectures for the prediction of molecules’ Morgan Fingerprints
from their NMR spectra and molecular weights. Figure 1(a) illustrates the pre-processing of multi-
sourced inputs across different scenarios, showcasing the flexibility of SPECTRE. For missing NMR
types, <start> and <end> tokens are adjacently placed to indicate the absence of that modality.

Transformers have two advantages over CNNs. First, they handle inputs of varying lengths more
effectively and can process multi-sourced data simultaneously because of their attention mechanism,
making them ideal for incorporating molecular weight and handling missing NMR data using
delimiters. Second, while CNNs process the entire 2D 1H–13C HSQC NMR spectra as images where
most values are zero and therefore cause extreme inefficiency, transformers only use peak coordinates
in the form of (proton_shift, carbon_shift), reducing redundancy. This improvement is evident
in model size and performance: SPECTRE has 10.3M parameters, converging in 40 epochs (80
seconds/epoch on an Nvidia RTX 3090), while our implementation of DeepSAT, a CNN-based model,
has 173M parameters, needing 70 epochs (100 seconds/epoch) for convergence. This highlights the
transformer’s efficiency and suitability for complex chemical informatics tasks.

When training SPECTRE, we applied the Noam scheduler proposed in [11], batch size of 64, and
Adam optimizer [5]. Our early-stop metric is the rank-1 score, which is explained in section 4.
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4.1 Model’s Prediction Target: Entropy-Based Morgan Fingerprint

A key limitation of traditional Morgan Fingerprints (usually with radius 2) is their redundancy, with
many bits frequently zero. This reduces their ability to capture distinct molecular features. To address
this, combining MFs of different radii has been proposed as a solution.

Kim, et al. [4] proposed "a 6144-bit Morgan Fingerprint created by concatenating three 2048-bit
fingerprints for radii 0, 1, and 2". This method captures a wider range of chemical structures, but
redundancy remains an issue, as many bits are still predominantly zero, indicating the need for further
refinement.

We propose a novel entropy-based fingerprinting technique to reduce redundancy. Starting with
traditional MFs for radii 0 to a specific value n (in our case, 15), we concatenate them to form a
super-fingerprint of (n + 1) ∗ 6144 bits for every molecule, capturing a broad range of structural
features. For each bit in this vector, we compute its entropy across the training set, then sort them,
keeping the 6,144 bits with the highest entropy. We form a more compact and informative version of
fingerprint by picking the bits by the recorded indices. We refer to these as the R0 to Rn entropy-based
MF.

4.2 Model Architecture

Our model architecture is depicted as Figure 1(b). It consists of a transformer encoder, a classifier,
and a retrieval system using cosine similarity for ranking the results.

The encoder has 8 transformer encoder layers with 8 attention heads. The embedding size of 384 is
divided into 180, 180, and 24 for positional encoding of the 3 components of each token: <C-shift>,
<H-shift>, and <sign>. The first embedding, the <cls> token, is passed to a fully connected layer and
a sigmoid layer to predict a 6144-bit MF. Binary cross-entropy loss is used to update model weights.

During validation and testing, we de-duplicated the validation and test sets based on canonical
SMILES strings to form candidate pools, called "ranking sets," consisting of 3,942 and 3,881
molecules, respectively. The model predicts a 6144-bit MF and cosine similarities between the
predicted MF and each MF of the molecules from the ranking set are computed. A "Rank-k" score
represents the probability that the predicted MF ranks higher than the k-th most similar in the set.
The rank-1 score therefore indicates the accuracy of correctly identifying the input molecule.

4.3 Data Type Dropout(DTD) Technique

We deployed a new data-augmentation method named "Data Type Dropout" specifically for models to
adapt for uncertain input modality availability. In particular, when the input sequence is constructed,
each modality(2D 1H–13C HSQC NMR, 1D 1H NMR, and 1D 13C NMR spectra) are randomly
omitted from the input sequences. Therefore, DTD effectively expands the dataset because each
molecule is trained by a different input NMR combination at each different epoch. This approach
ensures that the model becomes adept at interpreting all possible NMR input combinations, leading
to capability to accept any combination of input modalities and better generalizability.

5 Experiments

In this section, we present our experiment results. For each model, we have 3 experiment trials
and report their average performances. In addition, molecular weight, which is easily accessible in
most chemistry labs, is always used as a part of model input when training SPECTRE models. Our
evaluation is mainly based on rank-1 score. Appendix B displays more detailed experiment data and
includes rank-5 score, mean rank, cosine similarity to ground truth, and F1-score of MF prediction,
providing a comprehensive analysis of model performance.

5.1 Uncovering the Most Efficient Morgan Fingerprint for each Type of Input

This section explores experimentation with different entropy-based MFs as target outputs for each
NMR input type, aiming to identify the most suitable MF for each and compare the identification
capability of each type of NMR. Table 1 presents the results of comparing the rank-1 score of each
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NMR input combination type using different MFs, including the R0-to-Rn MF (with n from 1 to 5)
and DeepSAT FP. Experiments are conducted on the SPECTRE-DB dataset where all three types of
NMR and molecular weight are accessible to ensure fair comparison. For more detailed comparison
results, please refer to Appendix B.

We found that using multiple types of NMR data consistently improves ranking scores, whereas the
previous SOTA method, DeepSAT, only uses 2D 1H–13C HSQC as input. Further, our entropy-based
MFs outperform DeepSAT FP. Contrary to the belief that 2D 1H–13C HSQC spectra offer more
structural information, results from the last three rows of Table 1 indicate that 1D 13C-NMR is the
most informative. This suggests that transformers may better utilize information from carbon atoms
without hydrogen, which 2D spectra lack, compared to human analysis.

Rank-1 Score↑ R0-1 MF R0-2 MF R0-3 MF R0-4 MF R0-5 MF DeepSAT FP
All 3 NMRs 90.82% 93.50% 93.92% 94.12% 93.71% 92.58%

C NMR and H NMR 89.26% 92.56% 92.80% 92.86% 92.24% 91.96%
HSQC and C NMR 89.56% 92.52% 92.81% 92.95% 92.36% 91.42%
HSQC and H NMR 85.05% 89.56% 89.99% 90.04% 89.58% 88.40%

Only C NMR 86.21% 89.52% 89.66% 89.58% 89.13% 88.29%
Only H NMR 77.17% 82.27% 82.06% 82.44% 82.04% 81.25%
Only HSQC 75.76% 81.37% 81.63% 81.61% 80.89% 79.11%

Table 1: Rank-1 score of each NMR input combination type using different MFs. Each value is
measured on separate models trained with its corresponding NMR inputs and target MF.

5.2 Achieving Higher Performance by Data Type Dropout

The main advance of our model over previous state-of-the-art approaches is primarily due to the
incorporation of multiple types of input NMRs. However, oftentimes not all three types of NMR
spectra are available.

One solution is to train separate models for each NMR input combination using the most efficient MF
identified in subsection 5.1, though model performance is limited by dataset size. We compare this
approach with our Data Type Dropout (DTD) method (subsection 4.3), which augments the dataset
by training the model with incomplete data. Using DTD, we train SPECTRE with the R0-R4 entropy-
based MF, the most effective model experimentally. Each NMR type’s dropout rate is adjusted for
even distribution of each NMR type combination during training. We compare the effectiveness of
these two strategies in Table 2 and find that DTD improves performance when multiple NMR types
are used but reduces effectiveness when only a single NMR type is available. This suggests that
DTD is an effective strategy for enhancing a model’s ability to learn relations and interactions across
multiple modalities.

Model w/ DTD Model w/o DTD
Model Input Rank-1↑ sampled rate Rank-1↑ training set size
All 3 NMRs 95.79% 5.0% 94.12% 31,740

C NMR and H NMR 94.72% 17.5% 92.91% 152,981
HSQC and C NMR 94.86% 5.0% 92.83% 34,567
HSQC and H NMR 91.95% 5.0% 89.77% 31,747

Only C NMR 91.59% 17.5% 92.71% 155,808
Only H NMR 82.51% 17.5% 88.90% 152,988
Only HSQC 84.77% 32.5% 88.79% 109,694

Table 2: Performance comparison of models trained on all available NMR data. For single-NMR-
combination models, each row represents separate models trained with the best-performing MF from
subsection 5.1 and molecules filtered by the availability of corresponding NMR input combination.
For models trained using the DTD technique, all NMR spectra are utilized, and dropout rates are
adjusted to maximally balance the occurrence of each NMR combination, with the sampling rates
indicated above. Each row represents model weights saved at different checkpoints, based on the
rank-1 score of the corresponding NMR combination.

5



6 Conclusion

We introduced SPECTRE, a transformer-based approach for structure elucidation of natural products
via NMR spectroscopy, leveraging a novel high-entropy Morgan Fingerprint. Our contributions
include developing a robust molecular representation and a lightweight model that accurately predicts
these fingerprints from flexible NMR spectra availability by the Data Type Dropout technique.
SPECTRE surpasses the previous state-of-the-art, DeepSAT, in accuracy with far fewer parameters.
This approach expedites structure identification, potentially accelerating pharmaceutical development.

7 Limitations and Future Work

A key limitation is the exclusion of solvent effects, as our dataset lacks solvent metadata, which could
improve model accuracy. Incorporating high-quality Mass Spectrometer data is another potential
enhancement. Interestingly, 1D 13C-NMR achieves higher accuracy than 2D 1H–13C HSQC, contrary
to chemists’ expectations. Future work will explore why transformer models interpret NMR data
differently than humans. We also aim to leverage deep learning for predicting SMILES strings from
NMR data, advancing natural product identification and therapeutic development.
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A Appendix1: Morgan Fingerprint Explanation in Detail

Morgan Fingerprint(MF) encodes molecular structures into bit vectors and hence the cosine between
two MFs is a way to measure the similarity of structure. MFs have seen widespread application
in cheminformatics. Its algorithm breaks down a molecule into fragments based on the radius of
molecular bonds, compares the fragments against a pre-compiled fragments library, and converts
the results into a set of bit vectors by using a hash function, allowing for possible collisions. The
algorithm has two parameters: the length of the vector (hash table size) and the radius: These
fingerprints start at radius 0, which maps all atoms into the vector, and expand to radius 1, mapping
the structure of each atom’s immediate one-bond neighborhood into the bit vector, and so on until it
finishes the specified radius.

Count-based MFs include a count of each structure rather than just a binary entry [13]. However, one
cannot reproduce the molecule from its MF. In other words, MF can be calculated based on SMILES
string but one cannot derive the SMILES string from MF.

B Appendix2: Most efficient entropy-based Fingerprint for each input
combination type

Here we present the results of training SPECTRE with different target outputs. All molecules in the
training, validation, and test set have all three types of NMR: 2D 1H–13C HSQC, 1D 13C NMR, 1D
1H NMR.

Notably, when the radii go beyond 4, the performance drops along with the radius increasing. This is
because as the radius increases, the presence of each active has a more ambiguous meaning since
it can result from a molecule subgroup with any size of radius between 0 to the selected radius.
Therefore, inspired by DeepSAT FP, we also created another version of an entropy-based fingerprint
where each active bit corresponds to a molecule subgroup with a specific radius. However, this
method doesn’t show any experimental success and we hypothesize that this method leads to the
problem of sparsity again and has suboptimal performance.

While we aim to maximize MF entropy, the fingerprints still consist of mostly zeros, with entropy
increasing as more radii are included. Therefore, comparing F1 scores across models using the same
MF is more meaningful than comparing across different MFs. For instance, the R0-R1 MF has the
lowest entropy, which means it contains the most zeros as it hashes only substructures with radii 0
and 1. Therefore, it has high F1 scores in despite of low rank-1/rank-5 scores.

Model Input Rank-1↑ Rank-5↑ Mean Rank↓ Cosine Sim↑ F1-score↑
R0 to R1 MF 90.82% 97.57% 5.81 0.9353 0.9374
R0 to R2 MF 93.50% 98.48% 4.42 0.8823 0.8886
R0 to R3 MF 93.92% 98.66% 2.78 0.8506 0.8589
R0 to R4 MF 94.12% 98.76% 3.65 0.8377 0.8473
R0 to R5 MF 93.71% 98.78% 2.91 0.8371 0.8453
R0 to R6 MF 93.26% 98.63% 2.98 0.8321 0.8416
R0 to R7 MF 93.47% 98.82% 3.51 0.8420 0.8501
R0 to R8 MF 93.10% 98.65% 2.19 0.8462 0.8541
R0 to R9 MF 92.93% 98.55% 2.55 0.8466 0.8546
R0 to R10 MF 92.64% 98.51% 3.03 0.8469 0.8557
R0 to R11 MF 92.41% 98.53% 3.14 0.8489 0.8582
R0 to R12 MF 92.43% 98.56% 2.88 0.8561 0.8647
R0 to R13 MF 92.17% 98.15% 3.08 0.8583 0.8667
R0 to R14 MF 91.88% 98.34% 2.68 0.8626 0.8707
R0 to R15 MF 91.82% 98.50% 2.77 0.8663 0.8744
DeepSAT FP 92.58% 98.29% 3.41 0.8297 0.8389

Table 3: Performance of various MFs when all three NMRs are available
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Model Input Rank-1↑ Rank-5↑ Mean Rank↓ Cosine Sim↑ F1-score↑
R0 to R1 MF 89.26% 96.48% 8.38 0.9305 0.9337
R0 to R2 MF 92.56% 97.65% 5.37 0.8784 0.8860
R0 to R3 MF 92.80% 97.98% 4.35 0.8467 0.8570
R0 to R4 MF 92.86% 98.00% 3.75 0.8368 0.8473
R0 to R5 MF 92.24% 97.77% 4.76 0.8307 0.8420
R0 to R6 MF 92.09% 97.80% 4.63 0.8334 0.8443
R0 to R7 MF 92.14% 97.94% 4.84 0.8418 0.8516
R0 to R8 MF 91.79% 97.87% 5.04 0.8436 0.8535
R0 to R9 MF 91.77% 97.69% 4.32 0.8444 0.8547
R0 to R10 MF 91.56% 97.82% 4.49 0.8453 0.8558
R0 to R11 MF 91.37% 97.59% 5.25 0.8477 0.8589
R0 to R12 MF 90.83% 97.41% 4.95 0.8513 0.8618
R0 to R13 MF 90.89% 97.44% 4.91 0.8567 0.8671
R0 to R14 MF 90.80% 97.62% 4.70 0.8612 0.8717
R0 to R15 MF 90.26% 97.48% 5.89 0.8644 0.8748
DeepSAT FP 91.96% 97.58% 4.55 0.8291 0.8403

Table 4: Performance of various MFs when only 1D 13C-NMR and 1H-NMR are available

Model Input Rank-1↑ Rank-5↑ Mean Rank↓ Cosine Sim↑ F1-score↑
R0 to R1 MF 89.56% 96.96% 5.84 0.9267 0.9293
R0 to R2 MF 92.52% 97.83% 5.15 0.8760 0.8830
R0 to R3 MF 92.81% 98.30% 3.43 0.8432 0.8525
R0 to R4 MF 92.95% 98.52% 3.16 0.8319 0.8415
R0 to R5 MF 92.36% 98.28% 3.14 0.8294 0.8392
R0 to R6 MF 92.11% 98.13% 3.09 0.8313 0.8403
R0 to R7 MF 92.14% 98.40% 3.15 0.8340 0.8430
R0 to R8 MF 91.87% 98.08% 2.74 0.8389 0.8480
R0 to R9 MF 91.79% 98.21% 3.15 0.8408 0.8496
R0 to R10 MF 91.43% 98.02% 3.29 0.8395 0.8490
R0 to R11 MF 91.12% 97.97% 3.54 0.8422 0.8520
R0 to R12 MF 91.04% 97.98% 3.34 0.8475 0.8568
R0 to R13 MF 90.89% 97.97% 2.74 0.8516 0.8610
R0 to R14 MF 91.06% 97.89% 3.41 0.8564 0.8654
R0 to R15 MF 90.41% 97.79% 4.01 0.8608 0.8698
DeepSAT FP 91.42% 97.81% 3.96 0.8166 0.8265

Table 5: Performance of various MFs when 2D 1H–13C HSQC and 1D 13C-NMR are available

Model Input Rank-1↑ Rank-5↑ Mean Rank↓ Cosine Sim↑ F1-score↑
R0 to R1 MF 85.05% 95.11% 9.86 0.9108 0.9136
R0 to R2 MF 89.56% 96.69% 6.85 0.8576 0.8647
R0 to R3 MF 89.99% 97.20% 6.25 0.8247 0.8339
R0 to R4 MF 90.04% 97.22% 4.58 0.8194 0.8281
R0 to R5 MF 89.58% 97.11% 5.12 0.8137 0.8234
R0 to R6 MF 88.87% 97.08% 4.85 0.8175 0.8263
R0 to R7 MF 88.61% 96.88% 4.68 0.8199 0.8288
R0 to R8 MF 88.27% 96.97% 5.37 0.8227 0.8316
R0 to R9 MF 88.27% 97.08% 3.96 0.8237 0.8324
R0 to R10 MF 88.32% 96.63% 5.76 0.8220 0.8320
R0 to R11 MF 87.35% 96.52% 4.82 0.8222 0.8325
R0 to R12 MF 87.13% 96.61% 5.67 0.8288 0.8389
R0 to R13 MF 87.33% 96.45% 5.71 0.8331 0.8434
R0 to R14 MF 87.27% 96.51% 4.69 0.8389 0.8485
R0 to R15 MF 86.73% 96.40% 5.81 0.8415 0.8512
DeepSAT FP 88.40% 96.41% 6.19 0.8022 0.8119

Table 6: Performance of various MFs 2D 1H–13C HSQC and 1D 13H-NMR are available
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Model Input Rank-1↑ Rank-5↑ Mean Rank↓ Cosine Sim↑ F1-score↑
R0 to R1 MF 86.21% 94.15% 15.86 0.9184 0.9229
R0 to R2 MF 89.52% 95.78% 11.26 0.8650 0.8751
R0 to R3 MF 89.66% 96.29% 9.84 0.8312 0.8443
R0 to R4 MF 89.58% 96.27% 9.79 0.8203 0.8336
R0 to R5 MF 89.13% 96.05% 10.10 0.8192 0.8324
R0 to R6 MF 89.02% 96.17% 9.40 0.8209 0.8338
R0 to R7 MF 89.03% 96.07% 9.48 0.8235 0.8367
R0 to R8 MF 87.96% 96.16% 9.69 0.8296 0.8416
R0 to R9 MF 87.90% 95.90% 8.36 0.8305 0.8431
R0 to R10 MF 88.07% 95.87% 9.45 0.8274 0.8418
R0 to R11 MF 87.45% 95.62% 10.87 0.8307 0.8450
R0 to R12 MF 87.47% 95.74% 9.72 0.8367 0.8502
R0 to R13 MF 87.57% 95.84% 8.38 0.8393 0.8527
R0 to R14 MF 87.36% 95.67% 9.20 0.8437 0.8568
R0 to R15 MF 87.10% 95.47% 9.13 0.8514 0.8649
DeepSAT FP 88.29% 95.41% 10.92 0.8114 0.8252

Table 7: Performance of various MFs when only 1D 13C-NMR is available

Model Input Rank-1↑ Rank-5↑ Mean Rank↓ Cosine Sim↑ F1-score↑
R0 to R1 MF 77.17% 89.97% 33.08 0.8888 0.8940
R0 to R2 MF 82.27% 92.84% 25.78 0.8305 0.8412
R0 to R3 MF 82.06% 93.25% 18.84 0.7989 0.8124
R0 to R4 MF 82.44% 93.47% 17.44 0.7917 0.8057
R0 to R5 MF 82.04% 93.30% 16.40 0.7907 0.8039
R0 to R6 MF 81.64% 92.97% 18.17 0.7910 0.8045
R0 to R7 MF 81.50% 93.22% 16.91 0.7981 0.8108
R0 to R8 MF 80.92% 92.83% 17.93 0.8009 0.8139
R0 to R9 MF 80.59% 92.61% 18.99 0.7991 0.8127
R0 to R10 MF 80.67% 92.66% 18.14 0.7977 0.8125
R0 to R11 MF 80.29% 92.33% 16.22 0.8014 0.8161
R0 to R12 MF 79.89% 92.21% 19.01 0.8053 0.8203
R0 to R13 MF 79.28% 92.01% 20.75 0.8095 0.8241
R0 to R14 MF 79.26% 91.91% 18.95 0.8140 0.8283
R0 to R15 MF 79.24% 91.83% 17.80 0.8186 0.8331
DeepSAT FP 81.25% 92.49% 20.08 0.7766 0.7909

Table 8: Performance of various MFs when only 1D 1H-NMR is available
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Model Input Rank-1↑ Rank-5↑ Mean Rank↓ Cosine Sim↑ F1-score↑
R0 to R1 MF 75.76% 90.10% 19.72 0.8781 0.8813
R0 to R2 MF 81.37% 93.11% 12.28 0.8168 0.8236
R0 to R3 MF 81.63% 93.91% 11.62 0.7914 0.8010
R0 to R4 MF 81.61% 93.81% 10.13 0.7852 0.7946
R0 to R5 MF 80.89% 93.62% 9.90 0.7813 0.7912
R0 to R6 MF 79.84% 93.43% 10.22 0.7805 0.7905
R0 to R7 MF 79.59% 93.04% 9.78 0.7844 0.7943
R0 to R8 MF 79.07% 92.73% 10.69 0.7888 0.7986
R0 to R9 MF 77.93% 92.84% 9.17 0.7949 0.8037
R0 to R10 MF 78.10% 92.62% 11.05 0.7991 0.8081
R0 to R11 MF 77.96% 92.51% 10.58 0.8026 0.8119
R0 to R12 MF 77.82% 92.29% 10.07 0.7930 0.8038
R0 to R13 MF 77.31% 92.12% 11.53 0.7949 0.8062
R0 to R14 MF 76.71% 91.54% 10.35 0.7985 0.8096
R0 to R15 MF 76.07% 91.42% 11.00 0.8032 0.8144
DeepSAT FP 79.11% 92.53% 13.36 0.7569 0.7660
Table 9: Performance of various MFs when only 2D 1H–13C HSQC is available
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