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Abstract

Accurate prediction of molecular activities is crucial for efficient drug discovery,
yet remains challenging due to limited and noisy datasets. We introduce Similarity-
Quantized Relative Learning (SQRL), a learning framework that reformulates
molecular activity prediction as relative difference learning between structurally
similar pairs of compounds. SQRL uses precomputed molecular similarities to
enhance training of graph neural networks and other architectures, and significantly
improves accuracy and generalization in low-data regimes common in drug dis-
covery. We demonstrate its broad applicability and real-world potential through
benchmarking on public datasets as well as proprietary industry data. Our find-
ings demonstrate that leveraging similarity-aware relative differences provides an
effective paradigm for molecular activity prediction.

1 Introduction and Background

The ability to predict molecular activity is critical for small molecule drug discovery. However,
experimental data for training machine learning models are often limited and noisy, making robust
generalization challenging. While deep learning approaches have enabled rich representations from
chemical structures [1–13], most focus on predicting absolute property values, ignoring valuable
information in relationships between structurally similar molecules.

Drawing inspiration from medicinal chemists [14], who examine how specific structural modifi-
cations influence properties relative to a parent compound or a matched molecular pair [15], we
introduce Similarity-Quantized Relative Learning (SQRL)—a training and evaluation framework
that reformulates property prediction as learning relative differences between nearby compounds.

The key contributions of our work are:

• We introduce a robust similarity-thresholded learning approach that significantly enhances
model performance by focusing on predicting property differences between the most
informative compound pairs. This allows effective learning from limited and noisy data.

• Our analysis across molecular distance metrics and thresholds demonstrates that similarity-
aware dataset matching outperforms indiscriminate pairing of all inputs, as it more
effectively leverages local structural information.

• Extensive benchmarking demonstrating the benefits of SQRL across diverse state-of-the-
art network architectures and multiple activity prediction datasets, including publicly
available activity cliff prediction tasks and real-world industry datasets.
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2 Related Work

Molecular property prediction. Significant research has focused on methods for molecular prop-
erty and activity prediction, including recent work on graph neural networks (GNNs) [1–7] along with
chemical language models [8–12] that learn meaningful molecular representations from molecular
data [13]. Despite these advances, simpler tree-based models often outperform more complex neural
approaches due to limited data availability and inherent modeling challenges [16, 17].

Activity cliff prediction. Activity cliffs refer to pairs of molecules with high structural similarity
but significantly different activity levels. Previous approaches have addressed this challenging
problem by representing molecular graphs as images [18, 19], applying graph convolutional networks
(GCNs) to matched molecular pairs [20], or using chemical reaction information [21]. Many of these
methods have formulated the problem as a classification task, aiming to identify whether a given
molecular pair exhibits an activity cliff [22] or as a standard regression task that relies on learning
the discontinuous chemical space directly from the data [23]. Our approach focuses on predicting
the difference in potency values between any pair of similar molecules, providing a more versatile
solution that can also be applied to standard potency prediction.

Metric, similarity, and few-shot learning. Pairwise learning approaches have been widely adopted
in fields like ranking, metric, and similarity learning [24, 25]. Notably, few-shot learning approaches
have been developed for molecular property prediction for improving generalization in low-data
regimes [26–28]. Additionally, pairwise data matching has proven effective in implicit guidance of
generative models for drug design. [29].

Relative prediction. Recently, pairwise learning has been applied to regression tasks. Wetzel et al.
used Siamese networks to predict differences between all data points in both supervised and unsuper-
vised settings as a way of producing ensembles of predictions and uncertainty estimates [30, 31]. This
approach has been extended to classification tasks for tree-based models [32]. Tynes et al. applied the
concept of pairwise learning to computational chemistry, analyzing the performance of random forest
models trained on all pairs of inputs points [33]. Similarly, Fralish et al. trained a D-MPNN model
on paired compounds and observed improvements in ADME property predictions [34] and molecule
selection in an active learning setting [35].

Unlike previous approaches that primarily focus on absolute property predictions or indiscriminate
pairwise learning, our work introduces a similarity-thresholded framework that emphasizes learning
from the most informative compound pairs.

3 Similarity-Thresholded Relative Representation

Problem formulation. We formulate the relative prediction task as follows. Given a dataset of
molecular structures D = {(xi, yi)}Ni=1, where xi represents molecule i and yi ∈ R denotes its
corresponding property value, our goal is to learn a function f : X ×X → R that predicts the relative
difference in property values between two molecules. Formally, for any pair of molecules (xi, xj),
we aim to predict the relative difference ∆yij = yi − yj .

Dataset matching. To train models on the relative prediction task, we construct a new dataset
Drel by considering pairs of molecules in the original dataset D. To focus on the most informative
comparisons, we restrict the pairs to those within a certain threshold of structural similarity, as
measured by a predefined similarity metric (e.g., Tanimoto similarity). This allows models to
learn from local differences in chemical space where relative changes in property values are most
meaningful. We define Drel as:

Drel = {((xi, xj),∆yij) | xi, xj ∈ D, d(xi, xj) ≤ α} (1)
where d : X × X → R≥0 is a distance function in the input space X and α ∈ R>0 is a distance
threshold. See Appendix A.4 for examples of paired structures.

The choice of α is critical, as it involves a trade-off between the quantity and relevance of generated
pairs. We propose selecting α based on the distribution of distances in the training data, specifically
by choosing a threshold smaller than the average pairwise distance. This approach can help form
more informative pairs by focusing on molecules with greater structural similarity and relevance.
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Figure 1: Leveraging local structural information enhances predictive performance. Top:
Incorporating neighbors only up to a certain distance threshold α improves MAE (↓). Bottom:
Pairwise distance distributions of training data (overlaid for all 30 MoleculeACE tasks) with greater
skewness and kurtosis yield the best performance and a wider range of acceptable values of α.

Relative representation. We define g : X → Rd as a mapping function that converts a molecular
compound from the input space X into a d-dimensional real-valued vector. This can be either
a learnable model (such as a graph neural network), a pre-trained model, or a fixed molecular
fingerprinting algorithm. Next, a machine learning model f : Rd → R uses the difference between
molecular representations generated by g to predict the relative differences in properties.

We optimize parameters θ of f and g (if learnable) by minimizing:

min
θ

L(θ) = min
θ

∑
((xi,xj),∆yij)∈Drel

ℓ
(
f (g(xi)− g(xj)) ,∆yij

)
(2)

where ℓ is mean squared error loss. For a new molecule xnew, we compute the prediction ŷnew as:

ŷnew =
1

n

∑
xi∈NNn(xnew)

yi + f (g(xi)− g(xnew)) (3)

where NNn(xnew) denotes the set of n molecules from the training data D that are nearest to xnew as
determined by the distance function d(xi, xnew). Unless otherwise specified, we set n = 1.

4 Experimental Results

4.1 Experimental setup

To understand the generality of SQRL, we conducted extensive evaluations across a diverse set of
models and molecular activity datasets. Each model was trained to predict absolute property values
directly (Standard) or to predict relative differences between selected molecule pairs (SQRL). More
details about models, hyperparameter selection, and datasets can be found in Appendices A.1–A.4.

Models. We benchmarked baselines (RF [36], XGBoost [37], KNN) using Morgan fingerprints [38]
with RDKit features [39], MLP with Morgan fingerprints, GNNs (AttentiveFP [4], GINE [40],
PNA [41], MolCLR [42]), and transformer models (COATI [43], SAFE-GPT [44], and Uni-Mol [45]).

Distance metrics. Several distance metrics were used to create training data pairs and obtain
the closest training molecules for inference. We evaluated Tanimoto distances between Morgan
fingerprints [38], Tanimoto distances between substructure count vectors [46], as well as Euclidean
distances using COATI [43], Uni-Mol, and MolCLR embeddings [42] (see A.5).

Datasets. We evaluated our approach on 30 activity prediction tasks (pEC50/pKi) for ChEMBL
targets using the MoleculeACE dataset [23]. This dataset includes challenging activity cliff molecules
(MoleculeACE-Cliff)—structurally similar compounds with large activity differences—providing a
crucial test of local generalizability (see A.4). Additionally, we evaluated models on 5 proprietary
drug discovery projects (Internal Targets) to assess the real-world applicability of our approach.
Models are trained on single tasks and results are reported aggregated across tasks.
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Table 1: Spearman’s ρ (↑) comparison of predictive performance. Spearman’s ρ with standard
deviation across tasks for Standard and SQRL methods using Tanimoto distance with α = 0.7.
Uni-Mol was evaluated on a subset of tasks due to computational constraints. See Appendix A.1 for
more details and MAE scores (Table 3).

MoleculeACE MoleculeACE-Cliff Internal Targets
Model Standard SQRL Standard SQRL Standard SQRL

Baselines

XGBoost 0.79 ± 0.10 0.76 ± 0.08 0.72 ± 0.18 0.64 ± 0.15 0.73 ± 0.14 0.65 ± 0.16
RF 0.80 ± 0.09 0.77 ± 0.07 0.72 ± 0.18 0.68 ± 0.14 0.70 ± 0.13 0.68 ± 0.14
KNN 0.66 ± 0.10 0.67 ± 0.13 0.57 ± 0.19 0.59 ± 0.23 0.52 ± 0.14 0.52 ± 0.14
MLP 0.32 ± 0.17 0.73 ± 0.09 0.23 ± 0.16 0.62 ± 0.16 0.39 ± 0.14 0.59 ± 0.20
GNNs

AttentiveFP 0.52 ± 0.20 0.77 ± 0.09 0.43 ± 0.19 0.67 ± 0.17 0.49 ± 0.13 0.66 ± 0.19
GINE 0.33 ± 0.19 0.76 ± 0.09 0.29 ± 0.21 0.68 ± 0.18 0.40 ± 0.22 0.61 ± 0.17
PNA 0.51 ± 0.18 0.72 ± 0.08 0.41 ± 0.17 0.61 ± 0.18 0.52 ± 0.12 0.64 ± 0.15
MolCLR 0.35 ± 0.22 0.77 ± 0.09 0.28 ± 0.20 0.66 ± 0.18 0.39 ± 0.27 0.68 ± 0.17
Transformers

COATI 0.69 ± 0.11 0.74 ± 0.09 0.59 ± 0.15 0.64 ± 0.16 0.52 ± 0.26 0.61 ± 0.18
Uni-Mol 0.26 ± 0.19 0.69 ± 0.10 0.19 ± 0.20 0.57 ± 0.18 0.40 ± 0.16 0.51 ± 0.14
SAFE-GPT 0.61 ± 0.20 0.71 ± 0.08 0.56 ± 0.22 0.61 ± 0.14 0.58 ± 0.14 0.59 ± 0.15

4.2 Leveraging local structural information improves learning

A key hypothesis of SQRL is that not all possible relative pairs are equally informative, and training
on all pairwise comparisons as done previously [32–34] may overemphasize global relationships at
the expense of local consistency. We analyzed pairwise distance distributions using various distance
metrics and found that some distributions exhibit significant left-skew and/or high kurtosis (Figure 1
and Appendix Figure 5). We hypothesize that these highly similar compounds contain the most
informative signal. To test this assumption, we trained MLP models on top of Morgan fingerprint
features across a range of similarity thresholds for each of the metrics (Figure 1). We observed that
incorporating neighbors up to a certain threshold provides a pronounced improvement in performance,
but beyond this point, including more dissimilar pairs degrades performance. Moreover, performance
is best for distance metrics with the desired distribution characteristics (e.g., Tanimoto and COATI).
These results demonstrate the benefit of our similarity-thresholded approach: a smaller distance
threshold α yields fewer but potentially more informative pairs, while a larger threshold increases pair
count but may introduce less relevant comparisons. Our findings support the hypothesis that focusing
on the most similar pairs effectively leverages local structural information (Appendix Figure 6),
leading to improved predictive performance across various model architectures and datasets.

4.3 SQRL consistently improves predictive performance across all neural network
architectures

To understand which model types benefit from this approach, we performed extensive benchmarking
of molecular property prediction models trained using both the standard absolute prediction objective
and SQRL. While the baseline models did not significantly benefit from relative training, all deep
learning architectures exhibit consistent improvement of the Spearman rank correlation across all
datasets when trained with SQRL (Table 1). We observe significant improvements for all GNN
architectures and especially for the pre-trained transformer-based models—0.57 and 0.43 point
improvement for COATI and Uni-Mol, respectively. Notably, substantial improvements are observed
on the MoleculeACE-Cliff subset, highlighting SQRL’s ability to capture fine-grained structural
differences that significantly impact molecular properties. Evaluation on internal targets shows that
the observed benefits are transferable to real-world scenarios and underscore the robustness and broad
applicability of this approach.
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The lack of improvement for XGBoost, RF, and KNN with SQRL is notable. This may indicate that
the simple difference fingerprint representation is not sufficient for these models as it forces these
models to only learn from substructures that differ between a pair of molecules without taking into
account the rest of the molecular structure of both molecules. A higher fidelity representation, such
as concatenating the full molecular fingerprints to the difference representation, may overcome this
limitation. Even so, most modern deep learning methods do not outperform conventional baselines
(with or without SQRL). The small size of the training data for each task likely contributes to this
result. However, we expect that neural network approaches may outperform baselines with additional
tuning (e.g., more rigorous hyperparameter selection, choosing a more optimal distance threshold, or
redesigning the training objective).

5 Conclusions and Future Directions

Overall, our work demonstrates consistent improvements for neural networks in molecular activity
prediction using SQRL, particularly in capturing molecular activity cliffs. Our method shows promise
in learning from pairwise differences, potentially offering a more nuanced understanding of structure-
activity relationships. The limitations of the current work include the assumption that meaningful
distance metrics are available. Future research could focus on refining SQRL for applications where
similarity measures are less well-defined or more challenging to establish.
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A Appendix

A.1 Models

We used the following models to evaluate the effectiveness of the SQRL approach:

Baselines. All baseline models were trained on top of Morgan count fingerprints of size 2048,
radius 2, and including chirality. For RF, XGBoost, and KNN, RDKit features from [39] were
concatenated to Morgan fingeprints.

• Random Forest (RF): An ensemble learning method using decision trees. Scikit-learn
implementation was used [47] with default parameters.

• XGBoost: A gradient boosting framework, optimized for efficiency and performance.
Implementation from Ref. 37 was used with default parameters.

• k-Nearest Neighbors (KNN): A non-parametric method based on the similarity between
data points. Scikit-learn implementation was used [47] with k = 1 to compare with our
relative setting where we evaluate with respect to the closest training data point.

• Multi-Layer Perceptron (MLP): A standard feedforward neural network.

Graph neural networks. GNNs were trained end-to-end, with their learned representations fol-
lowed by MLP layers for standard or relative predictions.

• AttentiveFP: A graph neural network that uses graph attention mechanisms to capture
atomic interactions [4].

• GINE: Graph Isomorphism Network with Edge features, enhancing the model’s ability to
capture bond information [40].

• PNA: Principal Neighbourhood Aggregation, a GNN architecture designed to be stable
under permutations [41]. The implementation used in this paper follows Ref. 28.

• MolCLR: A pre-trained GNN using contrastive learning for molecular representation. In
our experiments, we did not freeze the MolCLR layers, allowing them to be fine-tuned along
with the rest of the model, according to the procedure of the original authors [42].

Transformer-based models. For transfomer-based models, we utilized the pre-trained embeddings
as fixed feature extractors, followed by MLP for task-specific predictions.

• SAFE-GPT: A chemical language model trained on linear molecular notation which has
been adapted for autoregressive tasks [44].
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• Uni-Mol: A 3D-aware transformer model trained on molecular conformations using SE(3)
equivariant operations [45]. Due to computationally expensive conformation generation,

• COATI: A multi-modal generative model combining 2D and 3D molecular information
through contrastive learning [43]. To obtain embeddings for our applications, the text
encoder part of the model was used (Barlow_Closed).

Due to the computationally expensive conformer generation step, Uni-Mol-SQRL was evaluated
on the following subset of MoleculeACE tasks (23/30): CHEMBL2971_Ki, CHEMBL2835_Ki,
CHEMBL219_Ki, CHEMBL228_Ki, CHEMBL238_Ki, CHEMBL1862_Ki, CHEMBL218_EC50,
CHEMBL231_Ki, CHEMBL235_EC50, CHEMBL287_Ki, CHEMBL2147_Ki, CHEMBL2047_EC50,
CHEMBL4203_Ki, CHEMBL2034_Ki, CHEMBL1871_Ki, CHEMBL4792_Ki, CHEMBL244_Ki,
CHEMBL234_Ki, CHEMBL239_EC50, CHEMBL262_Ki, CHEMBL4616_EC50, CHEMBL3979_EC50,
CHEMBL4005_Ki.

A.2 Hyperparameter selection

See Table 2 for optimized hyperparameters used for each model in a standard and SQRL setting.

Table 2: Model hyperparameters.

Model Linear Sizes GNN Layers Dropout Learning Rate Batch Size Other

MLP [256, 256] - 0.0 1e-4 128 -
MLP-SQRL [512, 256] - 0.2 1e-5 64 -
AttentiveFP [256] 3 0.2 1e-4 128 timesteps: 2
AttentiveFP-SQRL [128] 3 0.0 1e-3 256 timesteps: 4
GINE [128] 4 0.0 1e-4 64 -
GINE-SQRL [256, 128] 5 0.0 1e-3 64 -
PNA [128] 4 0.0 1e-4 64 -
PNA-SQRL [128] 8 0.0 1e-5 256 -
MolCLR [512] - 0.0 1e-4 128 -
MolCLR-SQRL [128] - 0.0 1e-4 128 -
COATI [256] - 0.0 1e-5 64 -
COATI-SQRL [256, 128] - 0.0 1e-3 128 -
SAFE-GPT [256, 128] - 0.0 1e-3 32 -
SAFE-GPT-SQRL [256, 128] - 0.0 1e-4 128 -
Uni-Mol [256, 128] - 0.0 1e-3 128 -
Uni-Mol-SQRL [128] - 0.0 1e-4 128 -
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A.3 MoleculeACE Dataset

The MoleculeACE dataset provided by van Tilborg et al. is curated from ChEMBL v29 and contains
potency measurements for 30 targets. Activity cliff molecules were defined as pairs of molecules
with greater than 90% substructure, scaffold, or SMILES similarity and greater than 10-fold activity
difference. Figure 2 shows the number of training samples for each task in the MoleculeACE dataset
along with the number of activity cliff molecules present in each task. The train-test split was
performed by clustering molecules into 5 clusters and stratified splitting using the activity cliff label.
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Figure 2: Training data sizes for each task in MoleculeACE.
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A.4 Examples of molecular pairs

α = 0.1

α = 0.2

α = 0.3

α = 0.4

α = 0.5

α = 0.6

α = 0.7

Figure 3: Molecular pairs obtained by
the data matching procedure described
in Section 3 at different Tanimoto dis-
tance thresholds α for MoleculeACE task
CHEMBL1862_Ki.

Figure 4: Molecular pairs of activity cliff
molecules obtained by the data matching
procedure described in Section 3 at dif-
ferent Tanimoto distance thresholds α for
MoleculeACE task CHEMBL1862_Ki.
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A.5 Additional results
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Figure 5: Leveraging local structural information enhances predictive performance. MAE (↓)
as a function of distance threshold α for several additional distance metrics compared to Figure 1,
as well as pairwise distance distributions for each metric. Tanimoto: Tanimoto (Jaccard) distance
between binary Morgan fingerprints. Tanimoto (count FP): Tanimoto (Jaccard) distance between
count-based Morgan fingerprints. Substruct: Tanimoto (Jaccard) distance between substructure count
vectors using a list of 1242 predefined substructures from Ehrlich and Rarey [46]. MCS: Distance
metric based on maximum common substructure (MCS) defined as 1− 2NMCS/(Ni +Nj) where
NMCS is the number of atoms in the MCS, Ni is the number of atoms in molecule i, and Nj is the
number of atoms in molecule j. COATI [43], MolCLR [42], Uni-Mol [45]: Euclidean distances
between neural network embeddings obtained with these pre-trained models.
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Table 3: Mean Absolute Error (MAE) (↓) comparison of predictive performance. MAE with
standard deviation across tasks for Standard and SQRL methods using Tanimoto distance with
α = 0.7. Bold values indicate the better performing method (lower MAE) for each model and
dataset. Uni-Mol was evaluated on a smaller subset of tasks due to computational constraints (see
Appendix A.1.)

MoleculeACE MoleculeACE-Cliff Internal Targets
Model Standard SQRL Standard SQRL Standard SQRL

Baselines

XGBoost 0.54 ± 0.07 0.59 ± 0.08 0.64 ± 0.12 0.71 ± 0.13 0.41 ± 0.18 0.55 ± 0.19
RF 0.54 ± 0.07 0.57 ± 0.08 0.63 ± 0.10 0.68 ± 0.12 0.41 ± 0.18 0.50 ± 0.21
KNN 0.69 ± 0.12 0.77 ± 0.13 0.83 ± 0.15 0.88 ± 0.18 0.71 ± 0.37 0.95 ± 0.35
MLP 0.94 ± 0.22 0.67 ± 0.10 0.96 ± 0.20 0.79 ± 0.12 0.67 ± 0.41 0.65 ± 0.20
GNNs

AttentiveFP 0.80 ± 0.12 0.58 ± 0.11 0.86 ± 0.12 0.65 ± 0.16 0.56 ± 0.24 0.50 ± 0.15
GINE 1.14 ± 0.24 0.64 ± 0.09 1.23 ± 0.32 0.72 ± 0.14 0.75 ± 0.13 0.47 ± 0.19
PNA 0.82 ± 0.21 0.65 ± 0.09 0.85 ± 0.18 0.75 ± 0.14 0.63 ± 0.27 0.58 ± 0.26
MolCLR 0.91 ± 0.12 0.62 ± 0.09 0.95 ± 0.13 0.72 ± 0.14 0.62 ± 0.39 0.50 ± 0.21
Transformers

COATI 0.71 ± 0.10 0.65 ± 0.09 0.74 ± 0.20 0.75 ± 0.14 0.59 ± 0.30 0.61 ± 0.20
Uni-Mol 0.94 ± 0.26 0.69 ± 0.09 0.92 ± 0.22 0.77 ± 0.14 0.62 ± 0.41 0.49 ± 0.48
SAFE-GPT 0.76 ± 0.12 0.68 ± 0.11 0.78 ± 0.10 0.80 ± 0.13 0.55 ± 0.22 0.60 ± 0.26
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Figure 6: SQRL enhances local molecular consistency. Spearman’s rank correlation coefficient (↑)
plotted as a function of the distance between test points and their nearest neighbors in the training
set. SQRL-trained models that benefit from this training strategy demonstrate the most significant
performance gains for test points with close neighbors, while generally maintaining comparable
performance to standard-trained models for more distant points. Models in this plot were trained with
the distance threshold α = 0.7 using Tanimoto distance.
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