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Abstract

Generative models see increasing use in computer-aided drug design. However,
while performing well at capturing distributions of molecular motifs, they often
produce synthetically inaccessible molecules. To address this, we introduce Syn-
FlowNet, a GFlowNet model whose action space uses chemical reactions and
buyable reactants to sequentially build new molecules. By incorporating forward
synthesis as an explicit constraint of the generative mechanism, we aim at bridging
the gap between in silico molecular generation and real world synthesis capabilities.
We evaluate our approach using synthetic accessibility scores and an independent
retrosynthesis tool to assess the synthesizability of our compounds, and motivate
the choice of GFlowNets through considerable improvement in sample diversity
compared to baselines. Additionally, we identify challenges with reaction en-
codings that can complicate traversal of the MDP in the backward direction. To
address this, we introduce various strategies for learning the GFlowNet backward
policy and thus demonstrate how additional constraints can be integrated into the
GFlowNet MDP framework. This approach enables our model to successfully
identify synthesis pathways for previously unseen molecules.

1 Introduction
Designing molecules with targeted biochemical properties is a critical challenge in drug discovery,
where computational models could play a significant role to increase efficiency and effectiveness.
Recently, generative models have lead to a renaissance in de novo molecular design (Stanley & Segler,
2023; Du et al., 2024). However, most current de novo design models do not explicitly account for
synthetic accessibility.
In this work, we introduce SynFlowNet, a GFlowNet specifically trained to generate molecules from
documented chemical reactions and purchasable starting materials, thereby constraining exploration
to a synthetically accessible chemical space and sampling not only target compounds but also the
synthetic routes leading to them. Our main contributions are:

• We train a GFlowNet using an action space defined by documented chemical reactions and
purchasable starting materials to generate synthesizable molecules.

• We show the advantage of using a reaction-based environment over a fragment-based one
in terms of synthesisability, and the benefits of GFlowNets over Reinforcement Learning
(RL) in terms of sample diversity on several targets. Additionally, when comparing to
other generative methods with synthetically-accessible outputs, we show that SynFlowNet
generates more novel candidates w.r.t known drug-like molecules.

Source code available at https://github.com/mirunacrt/synflownet

Machine Learning for Structural Biology Workshop, NeurIPS 2024.

https://github.com/mirunacrt/synflownet


Forward Flow Backward Flow

(C) Learned backward policy

(A) SynFlowNet
       reaction
       DAG

BB

BB

Not a BB

G
ra

ph
 T

ra
ns

fo
rm

er

MLP

MLP

MLP

MLP

MLP

MLP

MLP

AddFirstReactant
ReactUni

AddReactantReactBi
Stop

BckRemoveFirstReactant
BckReactUni
BckReactBi

MLP

Binding A�nity

Reward

Logits

Embedding

0 1 0 01 0 0

Logits

Building blocks (BB)

Binary Morgan �ngerprints

Probabilities

Softmax Sample

Sample

Softmax

Probabilities

1 1 0 00 0 1 0 1 1 10 1 0 0 1 0 11 1 0 0 1 0 10 0 0

w
ith

�n
ge

rp
rin

ts
w

ith
ou

t
�n

ge
rp

rin
ts

(B) Building block sampling

Figure 1: SynFlowNet allows for synthesis-aware molecule generation. (A) The state space
is induced by combining purchasable building blocks (BBs) and chemical reactions. Every final
molecule (rectangle box) is associated with a reward. Training trajectories are constructed by
sampling the model forward. Our policy PF (a|s) is parameterized as a graph transformer which
at each timestep processes the current molecular state st and outputs a shared embedding which
is passed to separate MLP heads to predict the action logits for different action types (5 forward
and 3 backward action types). An action at is then sampled from this hierarchical distribution to
transition to the next state via a reaction. Newly added BBs are highlighted in yellow. (B) To allow
handling large sets of BBs (up to 200k), we represent them using Morgan fingerprints and compute the
probability of sampling a particular BB from the normalised dot product between this representation
and the embedding vector of the current state. (C) Finally, when traversing the MDP backwards,
to reduce the probability of exiting the MDP defined by our set of reactions and BBs, we train the
backward policy to avoid paths that do not terminate in the initial state s0.

• We evaluate different action representation alternatives to allow efficient scaling of the action
space to up to 200k chemical building blocks.

• We identify an inherent problem of employing a reaction-based Markov Decision Process
(MDP) with GFlowNets, stemming from the lack of guarantee that backward-constructed
trajectories can return to s0. To resolve this issue, we propose one of the first attempts at
training the backward policy in a GFlowNet with a separate objective from for the forward
policy, which we show to correct backward-generated trajectories and improve sample
quality and diversity.

• We show that our proposed framework can be integrated with target-specific experimental
data to inform selection of building blocks, which improves the efficiency of our model.

2 Methods
In this work, we present a framework to train GFlowNets on a Markov Decision Process (MDP)
made of molecules obtained from sequences of chemical reactions. Below, we describe how this
compositional space of synthesizable molecules is assembled (2.1), we present a method making
use of backward policies to palliate imperfect information contained in reaction templates (2.2) and
present the model used to navigate that state space and learn the target distribution (C.1).
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2.1 MDP of chemically accessible space

Problem definition We model synthetic pathways as trajectories in a GFlowNet, starting from
purchasable compounds and ending with molecules that are optimized for some desired properties,
via a set of permissible reaction templates. At each timestep t, the state st represents the current
molecule and stepping forward in the environment consists in building up the molecule by applying
new pairs of reactions and reactants until either a termination action is chosen or the path reaches a
maximum length. We encode reaction templates using RDKit reaction SMARTS (see Figure A.1).

Forward Action Space We define five types of forward actions: Stop, AddFirstReactant,
ReactUni, ReactBi, and AddReactant. ReactUni and ReactBi represent uni-molecular and bi-
molecular reactions. The AddReactant action, which is available only after a ReactBi action, rep-
resents the choice of reactant for the bi-molecular reaction. In more detail, each trajectory starts from
an empty molecular graph which is followed by a building block sampled from AddFirstReactant.
We then continue based on the sampled action type as follows: (a) if the action type is Stop, we
reach a terminal state and end the trajectory; (b) if a ReactUni action is sampled, we apply the
uni-molecular reaction template to the molecule in state s to yield the product in state s′; (c) if the
action type is ReactBi, the sampled reaction is used as input to an additional MLP, together with the
state embedding, to sample a subsequent action of type AddReactant.

Backward Action Space The GFlowNet framework requires us to model travelling backward
along trajectories in the state-space. To unfold a reverse trajectory we proceed similarly: (a) if the
action-type is a BckReactUni, the action yields the reactant molecule directly; (b) if the action type
is BckReactBi, we obtain two reactants, and the molecule that is not a building block becomes
the next state (or previous state in the DAG). If the two resulting reactants are both building blocks
(which happens at the beginning of the forward trajectory), the molecule that populates the next state
is picked with p = 1/2 from the two building blocks. The last action in a backward trajectory is
BckRemoveFirstReactant, leading to the empty molecular graph s0 (initial state).

2.2 Challenges with Generating Backward Paths

Given the synthesis pointed DAG G = (S,A), one needs to define a forward probability function PF

and a backward probability function PB both consistent with G (see Eq. 1). Contrary to previous
fragment-based or atom-based molecule-generation GFlowNet environments, where any backward
action can lead to s0 (removing nodes and edges sequentially will lead to an empty graph; Bengio
et al., 2021), defining PB in a reaction-based environment is non-trivial. This is because not every
parent state (obtained by applying a reaction template backwards) will ensure that there exists a
sequence of actions that leads all the way back to a building block, and therefore s0. Note that the
masking described in Section 2.1 is insufficient to account for this, as it does not ensure that the state
obtained is further decomposable into building blocks. Consequently, to maintain a pointed DAG,
no flow should be assigned to such a transition. A uniform backward policy, which is a standard
choice in GFlowNet literature (Malkin et al., 2022), will fail at achieving this as it will assign positive
flow to every backward action, including those leading to states that are not attainable from forward
trajectories initialised in s0 (see Figure 1-C). To address this issue, we explore a few training schemes
for a parameterized PB that force backward-constructed trajectories to end in s0. We discuss the
training schemes for PB in Appendix B.4.

3 Results
3.1 Reaction-based MDP design

We compare GFlowNets using two action spaces – fragments vs. reactions – and report reward,
diversity and synthesizability of the generated samples.

The results in Fig. 2 show that our MDP design achieves great improvement in terms of synthesis-
ability, while preserving high rewards and diversity. We see that within the reaction environment,
MDP design choices can further influence sample quality: a maximum trajectory length of 3 achieves
better SA scores and AiZynthFinder (Genheden et al., 2020) retrosynthesis success (62%) compared
to a maximum trajectory length of 4 (40%)1. Note that synthesisability metrics are correlated with

1The reactions available to AiZynthFinder are the US patent office (USPTO) set (Lowe), which are different
to the reactants used by SynFlowNet, so one should not expect a 100% success score.
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Figure 2: Comparison across MDPs. We evaluate four GFlowNet models: SynFlowNet is trained
with an action space of chemical reactions and maximum trajectory lengths (L) of 3 and 4, FragGFN
and FragGFN SA are trained with an action space of fragments, however the latter also optimises
for synthetic accessibility (SA), besides the sEH binding proxy reward. SynFlowNet molecules are
achieving higher binding scores and better synthesisability.

Figure 3: SynFlowNet is competitive against other popular models from the literature. Syn-
FlowNet achieves a good balance between reward optimisation, diversity, synthesizability and novelty
(assessed by maximum similarity to ChEMBL molecules). REINVENT stays close to its pretraining
distribution, harming the novelty of the proposed molecules. SynFlowNet is closest to ideal.

molecule size (Skoraczyński et al., 2023), and that molecules assembled from longer synthesis
routes are naturally larger (see Table A.2). Both FragGFN models score 0% with AiZynthFinder.
Diversity, measured as average Tanimoto distances between molecular fingerprints, is preserved from
a fragments to a reaction environment, albeit less so for shorter trajectories.

3.2 Further comparison to baselines

The comparison is summarized in Figure 3. SynFlowNet achieves comparable rewards to REINVENT,
and better sample diversity. Although REINVENT does not use explicit knowledge of synthesizability
in its generation process, it implicitly optimizes for it by being a likelihood model overfit on a curated
ChEMBL dataset (Zdrazil et al., 2023a). This is reflected in our last sub-plot, where we look
at the maximum similarity to ChEMBL molecules, as a proxy for novelty. This proxy is strong
enough, as ChEMBL contains one of the largest collection of diverse drug-like molecules to date
(Zdrazil et al., 2023b). While REINVENT seems to be competitive in terms of synthesizability
and reward, it generates molecules with poor novelty, staying close to its pretraining distribution.
Notably, SynFlowNet achieves high novelty for high-scoring molecules. Overall, SyntheMol scores
comparably to SynFlowNet, however SynFlowNet achieves a better reward/diversity trade-off and
SynFlowNet’s capabilities are extended to explore larger state spaces (see Fig. C.1). We repeat the
comparison on other targets, and again find that SynFlowNet outperforms SyntheMol (see App. C).

3.3 Improved MDP consistency through trained backward policy

We evaluate the effectiveness of our proposed training schemes for the backward policy PB by
measuring (1) whether PB can ensure that backward-constructed trajectories reliably find a trajectory
back to the initial state s0 and (2) whether it brings any benefit to the forward policy. In Table A.3 we
compare a fixed, uniform backward policy to three versions of a parameterized backward policy: a
free policy, updated w.r.t. the trajectory balance loss, (see Eq. 1), a policy trained with maximum
likelihood on the forward-generated trajectories and a policy that is allowed to explore the backward
action space and trained with REINFORCE to find paths leading back to s0. We observe that both the
maximum likelihood and REINFORCE policies succeed in ensuring that backward flow is not lost
outside of the MDP, as they manage to construct trajectories that start from terminal states sampled
from PF all the way to s0. We refer to such routes as solved routes (train) in Table A.3, as the
terminal states have been visited by the GFlowNet during training. We also test the ability of the
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trained policies to retrieve synthesis routes for molecules which have not been visited during training
(test). Overall, the maximum likelihood and REINFORCE policies prove effective in guiding PF to
high reward modes, while ensuring MDP consistency.

3.4 Scaling to the entire Enamine set

w/o �ngerprints
w/ �ngerprints
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w/o �ngerprints, R > 0.8
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w/o �ngerprints
w/ �ngerprints

w/o �ngerprints
w/ �ngerprints

w/o �ngerprints
w/ �ngerprints

Training e�ciency Cluster exploration Cluster exploitation

A B C

D E F

Figure 4: Ablation over action-selection mechanism. Average reward of samples (A), utilization
of building blocks (B), and training times (C) for both models on different subsets of building blocks.
Embeddings enable more efficient learning (D), as they help the agent navigate the set of available
building blocks and tend to exploit more relevant BB clusters (F) rather than explore new clusters (E).
For each experiment, three models trained with different random seeds were used.

In this section, we study the ability of SynFlowNet to scale to large sets of building blocks using
the method proposed in Section C.1 as opposed to using a learnable embedding for each building
block. As shown in Figure 4A, increasing the number of building blocks in general negatively affects
the quality of the sampled molecules in terms of reward. However, the model with fingerprints
consistently outperforms the former and makes the reward degradation effect almost negligible. Next,
we study whether models are able to use the blocks they are given. As shown in Figure 4B, the model
with fingerprints consistently uses more unique building blocks than the baseline model. Fingerprints
enable the use of a 5-fold larger set of blocks for the same quality level, thus significantly surpassing
the baseline samples in terms of diversity. As shown in Figure 4D, fingerprints enable more efficient
learning on a large building block set. The former model tends to explore more clusters and less
unique building blocks within clusters. The model with fingerprints, on the contrary, is able to focus
on clusters that maximise the reward.

4 Conclusion

In this work, we discuss the application of GFlowNets to de novo molecular design paired with forward
synthesis. We demonstrate that an action space of chemical reactions is an effective way of enforcing
synthesisability, and that pairing it with GFlowNets excels in terms of diversity. Comparisons to
state-of-the-art baselines emphasised that SynFlowNet explores novel regions of the chemical space.
We also proposed a novel paradigm for training the backward policy in the GFlowNet and in doing
so we improved and validated the correctness of our MDP design. Furthermore, we studied the
building block exploration and exploitation mechanisms of SynFlowNet, showing efficient scaling to
using hundreds of thousands of building blocks. Finally, as a proof of concept for the adaptability of
SynFlowNet to real drug discovery programs, we showed that the framework can be specialised to
target-specific molecule generation by making use of experimental fragment screens.
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A Background and Related Work

A.1 GFlowNets

GFlowNets (Bengio et al., 2021) are a class of probabilistic models that learn a stochastic policy to
generate objects x through a sequence of actions, with probability proportional to a reward R(x).
The sequential construction of objects x can be described as a trajectory τ ∈ T in a directed acyclic
graph (DAG) G = (S, E), starting from an initial state s0 and using actions a to transition from
a state to the next: s → s′. A GFlowNet uses a forward policy PF (−|s), which is a distribution
over the children of state s, to sample a sequence of actions based on the current states. Similarly, a
backward policy PB(−|s) is the distribution over the parents of state s, and can be used to calculate
probabilities of backward actions, leading from terminal to initial states. The training objective which
we adopt in this paper is trajectory balance (Malkin et al., 2022):

LTB(τ) =

(
log

Zθ

∏T
t=1 PF (st+1|st; θ)

R(x)
∏T

t=1 PB(st−1|st; θ)

)2

(1)

used to learn the forward and backward policies PF (−|s; θ) and PB(−|s; θ) parameterized by θ and
to estimate the partition function Zθ ≈ F (s0) =

∑
τ∈T F (τ).

Bengio et al. (2021) have used GFlowNets to generate molecules with high binding affinity to a
protein target by linking fragments to form a junction tree (Jin et al., 2019). For generative chemistry,
the framework was extended to multi-objective optimisation (Jain et al., 2023; Roy et al., 2023),
where the model was trained to simultaneously optimise for binding affinity to the protein target,
Synthetic Accessibility (SA), drug likeness (QED) and molecular weight. Recently, Shen et al. (2023)
extended the framework to pocket-conditioned molecular generation, employing the same action
space to generate molecules conditioned on different protein targets.

A.2 GFlowNets with a trained backward policy

GFlowNets train a forward policy PF to match the backward policy PB according to Eq. 1. The choice
of PB therefore impacts the training of GFlowNets and sample quality. Despite this relationship,
the choice of backward policy in GFlowNets has attracted limited attention but for a few works
discussed here. Malkin et al. (2022) proposed parameterizing the backward policy and training PB

and PF simultaneously using the trajectory balance objective (Eq. 1). They also proposed fixing the
backward policy to a uniform distribution when modeling the distribution over parents states proves
difficult. Mohammadpour et al. (2024) compare a maximum-entropy GFlowNet to GFlowNets with a
uniform backward policy. Closer to our work, Jang et al. (2024) propose Pessimistic GFlowNets,
which use maximum likelihood over observed trajectories to train PB . This ensures that the flow
induced by the backward policy is concentrated around observed (training) states, making the model
pessimistic about unobserved intermediate states having flow. In this work, we address the idea of
ensuring that backward-generated trajectories belong to the GFlowNet MDP. In doing so, we propose
a data-driven solution to a MDP design challenge.

A.3 Generative models for molecule design

A large number of works have been proposed for generative molecular design (Du et al., 2024). Early
methods employed techniques such as variational autoencoders (VAEs) (Gómez-Bombarelli et al.,
2018), deep reinforcement learning (Segler et al., 2017; Olivecrona et al., 2017b), and generative
adversarial networks (GANs) (Guimaraes et al., 2018; Cao & Kipf, 2022). More recently, methods like
normalizing flows (Zang & Wang, 2020) and diffusion models (Hoogeboom et al., 2022; Schneuing
et al., 2023; Harris et al., 2023b; Torge et al., 2023; Igashov et al., 2024) have gained significant
attention due to their ability to model complex distributions more effectively. Despite these advances,
challenges remain, particularly in ensuring that generated molecules adhere to physical and chemical
constraints (Stanley & Segler, 2023; Harris et al., 2023a).

A.4 Synthesis-aware molecule generation

The idea of tackling molecule generation and synthesis simultaneously has been investigated early
by Vinkers et al. (2003), who introduced SYNOPSIS, which generates molecules from a starting

12



dataset of available compounds, relying on applying chemical modifications to functional groups
and assessing the value of the product with a fitness function. The works of Bradshaw et al. (2019)
and Korovina et al. (2020) provided early neural models for one-step synthetic pathways. Bradshaw
et al. (2020) generalized this idea as a generative model for synthesis DAGs, which can be optimized
in a VAE or RL setup. Gottipati et al. (2020) used reinforcement learning to generate compounds
from reactions and commercially available reactants. Gao et al. (2021) formulate an MDP to model
the generation of synthesis trees, which can be optimized with respect to the desired properties of a
product molecule. Luo et al. (2024) proposed a model that can project unsynthesizable molecules
from existing generative models to synthesizable chemical space by utilizing postfix notations to
represent synthesis pathways. Guo & Schwaller (2024) showed that retrosynthesis models can be
treated as an oracle in goal-directed molecule generation. Concurrently to our work, Koziarski et al.
(2024) propose a similar GFlowNet-based framework for synthesizable molecular generation but
using a different set of reaction templates and making use of a different backward policy.

While our work resembles an RL setting for synthesis-aware molecular generation (Gottipati et al.,
2020; Horwood & Noutahi, 2020), the key difference lies in the sampling distribution of the learned
model. Contrary to RL, the GFlowNet objective is not to generate the single highest-return sequence
of actions, but rather to maximise both performance and diversity by sampling terminal states
proportionally to their reward. This is especially useful in the context of molecule generation, where
we want to explore different modes of the distribution of interest.

B Extended methods

B.1 Reward functions

We train SynFlowNet for a number of reward functions/targets. In some cases (e.g. when benchmark-
ing against the Fragment-based GFlowNet), we also perform multiple objective optimisation with SA
score.

sEH Our main reward function is defined as the normalized negative binding energy as predicted by
a pretrained proxy model, available from Bengio et al. (2021) and trained on molecules docked with
AutoDockVina (Trott & Olson, 2010) for the sEH (soluble epoxide hydrolase) protein target, a well
studied protein which plays part in respiratory and heart disease (Imig & Hammock, 2009). The proxy
model, which utilizes the weights from Bengio et al. (2021), was trained using a message-passing
neural network (MPNN) (Gilmer et al., 2017) that processes atom graphs as input. Details of the
model architecture are available in Bengio et al. (2021). It was trained on a dataset of 300,000
randomly generated molecules, achieving a test mean squared error (MSE) of 0.6. Note that the
reward scale in our results differs from the original GFlowNet publication, with rewards adjusted by
a factor of 1/8 in our analysis.

gsk3β and DRD2 We also employ two oracle functions from the PMO Gao et al. (2022) benchmark,
which provide machine learning proxies trained fit to experimental data to predict the bioactivities
against their corresponding disease targets. The two targets we use here are gsk3β Li et al. (2018)
and dopamine receptor D2 (DRD2) (Olivecrona et al., 2017a).

Easy adoption to other targets using GPU-accelerated Vina docking Finally, we wish for users
to rapidly be able to adapt SynFlowNet to learn binding for their target of interest without having
to retrain a new proxy or relying on slow docking simulations. We accomplish this using the new
GPU-accelerated Vina-GPU 2.1 docking algorithm (Tang et al., 2023; Alhossary et al., 2015). For
our experiment, we use the PDB:6W63 (Mesecar et al., 2020) structure for the SARS-CoV-2 main
protease (Mpro) target and PDB:2XJX (Murray et al., 2010) for Heat Shock Protein 90 (HSP90) target.
Receptors are prepared for docking with prepare_receptor4.py and the center of the docking is
defined as the center of mass for the ligand with a size of 25 Å in accordance with previous work
(Buttenschoen et al., 2024).

B.2 Chemical reactions

Masking Prior to sampling actions in both forward and backward direction, we ensure that the
reactions and building blocks to be sampled are compatible with the current state using masks,
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Figure A.1: Example of reaction templates (Hartenfeller et al., 2012). The templates act as rules,
which match any molecule that left side (before the arrow) as a subgraph. The matching part is then
transformed into the right hand side of the rule. “R” represents any group, “A” represents an aromatic
atom. Note the implicit reagent used in reaction #2.

obtained by checking for substructure match between the reaction template and the reactant (for
forward actions) or product (for backward actions) molecules. We also enforce through masking that
at least one of the resulting reactants when running a backward reaction is a building block.

Data We use commercially available building blocks (BBs) from Enamine, which are small
fragments of molecules prepared in bulk to be readily synthesised into candidate molecules. Reaction
templates are obtained from two publicly available template libraries (Button et al., 2019; Hartenfeller
et al., 2012). After preprocessing, we obtain a total of 105 templates: 13 uni- and 92 bi-molecular
reactions respectively (see App. B.2). We also use 12 Enamine REAL reactions in a small number of
experiments (see Section C.4 and App. B.2).

Reaction pre-processing and action masking Reaction templates pre-processing was necessary
to ensure that the templates could be run backwards. All templates containing wildcards (*) in the
reactant SMARTS were duplicated with replacements for all atoms that the wildcard substituted for.

When running experiments with a REINFORCE backward policy (which requires to sample trajec-
tories backward on-policy), we enforced additional masking that forward reactions are sampled if
and only if they are reversible (i.e. when applying the template backward on the product, the same
reactants are obtained as the ones utilised by the template in the forward direction).

Note that reaction templates can be uni-molecular (employing one reactant, Fig. A.1 #2) or bi-
molecular (employing two reactants, Fig. A.1 #1).

Enamine REAL Space Reactions For the case study in Section C.4, we used reactions from
Enamine to stay close to an experimental setup where the molecules generated would be readily
purchasable from Enamine. Enamine assembled a molecular space called the REAL space, which is
a vast catalogue of 48B purchasable compounds2. We use a subset of Enamine reactions available
from Swanson et al. (2024) which produces 93.9% of the REAL space3.

B.3 Model and training

A graph neural network based on a graph transformer architecture (Yun et al., 2019) is used to
parameterize the forward and backward policies. The model’s action space is defined using separate
MLPs for each action type (see Figure 1). Our model is trained in an online fashion, meaning that
it learns exclusively from trajectories sampled from the GFlowNet policy, without relying on an
external dataset of trajectories or a set of target molecules. Note however that this framework is
compatible with offline training, which makes use of such datasets as starting point for exploring the
molecular space.

SynFlowNet Training We adapt the framework from Bengio et al. (2021) to train a GFlowNet
sampler over a space of synthesisable molecules, which are assembled from an action space of
chemical reactions and reactants. A graph neural network with a graph transformer architecture
(Yun et al., 2019) is used to produce a state-conditional distribution over the actions. A state is
represented as a molecular graph in which nodes contain atom features. Edge attributes are bond
type and the indices of the atoms which are its attachment points. This representation is augmented
with a fully-connected virtual node, which is an embedding of the conditional encoding of the

2https://enamine.net
3Note: this dataset contains a single tri-molecular reaction which has been removed here for simplicity
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desired sampling temperature, obtained using an MLP. The sampling temperature is controlled by
a temperature parameter β, which also plays a role in reward modulation, allowing for exponential
scaling of the rewards (by making rewards received during training equal to Rβ). We experimented
with sampling β from multiple distributions, and use a constant distribution in the reported results in
this paper. We used a thermometer encoding of the temperature (Buckman et al., 2018).

The model is trained using the trajectory balance objective (Malkin et al., 2022) and thus is parame-
terized by forward and backward action distributions PF and PB and an estimation of the partition
function Z =

∑
τ∈T F (τ).

For the state space estimation experiment, we used R = 1, 10 000 training steps and varying trajectory
lengths. For the rest of the SynFlowNet experiments with SeH proxy as reward, we used β = 32,
5000 training steps and varying trajectory lengths (see main text). For training with the DRD2 and
gsk3β targets as reward, we use a maximum trajectory length of 4 and a reward exponent β = 16.
For the backward policy training, see App. B.4. The rest of the hyperparameters are fixed and are
presented in Table A.1.

Unless otherwise specified, all experiments below use a backward policy trained with maximum
likelihood, and Morgan fingerprint embeddings for our action space, with a library of 10,000 Enamine
building blocks and 105 reaction templates.

FragGFN training We obtained fragments and their attachment points from Enamine building
blocks by following the protocol provided by Jin et al. (Jin et al., 2019). The model trained with the
sEH reward was trained with the default implementation in Yoshua Bengio (2024), and an optimised
reward exponent β = 64. The model optimising for synthetic accessibility, as well as sEH binding,
was trained with a reward obtained by multiplying the two scores.

Soft Q-learning training We implemented a version of Soft Q-learning (SQL) (Haarnoja et al.,
2017), an energy-based policy learning method, that operates on SynFlowNet’s MDP. We optimised
the training procedure by performing both manual and grid searches across several values of entropy
regularisation parameter α and reward scaling parameter β. For β, contrarily to GFlowNets, since
the method does not only learn a policy but tries to estimate the Q-values of each actions directly, we
found that using large values of reward scaling such as β = 64, which are common for GFlowNets,
would destabilise the algorithm and had to be lowered to β = 4 or β = 2. For α, we tried several
values that would strike the best tradeoff between allowing the model to find high-performing
molecules while maximising diversity and avoiding to collapse the agent’s distribution on only a few
modes, with our best model using α = 0.01.

REINVENT training We benchmarked our approach against REINVENT4 (Loeffler et al., 2024)4.
Following the setup described in their methodology, we fine-tuned the REINVENT prior model using
reinforcement learning. We change little else other than the reward function used to train the model.
The training was conducted with the default batch size of 100 over 3,000 training steps, resulting in a
total of 300,000 oracle calls, which is consistent with the number of oracle calls used in SynFlowNet
experiments.

SyntheMol generation We run SyntheMol’s (Swanson et al., 2024) Monte Carlo Tree Search
(MCTS) algorithm using their standard sets of 139 493 building blocks and 13 chemical reactions
from the Enamine REAL space, but replace the provided bioactivity prediction models with the
reward functions used in this study (Sec. B.1). We use the publicly available code repository5 and
perform 50 000 rollouts. Other hyperparameters were kept at default settings, including a maximum
of 1 reaction and exploration parameter c = 10. Before the search, building block scores were
pre-computed using the target reward functions. For the final selection, we sample 1000 molecules
randomly from all returned molecules.

4We used the code available at https://github.com/MolecularAI/REINVENT4
5https://github.com/swansonk14/SyntheMol
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Hyperparameters Values
Batch size 64
Number of GNN layers 4
GNN node embedding size 128
Graph transformer heads 2
Learning rate (PF ) 10−4

Learning rate (PB) 10−4

Learning rate (Z) 10−3

max_nodes 9

Table A.1: Hyperparameters used in our SynFlowNet training pipelines.

B.4 Backward Policy Training Algorithms

Training the backward policy We first explore a training scheme for PB which makes use of
forward-generated trajectories. Similarly to Jang et al. (2024), we train PB using the maximum
likelihood objective over trajectories generated from PF :

LB(θB) = Eτ∼PF
[− logPB(τ ; θB)]. (2)

In that setting, we (1) generate trajectories using PF , (2) update PF according to the trajectory balance
objective in Equation 1 and (3) update PB using these same trajectories according to Equation 2 (see
see Algorithm 1).

While the maximum-likelihood approach presented above is sufficient to limit PB in allocating flow
to paths that do not connect back to s0, it restricts the model’s exploration by encouraging PF to
collapse on a single path for each terminal molecule. To allow PB to ban erroneous paths while
retaining a higher entropy, we also explore the use of policy gradient methods. Specifically, we
explore maximising an expected backwards reward via REINFORCE (Williams, 1992), which is
suitable for short trajectory environments like our reaction-based MDP:

JB(θB) = Eτ∼PF ,PB
[RB(τ)]− αH(PB). (3)

Here, H(PB) = −Eτ∼PB
[log(PB(τ))] is the entropy term and the reward RB is set to 1 for a

trajectory that ends in s0 and -1 otherwise. In this setting we train the backward policy not only on
the trajectories generated by the forward policy, but also on newly generated backward trajectories
sampled directly from PB (see Algorithm 2).

For the maximum likelihood backward policy, at each training iteration, PB is updated to minimize
the maximum likelihood loss over trajectories generated in that batch from PF . Similarly for a
REINFORCE PB , we train PF as above, but maintain a replay buffer. To train PB , we sample
terminal states from the buffer and sample trajectories backwards from PB , which are used in a
REINFORCE update. To improve training stability, we also used trajectories generated from PF (in
a 1:1 ratio) to update PB .

Contrary to the rest of the models (see App. B.3), the backward policy models were trained for 8000
steps, with reward exponent β = 64 and max_len = 5. The results in Section 3.3 are reported for a
REINFORCE loss with an entropy multiplier term α = 1.0.

Algorithm 1 Training of Maximum Likelihood Backward Policy for GFlowNets
1: Initialize the forward policy PF , backward policy PB , and Zθ.
2: repeat
3: Sample a batch of trajectories {τ (n)}Nn=1 from PF .
4: Update PF and Zθ to minimize LTB using {τ (n)}Nn=1.
5: Update PB to minimize LB over {τ (n)}Nn=1.
6: until convergence

Interestingly, training the backward policy to navigate back to s0 is analogous to the retrosynthesis
problem (Corey & Cheng, 1989; Segler et al., 2018). We employ this approach of training PB against
a different objective than PF to palliate to a design challenge of the MDP, but a similar strategy could
also be employed to fold additional preferences over different synthesis routes leading to the same
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Algorithm 2 Training of REINFORCE Backward Policy for GFlowNets
1: Initialize the replay buffer B, forward policy PF , backward policy PB , and Zθ.
2: repeat
3: Sample a batch of trajectories {τ (n)F }Nn=1 from PF .
4: Update B ← B ∪ {τ (k)F }Nn=1.
5: Sample k random trajectories from B and extract their final states sf to sample backward

trajectories {τB}Kk=1 from PB .
6: Update PF and Zθ to minimize LTB using {τ (n)F }Nn=1.
7: Update PB to minimize JB over {τ (k)B } ∪ {τ

(n)
F }.

8: until convergence

terminal state into the system, for example to take into account the synthesis costs of a particular path.
This possibility is left to future work.

B.5 SynFlowNet scaling

For Section 3.4, to compute clusters of building blocks, we used BitBIRCH (Jung et al., 2024),
a recent adaptation of Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)
algorithm (Zhang et al., 1996), recently proposed for efficient clustering of large molecular libraries.

C Extended Results

C.1 Scaling of the reactant space to large number of building blocks

Figure A.2: Estimated size of state
spaces. The full building block set con-
tains 221,181 molecules. L is the maxi-
mum trajectory length in the GFlowNet.

We leverage the properties of GFlowNets (Bengio et al.,
2021) to estimate the size of the state space induced by our
action space. Specifically, noting that GFlowNets learn
logZ = log

∑
x R(x), we train a model with R = 1 for

all terminal states to estimate their total count. We do so
for different numbers of building blocks and different max-
imum trajectory lengths (L), and find that SynFlowNet
using L = 3 and 10k building blocks matches the size of
the Enamine REAL space (Enamine), and that the size of
the space quickly increases with the number of building
blocks. We use our full set of 105 reactions. Note how
reaction-constrained models considerably limit the explo-
ration of the chemical space, with a fragments GFlowNet
exploring a space ∼10 orders of magnitude larger.

To ensure synthetic accessibility of all samples, our model
is inherently constrained by the initial set of available building blocks (BBs). To cover a large chemical
space, it is thus crucial to use an extensive BB collection. The model must demonstrate scalability to
accommodate larger sets of BBs, both in terms of training efficiency and overall performance. To do
so, we change the representation of the BBs and their selection mechanism, as shown in Figure 1B.
Instead of the weight matrix of the mapping from hidden units to logits associated with BBs to be
randomly initialized, it is fixed to be the matrix of binary Morgan fingerprints (Rogers & Hahn, 2010).

C.2 GFlowNets as samplers of chemical space

Our results support a number of claims: (i) a reaction-based MDP greatly improves the synthesisability
of generated molecules (Sec. 3.1), (ii) employing GFlowNets enables much more diverse molecule
sampling over RL (Sec. 3.4), (iii) learning a backward policy results in higher-reward molecules and
enables finding retrosynthetic pathways for molecules belonging to our state-space (Sec. 3.3), and
(iv) our method of sampling molecules based on chemical fingerprints allows for efficient scaling to
large chemical spaces (Sec. 3.4). Finally, we show that this approach also allows to improve results
for particular programs by curating the set of building blocks based on target-specific experimental
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data (Sec C.4). Unless otherwise specified, all experiments below use a backward policy trained with
maximum likelihood, and Morgan fingerprint embeddings for our action space, with a library of
10,000 Enamine building blocks and 105 reaction templates.

Figure A.3: Comparison between GFlowNet and RL. SynFlowNet (GFlowNet with synthesis
actions) discovers more modes compared to entropy-regularised RL trained on the same state &
action space.

While the works of Gottipati et al. (2020) and Horwood & Noutahi (2020) are closest to our method,
where RL is paired with a synthesis action space, their code is not publicly available. We reproduce
their setting by pairing an RL algorithm with our MDP. We train our model with a soft Q-learning
(Haarnoja et al., 2017) objective and compare to SynFlowNet on three different reward functions:
sEH, GSK3β and DRD2.

In Fig. A.3, we show the reward distribution of generated samples after equal numbers of training
steps. We notice that soft Q-learning collapses to sampling a narrower distribution of high-reward
molecules for all targets. This is also shown in the number of Bemis-Murcko scaffolds counted for
molecules with rewards above a certain threshold, where soft Q-learning quickly collapses (note the
logarithmic scale of the y-axis).

C.3 Comparison to baselines

We retrain the GFlowNet model proposed by Bengio et al. (2021) with fragments derived from our
building blocks set. This ensures that we use similar chemical spaces and that we get as close as
possible to a fair comparison between the two MDPs. In the fragment space, it is common practice to
optimise for synthetic accessibility scores to improve synthesizability from the model. We therefore
train two versions of the FragGFN model: one using the sEH binding proxy as reward function, and
another that optimizes for both sEH binding and synthetic accessibility (SA) score. SynFlowNet was
only trained with the sEH proxy as reward.v

We compare SynFlowNet to strong baselines from the literature. First, REINVENT uses a policy-
gradient method to tune an RNN pre-trained to generate SMILES strings (Blaschke et al., 2020;
Loeffler et al., 2024). REINVENT has been shown to outperform many models in terms of sample
efficiency (Gao et al., 2022) and proposing realistic 3D molecules upon docking (Cieplinski et al.,
2023). Second, SyntheMol shares a similar MDP design with SynFlowNet, but is a search-based
method using Monte Carlo Tree Search (Swanson et al., 2024). Contrary to our model, synthesis
pathways in SyntheMol contain one reaction, and its estimated state space has 30 billion molecules,
reached from the Enamine building block set and 13 reactions (Swanson et al., 2024).

Table A.2 contains metrics for all the models and baselines we have run. Figure A.4 contains results
for molecules generated with SyntheMol for the DRD2 target, compared to SynFlowNet. SynFlowNet
is superior in finding high-reward molecules. We tried various hyperparameters for SyntheMol to
optimise for the gsk3β target and were unsuccessful – no nonzero rewards were found.
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Method sEH proxy (↑) Diversity (↑) SA (↓) AiZynth (↑) QED (↑) Mol. weight (↓) ChEMBL Similarity (↓)
REINVENT 0.91± 0.01 0.68± 0.02 2.19± 0.02 0.95 0.57± 0.04 429.78± 23.02 0.64± 0.02
FragGFN 0.77± 0.01 0.83± 0.01 6.28± 0.02 0.00 0.30± 0.01 724.62± 32.39 0.24± 0.09
FragGFN SA 0.70± 0.01 0.83± 0.01 5.45± 0.05 0.00 0.29± 0.01 683.31± 59.92 0.21± 0.01
SyntheMol 0.64± 0.01 0.86± 0.01 3.08± 0.01 0.82 0.63± 0.01 412.24± 0.98 0.49± 0.01
Soft Q-Learning 0.80± 0.07 0.42± 0.04 2.63± 0.39 0.96 0.39± 0.02 408.02± 12.76 0.52± 0.02

SynFlowNet (L = 3) 0.92± 0.01 0.79± 0.01 2.92± 0.10 0.65 0.59± 0.02 365.23± 2.42 0.43± 0.01
SynFlowNet SA (L = 3) 0.94± 0.01 0.75± 0.02 2.67± 0.03 0.93 0.68± 0.01 358.27± 3.52 0.48± 0.01
SynFlowNet (L = 4) 0.88± 0.01 0.82± 0.01 3.54± 0.03 0.40 0.27± 0.01 557.49± 8.60 0.38± 0.01
SynFlowNet QED 0.86± 0.03 0.81± 0.03 4.02± 0.26 0.55 0.74± 0.04 398.50± 8.84 0.38± 0.01

Table A.2: Comparison to baselines. Results obtained by averaging over 1000 random molecules
sampled from the trained models. Standard errors obtained from training using 3 seeds. Due to high
computational cost, AiZynthFinder scores are computed over 100 random samples.

Figure A.4: Comparison between SynFlowNet and SyntheMol with DRD2 as reward. SyntheMol
struggles to find high-reward molecules. We also run SyntheMol with GSK3β and were not able to
optimise it. Results for SynFlowNet with both DRD2 and GSK3β are reported in Figure A.3.

C.3.1 Improved MDP consistency through trained backward policy

PB policy % of solved routes (train) % of solved routes (test) # of high reward modes from PF

Uniform 11.0± 3.7% 11.0± 4.1% 47, 515.0± 11, 264.7
Free 67.3± 3.7% 1.0± 0.8% 6, 754.3± 4, 980.1

MaxLikelihood 99.3± 0.5% 32.3± 7.3% 37, 708.2± 13, 992.6
REINFORCE 100.0± 0.0% 44.3± 2.6% 55, 387.6± 28, 886.3

Table A.3: Effect of different training paradigms for PB . Training the GFN PB ensures that
backward-constructed trajectories belong to our MDP and can marginally improve PF . % of solved
routes refers to the ability of PB to retrieve synthesis routes for on-policy (train) and off-policy (test)
molecules reachable through our state space. Test molecules have not been seen during training. # of
high reward (R > 0.9) modes from PF is reported out of ∼ 500, 000 samples seen during training.

C.4 Guiding SynFlowNet with experimental fragment screens
One advantage of our framework is that building block sets can be used to specialize the model for a
particular target. Fragment-based Drug Discovery (FBDD) (Thomas et al., 2019) is a major strategy
to increase the efficiency of drug discovery campaigns. In FBDD, instead of screening large chemical
spaces, a low number of small compounds (called fragments) are screened and experimentally
validated to bind, and are then linked in silico to make full molecules.

We hypothesise that experimental data from x-ray fragment screens (Murray & Rees, 2009) can guide
and enhance SynFlowNet’s capabilities. As a proof-of-concept, we focus on the SARS-CoV-2 main
protease (Mpro), leveraging strucural data from the COVID Moonshot project (Boby et al., 2023).
We compile a building block set from Enamine with high similarity to fragments confirmed by x-ray
crystallography (see Fig. A.6A). We find that biasing the building block library towards fragments
with known protein-ligand complementarity increases the reward over randomly selected molecules
(see Fig. A.6B). Further details on methods and results are given in App. Section C.6.
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Figure A.5: (LHS) Effects of different parameterizations of the backward policy. For REINFORCE,
(α) represents the multiplier to the entropy term. (RHS) REINFORCE is trained on-policy and the
mean rewards of the sampled backward trajectories are plotted. Note that the backward reward is 1 if
the backward-constructed trajectory ends in s0 and -1 otherwise. A baseline for Uniform policy is
shown, obtained by sampling 100 random trajectories backward from terminal objects in the DAG.
Results averaged over 8 seeds.

Figure A.6: Effect of curating the building block set. (A) We adapt SynFlowNet’s building block
library based on experimentally validated fragments for a given target. (B) The curated set improves
Mpro rewards over random building blocks.

C.5 Example Trajectories

Figure A.7 shows examples of molecules and synthesis pathways generated from SynFlowNet.
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Figure A.7: SynFlowNet-generated molecules and synthesis pathways for SeH.

C.6 Curated building blocks sets given target data

Here we provide further details on the methods and rationale for the fragment-based building block
curation strategy outlined in C.4. To enable high molecule purchaseability in a real world drug
discovery campaign, we use the Enamine reactions in all these experiments. GPU-accelerated Vina
docking was used for reward computation (see App. B.1).

Experimental fragment extration pipeline Fragment-based drug discovery (FBDD) simplifies
the search space by focusing on smaller molecular fragments rather than designing or screening full
molecules, enabling a more efficient exploration of potential binding interactions (Murray & Rees,
2009; Thomas et al., 2019). To identify molecules bound within the same pocket across different
protein structures, we performed a sequence-based search using MMSeqs2 (Steinegger & Söding,
2017) across the Protein Data Bank (PDB). We retained only hits with a sequence identity of 90%
or greater and an alignment overlap exceeding 80% to ensure high similarity to the reference target.
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The resulting PDB structures were structurally aligned6 according to the ligand-bound chain with
the reference structure. Any ligand with at least one atom within 2 Å of the reference ligand in the
binding site was selected for further analysis.
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Figure A.8: Curation of HSP90 fragments and building blocks. Red line shows threshold at which
we denote a molecule a ‘fragment’ and was choosen to max the upper limit of the typical BB size.

Selection of small molecule fragments To isolate small molecular fragments suitable for FBDD,
we filtered out ligands containing more than 25 atoms, as this atom count aligns with typical building
block molecule sizes. This is done for 2 reasons; (i) we can pretend that we are in a drug discovery
campaign where a fragment screen has just been conducted and there is no leaked information from
‘full’ molecules and (ii) this threshold aligns well with the typical Enamine building block in terms of
size (Figure A.8).

Curation of Enamine Building Blocks For every experimentally validated fragment, we selected
the top 100 closest building block molecules from the Enamine library based on molecular similarity.
After removing duplicate SMILES entries, this process resulted in thousands of curated building
blocks for each target.

Example fragment screens We study two targets. The first is Heat Shock Protein 90 (HSP90),
for which there are a large number of ligand bound structures, mostly thanks to FBDD campaigns
conducted in industry (Murray et al., 2010; Woodhead et al., 2010). The second is the SARS-CoV-2
Main Protease (Mpro), for which there is a large amount of structural data and in particular fragments
from a fragment screen performed by the COVID Moonshot open-science initiative (Boby et al., 2023).
In the case of HSP90, using PDB entry 2XJX (Woodhead et al., 2010) as the reference structure, our
ligand extraction pipeline identified 92 molecules. Filtering for small molecular fragments of fewer
than 25 atoms further refined this set for analysis. The methodology was repeated for Mpro using
PDB entry 7GAW, where we extracted 138 molecules.

Examples of molecules designed for Mpro using our curated building block set are shown in Figure
A.9.

Alignment of SynFlowNet designs with experiments Murray et al. (2010) performed a fragment
screen of HSP90 and identified two distinct lead classes of binding modes: (i) an aminopyrimidine
class that formed hydrogen bonds with an asparagine residue and several conserved water molecules
within the pocket and (ii) a phenolic class that primarily binds through water-mediated hydrogen
bonds networks. These complicated water-dependent interaction networks are extremely challenging
to model computationally and is a clear limitation of Vina docking (which does not take into account
waters). Figure A.10 shows that by guiding SynFlowNet in this way, we can design molecules and
poses that fit with these experimentally validated interactions.

6We use the superimpose_homologs function from biotite: www.biotite-python.org
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Figure A.9: Example molecules generated by SynFlowNet for the Mpro case study. Green
molecules are those generated by SynFlowNet. Magenta shows the molecule from the reference
structure. ‘Sim’ is the Tanimoto similarity between a designed molecule and the reference structure.

Figure A.10: SynFlowNet designs molecules that align with real world fragment experiments.
Murray et al. (2010) performed a fragment screen for the HSP90 target and identified two classes of
binding modes for the target: those built around (A) phenolic compounds (e.g. PDB:5M4H) and (B)
aminopyrimidine compounds (e.g. PDB:2YEE). SynFlowNet trained on a target-curated building
block set was able to consistently design compounds based on these experimentally validated binding
modes, meaning we can be more certain that they are likely to bind well in reality. Green shows
SynFlowNet-designed molecule and magenta are fragments from x-ray crystallography experiments.
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