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Abstract

Recent advances in generative deep learning have transformed small molecule
design, but most methods lack biological systems context, focusing narrowly on
specific protein pockets. We introduce a non-differentiable diffusion guidance
method that integrates systems biology models, enhancing small molecule genera-
tion with pathway context. Using the Bone Morphogenetic Protein (BMP) pathway,
we generate small molecules specific to one protein over competing proteins. This
method enhances the precision and efficiency of small molecule drug discovery by
incorporating systems biology insights into generative models.

1 Introduction

Structure-based drug discovery (SBDD) is a valuable tool for discovering potent small molecule
drugs Anderson (2003). SBDD operates off the principle that treating a disease can be reduced to
targeting a protein relevant in the disease process, whether directly causal or simply correlated with
the disease process. Using SBDD to develop new small molecule therapies provides promise for
treating a wide range of diseases, such as more targeted cancer therapeutics Zhong et al. (2021).
Enzymes are an example of an excellent target class for SBDD where the active site is typically
known and evolutionarily conserved, thus a drug can be created to inhibit this active site to prevent the
operation of the protein involved in the disease process. Notable examples are the creation of a small
molecule inhibitor of the SARS-CoV-2 (COVID-19) protease Liu et al. (2022) and HIV protease
Lam et al. (1994). Recent deep learning methods have naturally fit into the paradigm of SBDD by
generating small molecules often conditioned on some type of relevant physical information. These
methods are a great fit for inhibiting proteins with known active sites.

On the other hand, there are many proteins that do not have a clear active site, such as those involved in
protein-protein interactions (PPIs). Binding to an active site in a PPI, known as orthosteric modulation,
depends on finding “hot spots” via mutageneis analysis of the interface of the two proteins, and
which may also depend on the plasticity of the proteins involved Ran & Gestwicki (2018); Arkin et al.
(2014); Cukuroglu et al. (2014). While mutagenesis can reveal conserved residues at the interface,
it assumes knowledge of how proteins may interact in the first place. Assuming knowledge of how
two proteins interact, designing a small molecule that is specific to the PPI of interest disregards
how the small molecule may interact with similar proteins, such as protein receptor complexes in the
TGF-β signaling pathway. This non-specific development likely contributes to downstream failures
in clinical trials due to toxicity of the drug and related off-target effects Xie et al. (2011). This risk
can be mitigated by further screening for off-target effects but this can be prohibitively expensive and
introduces another small molecule screening step that lengthens the process of drug development
Dawidowski et al. (2017). There is a need for developing small molecules that are specific to the
target of interest, yet a paucity of machine learning methods to do this. A notable exception is work
by Harris et al. (2023) although their method optimizes small molecules specific to one kinase over
another assuming a known binding site in each kinase a priori.
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Figure 1: Overview of Systems-Structure-Based Drug Discovery (SSBDD) identifying orthosteric
targets and creating a small molecule specific to the target of interest. 1. Perform a binding analysis
to understand which configuration of the protein ligand and the receptor complex is most likely using
systems biology data. 2. Identify the most important point on the protein surface using mutagenesis.
3. Repeat process for competing protein complexes in the pathway. 4. Using known orthosteric target
sites, perform forward guided diffusion conditioning generation steps on the gradient of the desired
and undesired target sites. Checkpointing is performed on denoised predictions and checkpointed
molecules are used in non-differentiable reverse guidance. At the end of sampling, the checkpointed
molecule is compared according to a metric with the final denoised molecule and the best is returned.

We demonstrate a bioinformatics pipeline and machine learning method to generate small molecules
that are more specific to a protein in a signaling pathway involved in PPIs. The bioninformatics
process helps select which proteins may be of interest to target and at which sites to target. The
machine learning method is based on an a non-differentiable guided diffusion sampling process
conditioned on how well small molecules dock specifically to a target of interest in the pathway of
interest. Finally, we evaluate the combined pipeline in an example of the Bone Morphogenetic Protein
(BMP) pathway Wang et al. (2014), showing how we are able to guide small molecule generation to
inhibit one protein’s PPI active site while minimizing the likelihood of binding to another protein
in the pathway that shares a protein ligand in the pathway. Given the inclusion of systems biology
information Alon (2019), we introduce Systems-Structure-Based Drug Design (SSBDD).

2 Background

Diffusion Models Diffusion models are a class of deep learning method capable of learning the
gradient, or score, of a denoising process going from a noisy distribution zT to the data distribution
z0 by a series of diffusion steps Song & Ermon (2020); Ho et al. (2020). Diffusion has been used in a
wide variety of biological tasks such as docking Corso et al. (2022), protein generation Ingraham et al.
(2022); Watson et al. (2023), modeling protein conformation landscapes Lu et al. (2024), and small
molecule generation Schneuing et al. (2022); Hoogeboom et al. (2022); Morehead & Cheng (2024).

We follow the notation of Hoogeboom et al. (2022) in describing our diffusion process. Data samples
are point clouds z0 = [x,h] which represent the 3D coordinates of N atoms x ∈ RN×3 and atom
features h ∈ RN×d. Given a data point x, a step in the diffusion process is defined as:

q(zt|x) = N (zt|αtxt, σ
2
t I), (1)

where αt ∈ R+ controls signal retention and σt ∈ R+ controls the addition of noise. Typically αt is
modeled by a function that smoothly transitions from α0 ≈ 1 to αT ≈ 0. The noising process can
be described by a variance preserving process Sohl-Dickstein et al. (2015); Ho et al. (2020) where
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to simplify the notation. Since the diffusion is Markovian, we can can write the transition from a
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where αt|s = αt/αs and σ2
t|s = σ2

t − α2
t|sσ

2
s following notation of Hoogeboom et al. (2022). The

true denoising process depends on the data z0 which is unavailable when generating new samples.
However, an approximate sample ẑ0 is calculated using a neural network ϕθ. Thus, Eq. (1) can
be reparameterized as zt = αtz0 + σtϵ with ϵ ∼ N (0, I) to directly predict the Gaussian noise
ϵ̂θ = ϕθ(zt, t). We can rearrange to show the denoised prediction as a function of the current
noisy prediction ẑ0(zt) = zt/αt − ϵ̂θσt/αt. We diverge from other notation by showing the
prediction as a function of the noised sample at time t. The neural network is trained by maximizing
the variational lower bound of the data distribution, equivalent to the simplified training objective
Ltrain = 1

2 ||ϵ̂− ϕθ(zt, t)||2 up to a scaling factor Ho et al. (2020); Kingma et al. (2021).

Diffusion Guidance There has been great interest in guiding diffusion models for image generation
that range from adding explicit conditional information during the training process Ho & Salimans
(2022); Nichol et al. (2022) and guiding the diffusion generation process using a separate and
differentiable guidance function after training Dhariwal & Nichol (2021); Wang et al. (2022). Bansal
et al. (2023) demonstrated a general-purpose method for guided diffusion simply using a differentiable
guidance function. They split guidance into forward and backward guidance. Forward guidance
during sample generation updates the noise prediction using a weighted gradient of the guidance
function

ϵ̂θ(zt, t) = ϵθ(zt, t) + s(t) · ∇ztℓ(c, f(ẑ0(zt))) (3)
where we can use the prediction of the denoised data point at time t as ẑ0(zt), s(t) is a hyperparameter
for the guidance strength, c is contextual information such as a protein pocket, and ℓ(·, ·) is a function
that depends on the context and denoised prediction. Backward guidance helps to ensure the generated
data point satisfies the guidance function. Instead of calculating the gradient w.r.t. the denoised
prediction, we calculate the difference in clean data space ∆z0 by optimizing

∆z0 = argmin
∆

ℓ(c, f(ẑ0 +∆)) (4)

where the ∆ can be optimized using m-step gradient descent starting at ∆ = 0. Once we find the
∆ that optimizes the guidance function, we can translate the change back to the original noised
data space and calculate the guided denoising prediction ϵ̂ as zt =

√
αt(ẑ0 +∆z0) +

√
1− αtϵ̂.

Using the definition of the predicted denoised data point from the current noised data point, the
augmentation to the original denoising prediction is

ϵ̂ = ϵθ(zt, t)−
√
αt/1− αt∆z0. (5)

Equivariant Graph Neural Networks Atoms live in a space that is invariant to translations and
rotations. To build these inductive biases into the neural network ϕθ, we use a Graph Neural Network
(GNN) that is a function f : X → Y equivariant with respect to the group G if the action of the group
element, g ∈ G, on the function is equivalent to the input, i.e. f(g.x) = g.f(x) where g. represents
the group action. We follow Morehead & Cheng (2024) and use the GCPNET++ GNN model
that maintains SE(3) equivariance, which is equivariant to 3D roto-translations, while maintaining
chirality of molecules by using Geometry-Complete Perceptron Networks (GCPNETS) that define
direction-robust local geometric reference frames Morehead & Cheng (2023).

Molecular Docking Docking of small molecule candidates is split between known-pocket and
blind docking. Corso et al. (2022) demonstrated the use of diffusion methods for the blind docking
setting while achieving state of the art results at the time. Related work for known-pocket diffusion,
DiffDock-Pocket Plainer et al. (2023), predicts ligand poses in a specific binding pocket of interest,
such as orthosteric sites, by modeling the flexibility of the side chains of a binding pocket that would
influence the conformation of the docked small molecule. Recent methods have focused on the
problem of adequately modeling the protein conformation when unbound, its apoprotein state, and
when bound to a molecule, its holoprotein state Corso et al.; Lu et al. (2024). Regardless of the
scope, most diffusion-based docking methods include a confidence model that provides a score of
how confident the model is in its prediction of a ligand to the binding spot.

Systems Biology & Protein-Protein Interactions Understanding how proteins interact is critical to
develop therapies for PPI inhibitors. Systems biology is the study of biological networks, including
networks of proteins. Protein network response can be modeled using mass action kinetics Antebi
et al. (2017) and have physically-meaningful parameters that can be linked to protein structure
predictions Zaballa & Hui (2024). This link provides a way to evaluate which structural interactions
are likely while cross-validating with a gene reporter assay data fit to systems biology models.
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3 Systems-Structure-Based Drug Discovery

Identifying Targets We follow the method of Zaballa & Hui (2024) and identify PPI candidates by
evaluating structural predictions’ binding affinities with systems biology data. Briefly, we perform
evolutionary analysis to identify conserved regions of the proteins, dock using Ambiguous Interaction
Restraints informed by conserved residues, and cross-validate a structural binding affinity prediction
with systems biology data. Furthermore, we use the conserved regions at the interface of two proteins
in the pathway to identify a candidate orthosteric binding pocket that can be used to generate novel
molecules. We repeat this process for competing proteins in the pathway that share a diffusible
protein ligand in order to find the pocket that we want to avoid hitting. More details can be found in
Appendix A.3.

Non-Differentiable Diffusion Guidance To guide molecule generation specific to one orthosteric
site and not to another, we use DiffDock-Pocket Plainer et al. (2023) as the guidance function and use
the confidence prediction of a generated small molecule as the guidance signal. Thus, we would like
higher confidence for the pocket of interest and lower confidence for the competing protein. While
the confidence model can provide a signal it is not a differentiable function, which is required for both
forward and backward guidance. We overcome this by approximating the gradient of the forward
diffusion guidance using the central difference form of finite difference with an offset of ε = 1e−2 as

∇ztℓ(c, f(ẑ0)) ≈
ℓ(c, f(ẑ0(zt + ε))− ℓ(c, f(ẑ0(zt − ε)))

2ε
. (6)

In our approach to reverse guidance, instead of perturbing the clean data point within the guidance
function, we introduce a checkpointing mechanism that selects a molecule based on its guidance
score as the basis for future reverse guidance steps. Specifically, at each reverse step, we evaluate
the denoised prediction ẑ0 for the current zt and compare it to a checkpointed molecule z∗, which
represents the molecule that has achieved the highest guidance score in previous iterations. The
guidance score is evaluated using the quantitative estimate of drug-likeness drug-likeness metric
(QED) Bickerton et al. (2012), where a higher score corresponds to a more desirable molecule. If
the current denoised prediction ẑ0 achieves a higher QED score than z∗, we update z∗ to this new
molecule. We then calculate an adjusted reverse diffusion gradient point as ∆z∗

0 = z∗
0 − ẑ0(zt) This

mechanism allows us to use the best-performing molecule as the reference for subsequent reverse
guidance steps, ensuring that the generated molecule is progressively optimized according to the
guidance metric. Thus we adjust Eq. (5) to be

ϵ̂ = ϵθ(zt, t)−
√

αt/1− αt∆z∗
0. (7)

Since this method relies on a good checkpoint, we predict a batch of samples ẑ0(zt) and checkpoint on
the best sample. Curiously, we found that this crude reverse guidance was required for convergence of
non-differentiable guided diffusion. This may be due to forward guidance steering sampled molecules
out of distribution of a lower-dimensional manifold and the reverse guidance providing a signal that
steers the sample back to the data manifold. Finally, we can compare this checkpointed molecule to
the final diffusion guidance molecule and return the molecule that achieves the best QED score. We
chose checkpointing on the QED score instead of an aggregate of the confidences and the QED as it
helped to stabilize the sampling process. The complete algorithm can be seen in Appendix A.1.

4 Experiments

We evaluated SSBDD on a model of the BMP pathway Su et al. (2022) using previously-collected
data Klumpe et al. (2022) to perform the systems biology validation. In particular, we chose to design
a small molecule specific to the BMPR1A-ACVR2A receptor complex in combination with the BMP4
diffusible ligand due to the high binding affinity of the complex. We chose the ACVR1-ACVR2A
receptor complex due to its predicted high binding affinity to the BMP4 protein ligand. Since both
complexes bind strongly to BMP4, we would like to design a small molecule that is more specific
to BMPR1A-ACVR2A-BMP4 (BA4) than ACVR1-ACVR2A-BMP4 (AA4). We found “hot spots”
that are likely important to the PPI between each receptor complex and the BMP4 diffusible ligand
using evolutionary analysis data. We used the coordinates of the “hot spots” as the center of the
DiffDock-Pocket diffusion process. Selection of the protein complexes and evolutionary analysis is
discussed in Appendix A.3.
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Table 1: Metrics of small molecules generated with 60, 75, and 90 atoms using three samples each
(n = 3) on QED score, SA score, and the confidence for both the BA4 and AA4 protein complex
pockets of interest. Values are reported as mean ± standard deviation.

Number of Atoms QED (↑) SA (↓) BA4 Conf. (↑) AA4 Conf. (↓)
60 0.764± 0.016 6.805± 1.205 −0.732± 0.363 −7.851± 0.702
75 0.703± 0.019 5.181± 1.088 −0.482± 1.037 −7.782± 0.387
90 0.740± 0.065 5.533± 1.353 −1.641± 1.390 −6.480± 1.390

To perform the guided diffusion process, we generated 60, 75, and 90 atoms. We return the final or
checkpointed molecules and then evaluated according to its QED, synthetic accessibility (SA) score,
and DiffDock-Pocket confidence score in each pocket for both the pocket of interest and competing
pocket. We show a list of the sampling hyperparameters in Appendix A.2.

Figure 2: A 75-atom small molecule generated
and fit into the competing (left) and targeted (right)
pocket of interest. Vina score (lower is better) for
the competing complex was 4.27 kcal/mol and
−1.91 kcal/mol for the targeted pocket.

Table 1 shows SSBDD is able to consistently
generate small molecules specific to the target of
interest, as demonstrated by the BA4 and AA4
confidence scores. We found that there is likely
an optimal sized small molecule that specifically
binds a target of interest. We see the smaller and
larger molecules generally return a better QED
score than the 75-atom small molecule but the
75-atom molecule is generally more confident
in the target of interest than the small and large
small molecules. In general, we also found that
checkpointing on earlier predicted molecules
generally led to smaller final molecules since we
chose to keep the largest fragment of a structure
prediction. This variability in size introduces
more randomness in the process and treats the
atom size as an upper bound of the molecule
size, and suggests optimizing for the size of a
small molecule is an important variable when
making target-specific molecules.

We evaluated the Autodock-Vina score in one of the 75-atom small molecules in the target and
competing protein pockets Fig. 2 and found dramatically stronger binding affinity of the molecule to
the target of interest as opposed to the competing target. This seems counterintuitive as the competing
protein pocket is larger and secluded from water, but the ligand’s size may prevent it from fully
engaging in key bending residues. By contrast, the ligand in the targeted pocket better fits the pocket’s
shape likely resulting in more energetically favorable interactions, such as hydrogen bonding and van
der Waals contacts, leading to a stronger overall binding affinity.

5 Discussion

We demonstrated a bioinformatics pipeline for selecting a protein pocket of interest, as well as
competing pockets, and a novel non-differentiable diffusion guidance method that is able to generate
molecules with greater specificity to the target of interest. The non-differentiable guidance function
provides greater flexibility in terms of which functions can guide the diffusion sampling process.
In evaluating our method across various molecule sizes, we observed that medium-sized molecules
typically exhibited superior performance in the targeted pocket; however, the optimal molecule size
likely varies depending on the characteristics of both the target and competing pockets.

Future Work While our method helps overcome challenges associated with non-differentiable
functions, there is a penalty in sampling efficiency by having to evaluate non-differentiable functions
with a batch of molecules taking 1-2 hours to sample. Creating a differentiable alternative to
DiffDock-Pocket Plainer et al. (2023), e.g. using flow matching, would greatly accelerate sampling.
Additionally, adapting diffusion models that generate small molecules of variable size Campbell et al.
(2023) would allow for a more in-depth study of the interdependence between size of the molecule
and shape of binding pockets of interest.
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A Appendix

A.1 Non-Differentiable Diffusion Guidance Algorithm

We follow the algorithm notation from Bansal et al. (2023) in Algorithm 1 and denote the prediction
of a new data point in sampling as S(zt, ϵ̂θ, t), where the subsequent diffusion step is dependent on
the current noised data point, prediction, and time point.

Algorithm 1 Non-Differentiable Universal Guidance
Parameter: Recurrent steps k, number of checkpoint samples m, and guidance strength s(t)
Required: zT sampled from N (0, I), diffusion model ϵθ, noise scales {αt}Tt=1, guidance function
f , loss function ℓ, and prompt c
z∗ ← 0
for t = T, T − 1, . . . , 1 do

for n = 1, 2, . . . , k do
Calculate ẑ0(zt) = zt/αt − ϵθσt/αt

Calculate ϵ̂θ using forward universal guidance as in Eq. (3)
Sample m values of z(i)

t ← S(zt+1, ϵ̂θ, t+ 1) for i = 1, 2, ...,m

for each sample z
(i)
t , where i = 1 to m do

if ẑ0(z
(i)
t ) > z∗ then

Update z∗ ← ẑ0(z
(i)
t )

end if
end for
∆z∗

0 ← z∗ − ẑ0(zt)

Perform reverse guidance ϵ̂← ϵ̂−
√

αt/(1− αt)∆z∗
0

end for
zt−1 ← S(zt, ϵ̂θ, t)
ϵ′ ∼ N (0, I)
zt ←

√
αtzt−1 +

√
1− αtϵ

′

end for

A.2 Sampling Hyperparameters & Details

The sampling hyperparameters used can be seen in Table 2. Since predicting a denoised data point
is difficult early in the sampling process, we do not begin Algorithm 1 until half way through
generation, when t = 0.5, assuming the noise distribution is at T = 1 and the data distribution is at
t = 0. Additionally, many time steps are unable to predict a denoised molecule so we implement the
algorithm using a try/except loop, falling back to normal diffusion sampling if predicting a denoised
molecule is not possible.

Table 2: Sampling hyperparameters.
Recurrent steps, k 3
Guidance strength, s(t) 0.1 ∗

√
1− αt

Finite difference, ε 1e−2

Samples m from predicted batch zt ← S(zt+1, ϵ̂θ, t+ 1) 10

A.3 Selection of BMP Signaling Proteins

We used a fit model of the BMP pathway to assess which complexes might be good candidates for
inhibition using a small molecule as shown in Fig. 3. Given that both histograms place more density
at the higher end of binding affinities, which represents stronger binding between the complex and
the BMP4 homodimer, we determined they were good candidates to perform PPI inhibition.

After determining that the two complexes were good candidates, we performed a docking analysis to
determine which parts of the proteins bound with one another. We used HADDOCK Van Zundert
et al. (2016) and Ketata et al. (2023) to find probable binding sites betwee the receptor complex and
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Figure 3: Histogram of the posterior parameter fit of the BMP model for the ACVR1-ACVR2A-BMP4
(left) and BMPR1A-ACVR2A-BMP4 (right) trimeric complexes. Binding affinity Keq, which is
Keq = − ln kd, is shown on the x-axis and where higher values mean more tightly binding complexes.
Both suggest a strong binding affinity between the BMP4 homodimer and receptor complex.

the BMP4 homodimer ligand. Additionally, after analyzing the BMP pathway and finding good PPI
candidates, we performed an evolutionary analysis using the ConSurf server Celniker et al. (2013) to
find small molecule binding “hot spots”. The two points can be seen in Fig. 4.

Variable

Conserved

Figure 4: Evolutionary analysis demonstrating “hot spot” in both the BMPR1A-ACVR2A (left) and
the ACVR1-ACVR2A (right) receptors. The yellow start denotes a conserved point that also overlaps
with a probable binding domain between each receptor complex and the BMP4 homodimer ligand.
The BMPR1A-ACVR2A is shown from the side and the ACVR1-ACVR2A is shown from the top.
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