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Abstract

Particle Picking in cellular cryo-electron tomograms (cryo-ET) is crucial for in situ1

structure detection of macromolecules and protein complexes. Given the problems2

associated with the traditional template-matching approaches for particle picking,3

learning-based solutions are necessary for particle picking. A big challenge in4

this regard is the lack of annotated data for training. In this work, we present5

TomoPicker, a Positive-Unlabeled learning-based annotation-efficient particle-6

picking approach that can effectively pick particles when only a minuscule portion7

(∼ 0.3− 0.5%) of the total particles in a cellular cryo-ET dataset are provided for8

training. We evaluated our method on a benchmark cryo-ET dataset of eukaryote9

cells, where we observed about 30% improvement by TomoPicker against the most10

recent state-of-the-art annotation efficient learning-based picking approaches.11

1 Introduction12

Cryo-electron tomography (Cryo-ET) is an emerging imaging technology that has enabled in-situ13

3D visualization of macromolecular structures in nanometer and even subnanometer resolution14

inside the cells [1, 2]. Without hampering the cellular specimens, it can visualize the subcellular15

macromolecules inside them in their native contexts. Thanks to such unique characteristics, cryo-ET16

has been used extensively for in situ structural biology. It can recover the structures of macromolecules17

and protein complexes inside cells with different phenotypes and reveal their spatial organization,18

further facilitating the discovery of numerous novel biological insights [3].19

Nevertheless, extracting the structure of macromolecules from 3D cellular cryo-ET tomograms is a20

complex process that involves multiple steps [4, 2]. The first and most important step is locating the21

macromolecules in the tomograms, called “particle picking" [5, 6]. However, particle picking is a22

challenging task due to several reasons. Firstly, cryo-ET tomograms are large 3D volumes, of size23

≈ 1000× 1000× 500 even after 4x binning [7, 8]. Secondly, these tomograms are very noisy with a24

low signal-to-noise ratio and contrast due to the complex cytoplasmic environment and low electron25

dosage [8, 4]. Finally, the concentration of macromolecules per image is very high, which can be26

around 500− 1000 per tomogram, making it even more difficult to locate them accurately.27

Given the abovementioned challenges, manually picking particles in the tomograms is extremely28

time-consuming and burdensome. To this end, automated approaches for particle picking have29

been developed [5, 9, 10]. A common approach is template matching (TM), which uses templates30

from existing data sources as references to localize similar macromolecules in the tomograms [11].31

However, TM can only be applied when a reference template is available for the macromolecules to32

be picked and often contains reference-dependent biases [7, 12]. In addition, TM is extremely time-33

consuming [7] and shows suboptimal performance [13]. To solve this issue, neural network-based34

deep learning approaches have been introduced [14, 10, 9]. These approaches provide high-throughput35

fast localization of particles without having any reference-dependent biases. However, most of these36
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approaches [10, 9] are based on supervised learning, which again requires manual annotation of37

many particles in the tomograms for training purposes. Given the difficulty of manual annotation in38

cryo-ET, annotation-efficient methods that can perform reliable annotations without requiring large39

annotated training data are necessary.40
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Figure 1: TomoPicker Pipeline

In recent years, a few learning-based picking approaches have addressed this annotation burden41

[15, 16]. Huang et al. [15] developed an algorithm to detect proteins from sparse labels by regarding42

particle picking as a regression problem. They consider each 3D tomogram as a single sample and43

predict particle coordinates for it directly at the tomogram level. This approach has two problems.44

First, since their method is a learning-based method and regards each tomogram as a sample, a large45

number of similar tomograms are required in the training set. Second, to regard each tomogram as a46

sample and fit them as input to convolutional networks, they significantly downsample the tomograms,47

increasing the crowding of particles inside the tomogram. Several tomograms, particularly from48

eukaryote cells, are already very crowded. In such scenarios, downsampling makes particle picking49

even more difficult. Another weakly-supervised algorithm has been developed very recently, named50

as DeepETPicker [16]. Unlike [15], DeepETPicker can be trained on a single tomogram where51

several particle coordinates in that tomogram are annotated. Despite achieving success for sparse52

single-particle and prokaryotic tomograms, its efficacy in crowded eukaryotic tomograms has not53

yet been explored. Moreover, this method did not adapt any mechanism tailored to deal with the54

annotation-efficiency issue.55

In this work, we developed a novel annotation-efficient particle-picking approach called TomoPicker.56

Our approach only requires a small portion (∼ 0.3− 0.5%) of all particles in a tomogram dataset)57

of the particle’s center coordinates to be annotated beforehand. Similar to [15], we regard particle58

picking as a voxel classification problem. For 3D cryo-ET tomograms, each voxel is classified as a59

binary value based on whether it contains particles or not. However, unlike [15], our method can be60

trained on a single tomogram since we do not treat the entire tomogram as samples and rather use61

subvolumes extracted from tomograms as samples for voxel classification. Given only a few portions62

of the voxels are labeled positive, a specific approach is necessary to deal with the large unlabeled63

voxels. If all unlabeled voxels are regarded as negative, it would lead to erroneous prediction and64

picking. To solve this problem, we introduced two positive unlabeled (PU) learning approaches.65

We evaluated our methods against two well-annotated benchmark datasets of eukaryotic S. Pombe66

cell tomograms. We also evaluated the recent and popular learning-based cryo-ET picking methods67

(including the state-of-the-art DeepETPicker [16]) on these datasets for the first item. Our experi-68

mental results demonstrate the superior performance of the TomoPicker approach. Our proposed KL69

divergence-based and non-negative risk estimator-based TomoPicker method improves the particle70

picking performance by 30% over the state-of-the-art DeepETPicker method against the VPP and71

Defocus-only dataset, respectively. Thus, TomoPicker shows high efficacy even when 0.4% of the72

total number of annotated particles in the datasets are used for training.73

2 Method74

TomoPicker consists of three main components for annotation-efficient particle picking in cryo-ET75

tomograms (Figure 1). We briefly discuss them as follows:76
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2.1 Preprocessing and Data Generation for Training77

We start by preprocessing the tomograms to enhance contrast, loading them as voxelized arrays. We78

standardize each tomogram and clip voxel values that lie beyond three standard deviations from the79

mean. After clipping, we re-standardize the voxels.80

To generate labels for voxel classification in our particle-picking network, we create empty voxel81

arrays matching the shape of each training and validation tomogram. For each particle with provided82

coordinates (representing only a small percentage of the actual particles), we assign values of 1 to all83

voxels within a radius around the particle, creating spherical masks in the corresponding label arrays.84

Next, we use a sliding window approach to generate subtomograms and submasks from both the85

tomograms and their label arrays. We save these subtomogram-submask pairs for training, while for86

validation, we only retain pairs with non-zero submasks. Once this data is saved, we proceed to the87

training phase.88

2.2 Model Training with PU Leaning89

We formulate the particle picking as a voxel classification problem. We assume that P is the set of90

labeled particle regions and U is the set of unlabeled particle and non-particle regions in the training91

dataset. Given P and U , we learn a classifier (fθ) that distinguishes between particle and non-particle92

regions in the subtomograms. We used three different strategies (two with PU learning and one93

without) to train the classifier, which we discuss below.94

2.2.1 Positive Negative (PN) Learning95

In PN learning, we treat P as positive samples and U as negative samples, assuming most regions96

in U are non-particle regions. We train the classifier using the binary cross-entropy loss with the97

objective: πEx∼P [L(fθ(x), 1)] + (1 − π)Ex∼U [L(fθ(x), 0)], where π is the fraction of particle98

regions in the dataset and L is the binary cross-entropy loss. While this works well when all particles99

are labeled in P , it performs poorly (Table 1 and 2) in practice because most particles reside in U .100

2.2.2 Non-negative Risk Estimator based Positive Unlabeled (PU) Leaning101

To better handle the unlabeled regions, we adapt a non-negative risk estimator-based PU learning102

approach [17] for cryo-ET particle picking. Here, π′ is the expected average voxel value in a103

labeled sample. It is calculated given the expected number of particles in the training tomogram,104

which the user can readily provide. We define the risk estimators as: R̂−
U = Ex∼U [L(fθ(x), 0)],105

R̂−
P = Ex∼P [L(fθ(x), 0)], and R̂+

P = Ex∼P [L(fθ(x), 1)]. The PU risk estimator is then: R̂PU =106

π′(R̂+
P − R̂−

P ) + R̂−
U . We update fθ using ∇R̂PU if R̂−

U − π′R̂−
P ≥ 0, otherwise we update using107

∇(π′R̂−
P −R−

U ).108

2.2.3 KL based Positive Unlabeled (PU) Leaning109

We propose an alternative to Non-negative Risk Estimator PU learning by minimizing the P class110

misclassification loss while matching the expectation over U . The classifier fθ minimizes the111

term Ex∼P [L(fθ(x), 1)], subject to the constraint Ex∼U [fθ(x)] = π
′′

, where π
′′

represents the112

fraction of unlabeled particle regions within U . This constraint is incorporated into the objective113

function with a regularization term weighted by λ, resulting in the objective: Ex∼P [L(fθ(x), 1)] +114

λKL(Ex∼U [fθ(x)] ||π
′′
). The Kullback-Leibler divergence (KL) ensures that the expectation of115

the classifier over U aligns with the estimated fraction of unlabeled particles π
′′

, and the divergence116

is minimized when both terms are close to each other. π
′′

is calculated as π′ − π, where π and π′ are117

defined in Section 2.2.1 and 2.2.2 respectively.118

2.3 Inference and Picking119

After training the classifier with the above-mentioned learning strategies, we perform particle picking120

on all the tomograms in the dataset, including the ones we used for training and validation. For each121

tomogram V , we use a sliding window strategy to obtain non-overlapping subvolumes of the same122
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size as the training subtomograms. Then, we perform inference for each subvolume with our learned123

classifier fθ. The inference results in a score for each voxel in the subvolumes. We merge the score124

outputs for each subvolume in the tomogram to a volumetric array (Vscore) with the same size as the125

tomogram. We then apply the picking process on this merged predicted array Vscore. The process126

takes the required number of particles N or subvolume score threshold t and the particle radius r as127

input. It operates in 4 steps. In step 1, Find the point (xmax, ymax, zmax) with maximum score value128

in Vscore. In step 2, we append (xmax, ymax, zmax) as well as the score Vscore(xmax, ymax, zmax) to the129

extracted particle list. In step 3, we remove a roughly spherical region of particle radius r around130

(xmax, ymax, zmax) in Vscore by setting their scores to −∞. This ensures that the same particle will not131

be extracted more than once. Finally, we repeat steps 1 − 3 until N particles are extracted or no132

prediction scores above the threshold t remain.133

3 Experiments & Results134

Baselines: We used CrYOLO [9] and DeepETPicker [16], the two most recent and publicly accessible135

learning-based cryo-ET picking methods as baselines. Since CrYOLO [9] is actually a bounding136

box predictor method for 2D cryo-EM images, it is necessary to convert the 3D tomograms into 2D137

slices and provide 2D annotations for each slice to train CrYOLO. In the Appendix, we describe the138

detailed process of 2D slice generation, crYOLO model training, prediction, and 2D-to-3D matching139

for evaluation. For DeepETPicker [16], we used their publicly available codebase with their default140

setting for picking ribosomes.141

Figure 2: DeepETPicker vs Ground Truth for
T0001. Blue Box = Ground Truth, Red Box
= DeepETPicker Predictions.

Evaluation: For evaluation, we calculated the num-142

ber of True Positives (TP), False Positives (FP), False143

Negatives (FN), Precision, Recall, and F1-score pre-144

dicted by the baseline models, and our proposed mod-145

els. We use the annotations of the ribosome coor-146

dinates provided in the original dataset as ground147

truth. For any ground truth coordinate, if there is any148

predicted coordinate within 10 voxels of euclidean149

distance, it is regarded as a TP. The predicted coor-150

dinates that are not within 10 voxels of distance to151

any ground truth particle are regarded as FP. On the152

other hand, those ground truth coordinates, where153

there are no predicted coordinates within 10 voxels154

of euclidean distance are regarded as FNs. Precision155

and Recall are calculated from TP, FP, and FN as156
TP

TP+FP and TP
TP+FN . Finally, F1 score is calculated as157

2×Precision×Recall
Precision+Recall . Experimental setup: In our exper-158

iments for TomoPicker, we used 3D-ResUnet as the159

classifier network fθ, similar to DeepETPicker [16].160

We used a batch size of 8 and an initial learning rate161

of 2 × 10−3, which has been reduced by a factor 0.5 if validation accuracy does not improve for162

5 consecutive epochs. We trained TomoPicker and CrYOLO for 20 epochs, which we found to be163

sufficient. However, we trained DeepETPicker for 100 epochs. We implemented our method in164

pytorch and trained the models using NVIDIA RTX A5000 GPUs.165

For experiments, we use the well-annotated and very recent cellular cyo-ET datasets of eukaryotic S.166

pombe cells publicly available at EMPIAR-10988 [18]. It contains 10 volt-phase-plate (VPP) and 10167

defocus-only tomograms (voxel spacing 1.348 nm) of S. pombe cell sections. We choose these two168

datasets - 1) VPP and 2) Defocus-only tomogram set for benchmarking.169

Volta-Phase-Plate (VPP) S. Pombe cellular cryo-ET Dataset: The VPP dataset contains 10170

tomograms (labeled from T0001 to T0010 consecutively) with a total of 25, 311 ribosome particles.171

The individual tomograms from T0001 to T0010 contains 2450, 2342, 2429, 2967, 3571, 1336, 617,172

2744, 3482, and 3373 ribosome particles respectively. For training our models, we only used 100173

particle coordinates from T0001 for training and 100 particle coordinates from T0002 for validation.174

This accounts for only 100
25,311 = 0.4% of the total particles. Since the voxel spacing is 1.348 nm and175

the radius of ribosome particle is 28− 30 nm, we use 28
1.348 ≈ 11 voxels as the particle radius.176
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Table 1: F1 scorecomparison across different methods on VPP S. Pombe cellular cryo-ET datasets.

Method Dataset
T0001 T0002 T0003 T0004 T0005 T0006 T0007 T0008 T0009 T0010 Overall

CrYOLO 0.36 0.27 0.28 0.28 0.24 0.13 0.07 0.18 0.25 0.38 0.25
DeepETPicker 0.71 0.23 0.27 0.05 0.52 0.40 0.45 0.13 0.37 0.43 0.35
TomoPicker (PN) 0.23 0.03 0.02 0.02 0.27 0.17 0.12 0.15 0.26 0.24 0.15
TomoPicker (PU) 0.57 0.47 0.38 0.38 0.50 0.25 0.27 0.24 0.50 0.44 0.40
TomoPicker (KL) 0.67 0.55 0.52 0.19 0.62 0.61 0.31 0.17 0.25 0.58 0.45

Figure 3: TomoPicker vs Ground Truth for
T0001. Blue Box = Ground Truth, Yellow
Box = TomoPicker Predictions.

Defocus only S. Pombe cellular cryo-ET Dataset:177

The Defocus-only dataset contains 10 tomograms (la-178

beled as T026, T027, T028, T029, T030, T034, T037,179

T041, T043, T045) with a total of 25, 901 ribosome180

particles. The individual tomograms on the above-181

mentioned sequence contains 838, 1673, 5305, 2897,182

2783, 3783, 1646, 2813, 1815, and 2348 ribosome183

particles respectively. Among them, T026 has a very184

different organization compared to other tomograms,185

and visually looks much different. As a result, we186

did not use this tomogram for training, validation,187

or testing. Similar to VPP datasets, we only used188

100 particle coordinates from T029 for training and189

100 particle coordinates from T030 for validation.190

This accounts for only 100
25,063 = 0.4% of the total191

particles.192

After training, the model was tested against all the193

tomograms (except T026 in Defocus-only dataset).194

We have put the F1 score (up to 2 decimal places)195

obtained by each method against each tomogram and196

overall dataset for the VPP dataset in Table 1 and for the Defocus-only dataset in Table 2. The197

tables show that both of our proposed strategies for TomoPicker outperform the baseline methods.198

TomoPicker with KL-based PU learning outperforms state-of-the-art DeepETPicker by 29% for199

VPP and 17% for the Defocus-only dataset. TomoPicker, with non-negative risk estimator-based PU200

learning, outperforms DeepETPicker by 15% for VPP and 29% for the Defocus-only dataset.201

Moreover, we provided two qualitative results of DeepETPicker prediction and TomoPicker pre-202

diction compared to ground truth in Figure 2 and Figure 3, respectively. The figure demonstrated203

TomoPicker’s superior picking.204

Table 2: F1 score comparison across different methods on Defocus-only S. Pombe cryo-ET datasets.

Method Dataset
T027 T028 T029 T030 T034 T037 T041 T043 T045 Overall

CrYOLO 0.16 0.19 0.21 0.14 0.25 0.15 0.29 0.08 0.27 0.19
DeepETPicker 0.37 0.31 0.44 0.43 0.42 0.34 0.29 0.33 0.31 0.35
TomoPicker (PN) 0.15 0.26 0.23 0.22 0.21 0.13 0.18 0.08 0.15 0.18
TomoPicker (PU) 0.48 0.50 0.55 0.52 0.52 0.40 0.40 0.36 0.36 0.45
TomoPicker (KL) 0.35 0.56 0.60 0.49 0.48 0.43 0.27 0.12 0.35 0.41

4 Discussion & Conclusion205

In this work, we have introduced a novel annotation-efficient particle-picking approach, TomoPicker,206

for 3D cellular cryo-ET images or tomograms. We proposed two different positive-unlabeled (PU)207

learning strategies to train TomoPicker. We trained and evaluated these approaches as well as recent208

methods on S. Pombe cell tomograms. We are the first to evaluate learning-based picking methods on209

crowded eukaryotic cell tomograms. Our exhaustive experiments demonstrate the superior (∼ 30%210

improvement of F1 score) performance of TomoPicker over strong baseline methods when only a211

minuscule portion of the particles in the tomograms are annotated for training.212
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A Appendix270

A.1 DeepETPicker Results271

1. VPP Ribosome Results: Table 3272

2. VPP FAS Results: Table 4273

3. Defocus Ribosome Results: Table 5274

Tomogram True Positives False Positives False Negatives Precision Recall F1 Score

TS_0001 590 353 1,860 0.63 0.24 0.35
TS_0002 423 81 1,919 0.84 0.18 0.30
TS_0003 352 73 2,077 0.83 0.14 0.25
TS_0004 257 43 2,710 0.86 0.09 0.16
TS_0005 824 196 2,747 0.81 0.23 0.36
TS_0006 381 257 955 0.60 0.29 0.39
TS_0007 180 327 437 0.36 0.29 0.32
TS_0008 671 60 2,073 0.92 0.24 0.39
TS_0009 766 91 2,716 0.89 0.22 0.35
TS_0010 604 174 2,769 0.78 0.18 0.29

Overall 0.752 0.21 0.316
Table 3: VPP Ribosome Performance Metrics

Tomogram True Positives False Positives False Negatives Precision Recall F1 Score

TS_0001 75 298 26 0.20 0.74 0.32
TS_0002 3 5 78 0.38 0.04 0.07
TS_0003 2 1 57 0.67 0.03 0.06
TS_0004 0 0 112 0 0 0
TS_0005 21 54 37 0.28 0.36 0.32
TS_0006 14 456 41 0.03 0.19 0.05
TS_0007 6 606 34 0.01 0.15 0.02
TS_0008 22 425 53 0.05 0.29 0.08
TS_0009 26 101 38 0.20 0.41 0.27
TS_0010 30 371 36 0.07 0.45 0.13

Overall 0.189 0.266 0.132
Table 4: VPP FAS Performance Metrics

Tomogram True Positives False Positives False Negatives Precision Recall F1 Score

TS_026 328 84 510 0.80 0.39 0.52
TS_027 551 83 1,122 0.87 0.33 0.48
TS_028 388 28 4,917 0.93 0.07 0.14
TS_029 992 65 1,905 0.94 0.34 0.50
TS_030 856 51 1,927 0.94 0.31 0.46
TS_034 935 43 2,848 0.96 0.25 0.39
TS_037 211 59 1,435 0.78 0.13 0.22
TS_041 274 69 2,539 0.80 0.10 0.17
TS_043 403 141 1,412 0.74 0.22 0.34
TS_045 160 19 2,188 0.89 0.07 0.13

Overall 0.865 0.221 0.335
Table 5: Defocus Ribosome Performance Metrics
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A.2 CrYOLO Results275

1. VPP Ribosome Results: Table 6276

2. VPP FAS Results: Table 7277

3. Defocus Ribosome Results: Table 8278

Tomogram True Positives False Positives False Negatives Precision Recall F1 Score

TS_0001 1306 3322 1144 0.28 0.53 0.37
TS_0002 555 1093 1787 0.34 0.24 0.28
TS_0003 1377 5691 1052 0.19 0.57 0.29
TS_0004 1677 7016 1290 0.19 0.57 0.29
TS_0005 800 2167 2771 0.27 0.22 0.24
TS_0006 210 1566 1126 0.12 0.16 0.13
TS_0007 66 1133 551 0.06 0.11 0.07
TS_0008 471 1874 2273 0.20 0.17 0.19
TS_0009 1158 4372 2324 0.21 0.33 0.26
TS_0010 1805 4289 1568 0.30 0.54 0.38

Overall 0.22 0.34 0.25
Table 6: Cryolo VPP Ribosome Performance Metrics

Tomogram True Positives False Positives False Negatives Precision Recall F1 Score

TS_0001 98 3797 3 0.03 0.97 0.05
TS_0002 43 726 38 0.06 0.53 0.10
TS_0003 17 287 42 0.06 0.29 0.09
TS_0004 25 1389 87 0.02 0.22 0.03
TS_0005 13 753 45 0.02 0.22 0.03
TS_0006 20 1991 55 0.01 0.27 0.02
TS_0007 18 5256 18 0.00 0.45 0.01
TS_0008 20 2494 55 0.01 0.27 0.02
TS_0009 15 1505 49 0.01 0.23 0.02

Overall 0.02 0.38 0.04
Table 7: Cryolo VPP FAS Performance Metrics

Ground File True Positives False Positives False Negatives Precision Recall F1 Score

TS_027.coords 1296 16185 377 0.07 0.77 0.14
TS_028.coords 3495 28929 1810 0.11 0.66 0.19
TS_029.coords 1950 14039 947 0.12 0.67 0.21
TS_030.coords 1952 22392 831 0.08 0.70 0.14
TS_034.coords 2499 13838 1284 0.15 0.66 0.25
TS_037.coords 1039 10805 607 0.09 0.63 0.15
TS_041.coords 1637 6884 1176 0.19 0.58 0.29
TS_043.coords 788 16252 1027 0.05 0.43 0.08
TS_045.coords 1294 5778 1054 0.18 0.55 0.27

Overall 0.12 0.63 0.19
Table 8: Cryolo Defocus Ribosome Performance Metrics
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A.3 TomoPicker Results279

File True Positives False Positives False Negatives Precision Recall F1 Score

TS_043.coords 222 1783 1593 0.11 0.12 0.12
TS_028.coords 2947 2213 2358 0.57 0.56 0.56
TS_045.coords 776 1253 1572 0.38 0.33 0.35
TS_030.coords 1439 1617 1344 0.47 0.52 0.49
TS_041.coords 800 2236 2013 0.26 0.28 0.27
TS_037.coords 789 1249 857 0.39 0.48 0.43
TS_034.coords 1871 2221 1912 0.46 0.49 0.48
TS_027.coords 650 1396 1033 0.32 0.39 0.35
TS_029.coords 1789 1278 1108 0.58 0.62 0.60

Table 9: KL Tomopicker Pombe Defocus Ribosome Performance Metrics

File True Positives False Positives False Negatives Precision Recall F1 Score

TS_0008.coords 408 1601 2336 0.20 0.15 0.17
TS_0010.coords 1879 1196 951 0.61 0.56 0.58
TS_0006.coords 873 666 463 0.57 0.65 0.61
TS_0004.coords 484 1536 2483 0.24 0.16 0.19
TS_0001.coords 1499 549 951 0.73 0.61 0.67
TS_0002.coords 1222 858 1120 0.59 0.52 0.55
TS_0009.coords 675 1437 2807 0.33 0.19 0.25
TS_0007.coords 254 758 363 0.25 0.41 0.32
TS_0005.coords 2074 1003 1497 0.67 0.58 0.62
TS_0003.coords 1162 890 1267 0.57 0.48 0.52

Overall 12530 10494 16434 0.45 0.45 0.45
Table 10: KL Tomopicker Pombe VPP Ribosome Performance Metrics
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