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Abstract

The ability to precisely target specific motifs on disease-related proteins, whether
conserved epitopes on viral proteins, intrinsically disordered regions within tran-
scription factors, or breakpoint junctions in fusion oncoproteins, is essential for
modulating their function while minimizing off-target effects. Current methods
struggle to achieve this specificity without reliable structural information. In this
work, we introduce a motif-specific PPI targeting algorithm, moPPIt, for de novo
generation of motif-specific peptide binders from the target protein sequence alone.
At the core of moPPIt is BindEvaluator, a transformer-based model that interpolates
protein language model embeddings of two proteins via a series of multi-headed
self-attention blocks, with a key focus on local motif features. Trained on over
510,000 annotated PPIs, BindEvaluator accurately predicts target binding sites
given protein-protein sequence pairs with a test AUC > 0.94, improving to AUC
> 0.96 when fine-tuned on peptide-protein pairs. By combining BindEvaluator
with our PepMLM peptide generator and genetic algorithm-based optimization,
moPPIt generates peptides that bind specifically to user-defined residues on target
proteins. We demonstrate moPPIt’s efficacy in computationally designing binders
to specific motifs, first on targets with known binding peptides and then extending
to structured and disordered targets with no known binders. In total, moPPIt serves
as a powerful tool for developing highly specific peptide therapeutics without
relying on target structure or structure-dependent latent spaces.

1 Introduction

Motif-specific targeting of protein-protein interactions (PPIs) offers the potential for highly selective
biotherapeutics that can modulate protein function while minimizing off-target effects, an advantage
unattainable with traditional small molecule drugs, which typically require well-defined and
conserved binding sites for inhibition [1]. The importance of targeting specific motifs is evident
across a wide range of biological contexts. For instance, in cancer biology, restoring the function of
the p53 tumor suppressor by targeting its DNA-binding domain could provide a powerful therapeutic
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approach in cancers where p53 is inactivated by mutations [2]. In neurodegenerative disorders
like Alzheimer’s disease, precise binding to the β-secretase cleavage site of the amyloid precursor
protein (APP) could modulate its processing and potentially reduce the formation of toxic amyloid-β
peptides [3]. Targeting active sites of enzymes, such as the catalytic domain of BRAF kinase in
melanoma, offers more specific inhibition compared to traditional small molecule inhibitors [4].
Allosteric domains present another important target, exemplified by the potential to modulate G
protein-coupled receptor (GPCR) function by binding to their allosteric sites [5]. For intrinsically
disordered proteins, targeting specific regions of the tau protein involved in pathological aggregation
could provide new avenues for treating tauopathies [6]. Furthermore, in cancers driven by fusion
oncoproteins, such as PAX3::FOXO1 in alveolar rhabdomyosarcoma, targeting the unique sequence
at the fusion breakpoint could offer exquisite specificity for therapeutic interventions [7, 8].

While experimental methods to generate motif-specific binders, such as animal immuniza-
tion, phage display, and yeast display, are often prohibitively laborious, computational approaches
offer a much more streamlined and efficient design process [9]. Advances including AlphaFold and
RFDiffusion, have shown promise in various protein design tasks, including motif-specific binder
design [10–13]. However, these methods operate purely in structure space, making them less suitable
for targets lacking stable tertiary conformations, such as intrinsically disordered proteins, which
were not present in their training sets. While recent efforts have attempted to extend diffusion-based
methods to sample “plausible” conformations of disordered proteins via Gaussian perturbations
[14], they remain constrained by their reliance on static structural data for training, which biases
the underlying latent space, thus precluding accurate conformational sampling. An alternative
approach leverages protein language models (pLMs) like ESM-2, ESM3, and ProtT5, which have
been trained on vast, diverse protein sequence datasets to capture underlying physicochemical
and functional properties of protein sequences, including disorder propensities [15–18]. These
pLMs have demonstrated utility in various protein design tasks, including our recent work on
designing target-specific peptide binders from target sequence alone [19–21]. However, existing
pLM-based methods have not yet focused on targeting specific motifs or epitopes on proteins, leaving
a significant gap in our ability to design highly specific binders for conformationally and functionally
diverse protein targets.

To address this gap, in this work, we develop a motif-specific PPI targeting algorithm,
termed moPPIt, that enables the design of motif-specific peptide binders using sequence-only
pLM embeddings. To enable moPPIt-based generation, we train BindEvaluator, a transformer
interpolating ESM-2 pLM embeddings [15] via a series of multi-headed self-attention blocks
to capture both global and local interaction properties. Trained on over 510,000 annotated PPI
sequence pairs, BindEvaluator accurately predicts binding hotspots between two proteins with a test
AUC > 0.94, improving to AUC > 0.96 when fine-tuned on known peptide-protein pairs. moPPIt
integrates BindEvaluator with our previous PepMLM peptide generation algorithm [20], via a genetic
optimization approach, to generate peptides that bind specifically to user-defined motifs on target
proteins. We demonstrate moPPIt’s efficacy in designing binders to specific epitopes on a diverse set
of targets, including kinases, transcription factors, and even intrinsically disordered regions (IDRs).
Using a combination of AlphaFold2-Multimer [22] and PeptiDerive, a Rosetta-based algorithm for
identifying key binding residues [23], we computationally validate the specificity and binding affinity
of our designed peptides on targets with known peptide binders, as well as on novel structured targets
and variable disordered domains. Our comprehensive approach allows moPPIt to specifically target
motifs on a wide range of targets, including those previously considered “undruggable,” potentially
aiding drug discovery efforts for diseases driven by aberrant protein interactions.

2 Methods

BindEvaluator Model Architecture To enable motif-specific peptide binder generation, we first
developed a BindEvaluator model to predict peptide-protein interaction binding sites (Figure 1A).
BindEvaluator takes a binder sequence and a target sequence as inputs to predict the binding residues
on the target protein. Both binder and target sequences are first passed into a pre-trained ESM-2-650M
model to obtain their embeddings [15]. For the target sequence embedding, a dilated convolutional
neural network (CNN) module captures the local features of adjacent residues. The processed
embeddings are then passed through multi-head attention modules to capture global dependencies for
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Figure 1: (A) Overview of the architecture of BindEvaluator. (B) Schematic of moPPIt.

each residue. In the reciprocal attention modules, the target and binder sequence representations are
integrated to capture binder-target interaction information. Following several layers of dilated CNN
and attention modules, the resulting target sequence representation encapsulates the binder-target
binding information. Finally, this representation is processed by feed-forward layers and linear layers
to predict the binding sites.

Motif-Specific Binder Design Algorithm Our motif-specific PPI targeting algorithm (moPPIt)
aims to generate motif-specific peptide binders based on the target protein sequence (Figure 1B). The
algorithm begins with PepMLM generating a pool of candidate peptide binders of a defined length
for a given target protein sequence. PepMLM is a state-of-the-art ESM-2-based model that generates
peptide binders conditioned on a target protein sequence alone [20]. BindEvaluator then predicts the
interacting residues between each candidate binder and the target protein. A penalty score is assigned
to each binder based on these predictions. Additionally, PepMLM computes the perplexity (PPL)
of each peptide given the target sequence, which serves as another metric to evaluate the biological
relevance of the binders. The candidate binders are then sorted based on penalty scores and perplexity.
Subsequently, a new pool of candidate binders is generated from the sorted binders via a genetic
algorithm, aiming for lower penalty scores or perplexity. The new pool undergoes another round
of evaluation by BindEvaluator and PepMLM, and the process is repeated. The iteration continues
until the penalty score falls below a set threshold, the maximum number of genetic algorithm rounds
is reached, or there is no further improvement in successive rounds. The resulting top binders are
expected to exhibit high affinity and specificity for the specified binding motifs on the target protein.

3 Results

We initially trained BindEvaluator without dilated CNN modules on a large protein-protein interaction
(PPI) dataset containing over 500,000 entries with annotated interface residues [24] to provide
foundational knowledge of protein interaction information. The model’s performance on the test
data confirmed its efficacy in distinguishing between binding and non-binding residues (Table 1).
We hypothesized that incorporating dilated CNN modules into BindEvaluator would enhance its
performance by effectively extracting local features relevant to binding site information. To test
this hypothesis, we trained a version of BindEvaluator with dilated CNN modules on the same PPI
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Figure 2: (A) PeptiDerive relative interface scores (RIS) for existing and designed peptide-protein
complexes were computed and visualized for an example protein with PDB ID: 1A2C. The peptide-
complex structure is visualized for (B) a protein without known binders (PPP5) and (C) a protein with
disordered regions (EWS::FLI1). The target proteins are depicted in grey, the designed peptide binders
are shown in yellow, and the binding residues specified by the moPPIt algorithm are highlighted in
magenta. Below each structure, the relative interaction scores (RIS) computed by PeptiDerive are
shown, with high scores indicating strong binding potential. Positions highlighted in red were input
into moPPIt as the desired target amino acids.

dataset with almost identical training settings except for slightly different gradient accumulation
schedules. The inclusion of these CNN modules led to observable improvements across several
metrics (Table 1). To adapt our model for peptide-protein binding site prediction, the pre-trained
BindEvaluator model with dilated CNN modules was further fine-tuned on over 12,000 structurally
validated, non-redundant peptide-protein sequence pairs, which also achieved strong test metrics,
indicating high precision in peptide-protein binding site prediction (Table 1).

Table 1: Test Performance metrics of BindEvaluator Across Different Training Configurations

Test Metric Train w/o CNN Train w/ CNN Fine-tune w/ CNN
Loss 0.388 0.373 0.514

BCE Loss 0.311 0.295 0.580
KL Loss 0.773 0.776 0.254
Accuracy 0.83 0.84 0.91

AUC 0.93 0.94 0.97
F1 Score 0.65 0.66 0.58

MCC 0.59 0.61 0.59
To evaluate moPPIt in a well-controlled setting, we designed binders for 15 structured, unseen proteins
with known, pre-existing peptide binders, all derived from the PDB. We analyzed the relative interface
scores (RIS) of both existing and designed peptide-protein complexes using PeptiDerive [23], which
evaluates the energy contribution of specific residues to the overall free energy of the binder-target
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complex structure (Figure 2A, 7, 8). The designed complexes showed similar or higher RIS at
specified binding positions compared to existing complexes, indicating similar or stronger binding
potential. Additionally, the residues with high RIS were primarily localized in regions adjacent to the
binding motifs, showcasing the high specificity of moPPIt-designed binders.

To further assess moPPIt’s performance, we designed peptide binders for structured proteins with-
out pre-existing binders. We specifically selected proteins from three enzyme classes (kinases,
phosphatases, and deubiquitinases) to evaluate moPPIt’s versatility in designing binders for diverse
structured proteins without pre-identified binding sites. The potential binding sites are identified by
PepMLM and BindEvaluator. We evaluated the epitope specificity of designed binders to correspond-
ing targets (Figure 2B, 5, 9). Notably, the residues with the highest RIS predicted by PeptiDerive are
at the specified binding motifs, indicating moPPIt’s capability to generate highly specific binders.
The 3D structures of the peptide-protein complexes show the designed peptides positioned close to
the target binding sites, further validating moPPIt’s capacity to produce binders with high affinity for
the target motifs.

To demonstrate moPPIt’s ability to design binders targeting intrinsically disordered proteins, we
selected three proteins with structurally disordered domains (UCHL5, 4E-BP2, and EWS::FLI1) and
designed binders for them using moPPIt. The PeptiDerive scores align with the specified binding
motifs, showing high predicted RIS (Figure 2C, 6). The visualizations of the 3D predicted structures
reveal that the designed peptides are positioned close to the target motifs, suggesting a high affinity
for the intrinsically disordered domains. These alignments indicate that moPPIt can design binders
targeting both conformationally ordered and disordered regions of structurally disordered proteins.

4 Discussion

The challenge of designing highly specific peptide binders, particularly for targets lacking well-
defined structural pockets or those with intrinsically disordered regions, has long been a bottleneck in
therapeutic development. In this work, we have presented moPPIt, a purely sequence-based approach
that addresses this challenge by enabling the design of motif-specific peptide binders without relying
or interpolating on structural representations. By integrating feature-rich pLM embeddings, moPPIt
demonstrates the ability to generate peptides that bind to user-defined epitopes across a diverse range
of protein targets, those with both structured and conformationally flexible motifs.

We believe moPPIt has the potential to be effective across a broad spectrum of protein targets. To
prove this, our next steps will include a comprehensive experimental validation of moPPIt, alongside
structure-based methods like RFDiffusion [12, 14], evaluating performance on both structured and
disordered regions. This will involve biochemical binding affinity assays and leveraging our chimeric
peptide-E3 ubiquitin ligase ubiquibody (uAb) architecture for target degradation studies [19–21].
Furthermore, the motif-specific nature of our approach suggests promising applications in developing
binders with mutant selectivity and the ability to target specific post-translational modification sites
[25]. Importantly, moPPIt’s capability to target specific epitopes could be particularly valuable in
interrogating viral proteins, such as those of SARS-CoV-2 and future pandemic viruses, by enabling
the design of binders that target highly conserved regions less prone to escape mutations [26]. Overall,
these capabilities could prove invaluable for both detection and therapeutic applications, potentially
enabling more precise modulation of protein function in complex diseases that are driven by aberrant
post-translational states. As we move forward with experimental validation, we anticipate that moPPIt
will contribute significantly to expanding the repertoire of targetable proteins and advancing the field
of precision biotherapeutics.
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5 Supplementary Material

5.1 Dataset Curation

The training data for BindEvaluator was curated from the PPIRef dataset, a large and non-redundant
databank of PPIs [24]. To augment the dataset, additional entries were generated by reversing the
roles of the target and binder sequences for each original entry. Proteins exceeding 500 amino acids
were removed due to GPU constraints. After removing all duplicates, the final dataset comprised
510,804 triplets, each containing target sequence, binder sequence, and binding motifs. This dataset
was split at a 60/20/20 ratio into a training set, validation set, and test set.

The peptide-protein interaction data for fine-tuning BindEvaluator was curated from the PepNN and
BioLip2 databases [27, 28]. Specifically, 3022 PepNN and 9251 BioLip2 non-redundant triplets for
peptide-protein binding were collected. Proteins longer than 500 amino acids and peptides longer
than 25 amino acids were removed. The dataset was split at a 80/10/10 ratio into a training set,
validation set, and test set.

5.2 BindEvaluator Architecture Details

Dilated CNN modules BindEvalutor takes a target sequence and a binder sequence as inputs. Both
sequences will first be processed by a pre-trained ESM-2-650 model to generate embeddings [15].
The target sequence embedding will be further processed by a dilated convolutional neural network
(CNN) module to capture the local features of adjacent residues. Specifically, the module is composed
of three stacked CNN blocks with different dilation rates (1, 2, and 3) to extract hierarchical features.
Each block consists of three convolutional layers with different kernel widths (3, 5, and 7) to cover
different receptive field sizes, accommodating different binding site sizes. Padding is added to each
convolutional layer to maintain consistent output and input sizes. Since the focus is to identify binding
residues for the target protein, the dilated CNN module is applied only to the target sequence. Given
that no binding motifs in the training set contain more than 23 continuous residues, the dilated CNN
module is sufficient to capture the binding region features.

Reciprocal Multi-head Attention Both binder embedding and target embedding will be further
processed by multiple multi-head self-attention modules and reciprocal multi-head attention modules.
In the reciprocal attention modules, the binder representations are projected into a key matrix K and
a query matrix Q, while the target representations are projected into a value matrix V , and vice versa.
The reciprocal attention is formulated as follows:

Attentiontarget(Q,K, Vbinder) = softmax
(
QKT

√
dk

)
Vbinder (1)

Attentionbinder(Q,K, Vtarget) = softmax
(
KQT

√
dk

)
Vtarget (2)

where dk is the model dimension. In this way, both resulting target embedding and binder embedding
will contain binder-target binding information.

5.3 BindEvaluator Training and Fine-tuning

BindEvaluator is first trained on a PPI dataset and then fine-tuned using peptide-protein binding data.
During training and fine-tuning, the same model architecture is used. The weights of ESM-2-650M
are fixed, and all other parameters remain trainable. To accurately capture the intrinsic distribution of
binding residues, the loss function L is designed to be the sum of the Binary Cross-Entropy (BCE)
loss and the Kullback-Leibler (KL) divergence between the predicted and the true binding motifs.
Specifically, letting ŷ be the predicted binding motifs and y be the true binding motifs, the loss
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function is defined as:

L(y, ŷ) = −
∑
i

[yi log(ŷi) + (1− yi) log(1− ŷi)] + λ
∑
i

yi log

(
yi
ŷi

)
(3)

Here, λ is a hyper-parameter that balances the contribution of the KL divergence to the total loss.
During training, λ is set to 0.1, while during fine-tuning, λ is set to 1.

BindEvaluator was trained on a 6xA6000 NVIDIA RTX GPU system with 48 GB of VRAM each
for 30 epochs. The batch size was set to 32, with a learning rate of 1e-3, a dropout rate of 0.3, and a
gradient clipping value of 0.5. The AdamW optimizer was used with weight decay. Fine-tuning was
performed on the same six GPUs for 30 epochs, with an increased dropout rate of 0.5. The batch size,
learning rate, gradient clipping, and optimizer settings were identical to those used during training.

5.4 moPPIt Details

The moPPIt algorithm aims to generate motif-specific peptide binders based on the target pro-
tein sequence, leveraging the PepMLM algorithm: https://huggingface.co/ChatterjeeLab/
PepMLM-650M The visualization of the moPPIt algorithm is shown in Figure 1B.

Penalty scores and Perplexity Given a target protein sequence, PepMLM generates a pool of
candidate peptide binders of a specified length. The fine-tuned BindEvaluator then predicts the
binding sites on the target protein given each candidate binder. A penalty score is assigned based
on these predictions. Specifically, for each amino acid in the specified binding motifs, but not in
the predicted binding sites, the penalty score increases by 1. In contrast, for each amino acid in the
predicted but not the specified binding motifs, the penalty score increases by 0.5. The scoring system
ensures that the generated binders target the specified motifs with high selectivity. Additionally, as
a masked language model, PepMLM computes the perplexity of each peptide based on the target
protein sequence. The perplexity (PPL) of the peptide sequence given the target protein is defined as:

PPL = exp

(
− 1

L

L∑
i=1

logP (ai|T, a<i)

)
(4)

where L is the number of amino acids in the peptide, ai is the i-th amino acid in the peptide sequence,
T represents the target protein, and P (ai|T, a<i) is the probability of the i-th amino acid given the
target protein and the preceding amino acids in the peptide sequence.

Genetic Algorithm After computing the penalty scores and perplexity, candidate binders are sorted
based on these metrics. A genetic algorithm is then applied to the sorted binders. Specifically, the
top 10% of binder sequences remain unchanged. For the remaining 90%, new binders are created by
randomly selecting and mating two sequences from the top half of the original pool. During mating,
each position on the binder sequence has a 45% chance of inheriting the amino acid from one parent
sequence, a 45% chance from the other parent, and a 10% chance of being replaced by a new amino
acid. This process generates a new pool of candidate binders.

5.5 Validation Loss curves for BindEvaluator Training and Fine-tuning

We first trained BindEvaluator without dilated CNN modules on a large protein-protein interaction
dataset. During training, we observed a consistent decline in the validation loss, which indicates
stable and effective learning (Figure 3A). The steady decrease in binary cross entropy (BCE) loss and
Kullback-Leibler (KL) divergence loss suggested that the model improves in distinguishing between
binding and non-binding residues and in understanding the fundamental distribution of binding sites.
We then trained BindEvaluator with dilated CNN modules on the same dataset. Both models, with and
without dilated CNN modules demonstrated similar declining trends in their loss curves, indicating
effective learning (Figure 3B). Notably, the total loss continued to decrease even in the final training
epochs, suggesting that the BindEvaluator with dilated CNN modules was more adept at learning
subtle features, leading to better performance. During fine-tuning on the peptide-protein interaction
dataset, we observed validation loss decreasing steadily (Figure 3C), indicating a steady improvement
in binding site prediction abilities.
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Figure 3: Validation loss curves for BindEvaluator training and fine-tuning. (A) Validation loss,
binary cross-entropy (BCE) loss, and Kullback-Leibler (KL) divergence loss curves during training
of BindEvaluator on the PPI dataset without dilated CNN modules. (B) Loss curves for training
with dilated CNN modules, showing similar trends to (A) but with noticeable reductions in losses
during the final epochs. (C) Loss curves during fine-tuning of BindEvaluator with dilated CNN
modules on peptide-protein binding data, illustrating further decreases in loss metrics, particularly in
KL divergence.

5.6 moPPIt-designed Binders Demonstrate High Binding Capacity

We evaluated the binding potential between moPPIt-designed binders and the target proteins. For the
binders designed for 15 structured, unseen proteins with known, pre-existing binders, we calculated
the ipTM and pTM scores, which represent confidence in interface formation and overall complex
formation, respectively, for the peptide-protein complexes predicted by AlphaFold2-Multimer [22].
These scores were used to compare the performance of the pre-existing binders with those designed
by moPPIt. We observed that moPPIt-designed binders can form peptide-protein complexes with
similar or superior ipTM and pTM scores compared to the pre-existing ones (Table 2). Notably, only
one of the 15 designed peptides fell slightly below the defined ipTM threshold, set at 0.05 below the
ipTM score of the existing peptide-protein complex (Figure 4). The superior ipTM scores underscore
moPPIt’s capability to generate peptides with strong binding to target proteins. Moreover, moPPIt
successfully designed binders of varying lengths, demonstrating its overall versatility (Table 2).
Similar pTM and ipTM results were observed for structured proteins without pre-existing binders
(Table 3).

We also assessed the binding capacity of moPPIt-designed binders targeting three intrinsically
disordered proteins (UCHL5, 4E-BP2, and EWS::FLI1). Table 4 displays the pTM and ipTM scores
for each complex structure formed with the designed binders, along with their binding sites and target
proteins’ disordered regions predicted by DisorderUnetLM [29]. For UCHL5, we targeted the binder
to one of its disordered regions, achieving a high ipTM score and pTM score, similar to the binder
for 4E-BP2. For EWS::FLI, we designed binders to its structured domain so as to demonstrate that
moPPIt is able to design binders to the structured regions of intrinsically disordered proteins. The
high ipTM scores of the three peptide-protein complexes demonstrate the strong binding capacity of
the designed peptides (Table 4).
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Figure 4: Hit rate of moPPIt on structured targets with known binders. The ipTM scores of input
peptides, in complex with their target protein, were calculated via AlphaFold-Multimer. The ipTM
scores for known peptides (red) from PDB structures were compared to moPPIt-designed peptides
(blue) for the same target proteins. An ipTM below 0.05 of the existing peptide for a given target
protein (green line) was used as a threshold to call hits.

5.7 Identify Potential Binding Sites Using PepMLM and BindEvaluator

We leveraged pre-trained PepMLM and fine-tuned BindEvaluator model to identify potential binding
sites for structured proteins without pre-existing binders and intrinsically disordered proteins [20].
Specifically, we utilized PepMLM to generate 50 candidate binders for each protein. BindEvaluator
then predicted the binding sites on the target proteins for the top three binders with the lowest
perplexity. The binding residues were identified as those present in all three predictions.
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Figure 5: Structural visualization and PeptiDerive relative interaction scores for designed
peptides targeting structured motifs. The peptide-complex structures are visualized for two
proteins without known binders: (A) CLK1 and (B) MINDY1. The target proteins are depicted in
grey, the designed peptide binders are shown in yellow, and the binding residues specified by the
moPPIt algorithm are highlighted in magenta. Below each structure, the relative interaction scores
(RIS) computed by PeptiDerive are shown, with high scores indicating strong binding potential.
Positions highlighted in red were input into moPPIt as the desired target amino acids.
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Figure 6: Structural visualization and PeptiDerive relative interaction scores for designed
peptides targeting disordered regions. The peptide-complex structures are visualized for two
proteins with disordered regions: (A) UCHL5 and (B) 4E-BP2. The target proteins are depicted in
grey, the designed peptide binders are shown in yellow, and the binding residues specified by the
moPPIt algorithm are highlighted in magenta. Below each structure, the relative interaction scores
(RIS) computed by PeptiDerive are shown, with high scores indicating strong binding potential.
Positions highlighted in red were input into moPPIt as the desired target amino acids.
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Table 2: Comparison of ipTM and pTM scores for existing and designed peptide-protein
complexes. The ipTM and pTM scores are calculated by AlphaFold2-Multimer for peptide-protein
complexes using both existing peptides and peptides designed by the moPPIt algorithm. The designed
binders for each protein are presented.

PDB ID ipTM score
(existing binder)

ipTM score
(designed binder)

pTM score
(existing binder)

pTM score
(designed binder) Designed Binder

1A2C 0.91 0.93 0.96 0.96 GYEEIPEEYLQ

1AYC 0.69 0.8 0.9 0.88 SSQVVADLQPP

1B8Q 0.84 0.83 0.82 0.81 VVSVDSV

1LTJ 0.94 0.87 0.89 0.89 GHRG

2FAI 0.88 0.89 0.95 0.95 HHKILHRLLQDSS

3IDG 0.51 0.51 0.71 0.72 PRRRGGRR

3IDJ 0.48 0.63 0.79 0.77 LLLELDKWLLS

4IU7 0.93 0.92 0.93 0.92 KKIHHRLLQD

5E1C 0.86 0.81 0.93 0.93 HKKIHHRLLQQQSE

5EZ0 0.84 0.84 0.85 0.85 GWESLKTGKETPL

5KRI 0.86 0.84 0.93 0.92 HKKILHRLLQDSSS

5M02 0.5 0.49 0.86 0.86 KAPANFATM

6ERW 0.96 0.94 0.95 0.96 TTYADIIASGRTGRRAAI

8CN1 0.93 0.93 0.89 0.89 VVTV

8OEP 0.84 0.84 0.84 0.85 RWRDPKARPGRETPL
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Table 3: pTM and ipTM Scores for designed binders targeting proteins without known binders.
This table lists the pTM and ipTM scores for the complex structures of proteins with designed binders
targeting proteins without known binders. The proteins are categorized by type, including kinases,
phosphatases, and deubiquitinating enzymes (DUBs). The designed binders are provided alongside
each protein.

UniProt ID Protein Name Type ipTM score pTM score Designed Binder

P49759 CLK1 Kinases 0.76 0.72 PDGDRR

P11309 P1M1 Kinases 0.83 0.84 KKRRRHPS

P11801 PSKH1 Kinases 0.86 0.72 RRPDDIAW

P17612 PRKACA Kinases 0.88 0.95 TRGRIHI

P53041 PPP5 Phosphatases 0.88 0.89 EDLPA

Q15257 PTPA Phosphatases 0.88 0.84 PDLFDLFL

P67775 PPP2CA Phosphatases 0.8 0.92 SELGDRFP

P62136 PPP1CA Phosphatases 0.82 0.89 PLVVTE

P63279 UBC9 DUBs 0.84 0.92 AQVVPE

Q8N5J2 MINDY1 DUBs 0.87 0.58 SRLSSGK

Table 4: pTM and ipTM scores for designed binders targeting disordered regions in selected
proteins. The table includes the UniProt ID, protein name, binding sites, disordered regions, pTM
and ipTM scores, and the designed binders for each protein. High pTM and ipTM scores indicate the
reliability and stability of the predicted complex structures.

UniProt ID Protein Name Binding Sites Disordered Regions ipTM score pTM score Binder

Q9Y5K5 UCHL5 153-158 1-4/148-159/243-253/327-329 0.68 0.81 AQRGRGR

Q13542 4E-BP2 52-67 1-119 0.71 0.36 STTAQAFVQE

B1PRL2 EWS:FLI 324-331 1-260 0.82 0.3 GPSSWYS
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Figure 7: PeptiDerive relative interface scores for existing and designed peptide-protein com-
plexes. Heatmaps of PeptiDerive relative interface scores (RIS) are shown for 7 peptide-protein
complexes among 15 structured complexes with known binders that were tested: (A) 1AYC, (B)
1B8Q, (C) 1LTJ, (D) 2FAI, (E) 3IDJ, (F) 3IDG, (G) 4IU7. The first heatmap for each protein shows
the RIS of the existing peptide-protein complex, while the second heatmap shows the scores for the
designed peptide-protein complex. For each heatmap, the x-axis indicates the residue positions, with
highlighted positions in red representing the target binding amino acid positions that were input into
moPPIt. High RIS at these positions indicate strong binding potential.

16



Figure 8: PeptiDerive relative interface scores for existing and designed peptide-protein com-
plexes. Heatmaps of PeptiDerive relative interface scores (RIS) are shown for 7 peptide-protein
complexes among 15 structured complexes with known binders that were tested:(H) 5E1C, (I) 5EZ0,
(J) 5KRI, (K) 5M02, (L) 6ERW, (M) 8CN1, (N) 8OEP. The first heatmap for each protein shows
the RIS of the existing peptide-protein complex, while the second heatmap shows the scores for the
designed peptide-protein complex. For each heatmap, the x-axis indicates the residue positions, with
highlighted positions in red representing the target binding amino acid positions that were input into
moPPIt. High RIS at these positions indicate strong binding potential.
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Figure 9: PeptiDerive relative interface scores for complexes with peptides designed to novel
structured targets. Heatmaps of PeptiDerive relative interface scores (RIS) are shown for 7 peptide-
protein complexes from 10 proteins without known binders that were tested: (A) P1M1, (B) PSKH1,
(C) PRKACA, (D) PTPA, (E) PPP2CA, (F) PPP1CA, (G) UBC9. For each heatmap, the x-axis
indicates the residue positions, with highlighted positions in red representing the target binding amino
acids positions that were input into moPPIt. High RIS at these positions indicate strong binding
potential.
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